ORF307 – Optimization

5. Multi-objective least squares

Ed Forum

- Would it be possible to post lecture notes a few weeks in advance, in case we ever want to review material ahead of class? —> Last year's material is available at: https://stellato.io/teaching/orf307/2023/
- Can you go over autoregressive time series models again?

Recap

Least squares data fitting

Vector form

Express problems with N-vectors

- $y^{\mathrm{d}} = (y^{(1)}, \dots, y^{(N)})$, vector of outcomes
- $\hat{y}^{\mathrm{d}} = (\hat{y}^{(1)}, \dots, \hat{y}^{(N)})$, vector of predictions
- $r^{d} = (r^{(1)}, \dots, r^{(N)})$, vector of residuals

Goal

minimize $||r^{d}||^2$

We can write $\hat{y}^{(i)} = \hat{f}(x^{(i)})$ in terms of parameters θ_i

$$\hat{y}^{(i)} = A_{i1}\theta_1 + \dots + A_{ip}\theta_p, \qquad A_{ij} = f_j(x^{(i)}) \qquad \longrightarrow \qquad \hat{y}^d = A\theta$$

$$A_{ij} = f_j(x^{(i)})$$

$$\hat{y}^{\mathrm{d}} = A\theta$$

Least squares problem

minimize
$$||r^{\mathbf{d}}||^2 = ||y^{\mathbf{d}} - \hat{y}^{\mathbf{d}}||^2 = ||y^{\mathbf{d}} - A\theta||^2 = ||A\theta - y^{\mathbf{d}}||^2$$

Solution

$$(A^T A)\theta^* = A^T y^{\mathrm{d}}$$

Auto-regressive time series model

 z_1, z_2, \ldots is a time series

auto-regressive (AR) prediction model

$$\hat{z}_{t+1} = \theta_1 z_t + \dots + \theta_M z_{t-M+1}, \quad t = M, M+1, \dots$$

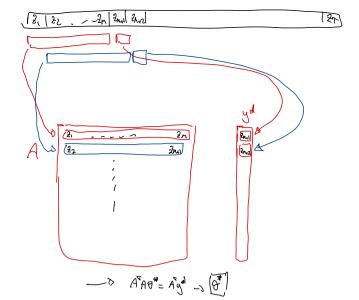
(predict \hat{z}_{t+1} based on previous M values, where M is the memory)

Goal: Chose θ to minimize sum of squares of prediction errors

$$(\hat{z}_{M+1} - z_{M+1})^2 + \cdots + (\hat{z}_T - z_T)^2$$

General data fitting form

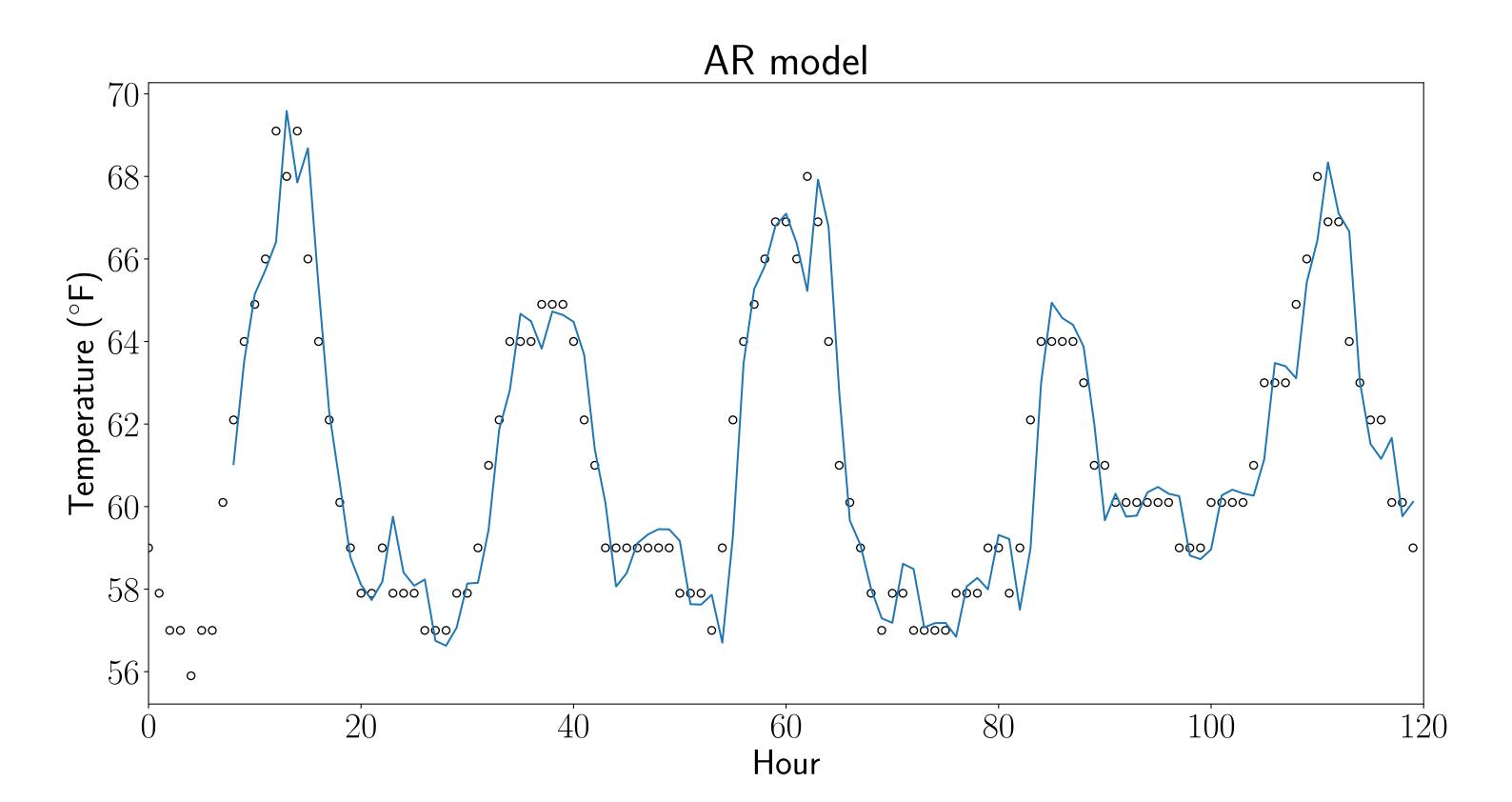
$$y^{(i)} = z_{M+i}, \qquad x^{(i)} = (z_{M+i-1}, \dots, z_i), \quad i = 1, \dots, T-M$$



Auto-regressive time series model

5 days hourly temperature at Los Angeles International Airport (LAX)

- Previous hour: $\hat{z}_{t+1} = z_t$, MSE 1.35
- 24 hours before: $\hat{z}_{t+1} = z_{t-23}$, MSE = 3.00
- AR model with M=8, $\mathrm{MSE}=1.02$



Today's lectureMulti-objective least squares

- Multi-objective least squares problem
- Control
- Estimation
- Regularized data fitting

Multi-objective least squares problem

Multi-objective least squares

Goal choose n-vector x such that k norm squared objectives are small

$$J_1 = ||A_1x - b_1||^2$$

$$\vdots$$

$$J_k = ||A_kx - b_k||^2$$

 A_i are $m_i \times n$ matrices and b_i are m_i -vectors for $i = 1, \ldots, k$

Multi-objective least squares

Goal choose n-vector x such that k norm squared objectives are small

$$J_1 = ||A_1 x - b_1||^2$$

$$\vdots$$

$$J_k = ||A_k x - b_k||^2$$

 A_i are $m_i \times n$ matrices and b_i are m_i -vectors for $i = 1, \ldots, k$

 J_i are the objectives in a multi-objective (-criterion) optimization problem

Could choose x to minimize any one J_i , but we want to make them all small

Weighted sum objective

Choose positive weights $\lambda_1, \ldots, \lambda_k$ and form weighted sum objective

$$J = \lambda_1 J_1 + \dots + \lambda_k J_k$$

$$= \lambda_1 \|A_1 x - b_1\|^2 + \dots + \lambda_k \|A_k x - b_k\|^2$$
 Choose x to minimize J

Weighted sum objective

Choose positive weights $\lambda_1, \ldots, \lambda_k$ and form weighted sum objective

$$J=\lambda_1J_1+\cdots+\lambda_kJ_k$$

$$=\lambda_1\|A_1x-b_1\|^2+\cdots+\lambda_k\|A_kx-b_k\|^2$$
 Choose x to minimize J

Primary objective

- Often $\lambda_1=1$ and J_1 is the primary objective
- Interpretation λ_i is how much we care about J_i being small, relative to J_1

Weighted sum objective

Choose positive weights $\lambda_1, \ldots, \lambda_k$ and form weighted sum objective

$$J=\lambda_1J_1+\cdots+\lambda_kJ_k$$

$$=\lambda_1\|A_1x-b_1\|^2+\cdots+\lambda_k\|A_kx-b_k\|^2$$
 Choose x to minimize J

Primary objective

- Often $\lambda_1=1$ and J_1 is the primary objective
- Interpretation λ_i is how much we care about J_i being small, relative to J_1

Bi-criterion optimization

$$J_1 + \lambda J_2 = ||A_1 x - b_1||^2 + \lambda ||A_2 x - b_2||^2$$

Weighted sum minimization as regular least squares

$$\begin{aligned}
\mathbf{r}' &= (\mathbf{r}'_{1}, \mathbf{r}'_{2}) \\
\mathbf{r}'^{2} &= (\mathbf{r}'_{1}, \mathbf{r}'_{2}) \\
(\mathbf{r}'_{1})^{2} &= (\mathbf{r}'_{2})^{2} \\
(\mathbf{r}'_{1})^{2} &= (\mathbf{r}'_{2})^{2} \\
(\mathbf{r}'_{1})^{2} &= (\mathbf{r}'_{2})^{2} \\
(\mathbf{r}'_{1})^{2} &= (\mathbf{r}''_{2})^{2} \\
(\mathbf{r}''_{1})^{2} &= (\mathbf{r}''_{2})^{2} \\
(\mathbf{r}''_{1})^{2} &= (\mathbf{r}''_{2})^{2} \\
(\mathbf{r}''_{1})^{2} &= (\mathbf{r}''_{2})^{2} \\
(\mathbf{r}''_{2})^{2} &= (\mathbf{r}'$$

stack objectives

Weighted sum minimization as regular least squares

$$A_1 \in \mathbb{R}^{m_1 \times h}$$

$$A_2 \in \mathbb{R}^{m_2 \times h}$$

$$J = \lambda_1 ||A_1 x - b_1||^2 + \dots + \lambda_k ||A_k x - b_k||^2$$

$$= \left\| \begin{bmatrix} \sqrt{\lambda_1} (A_1 x - b_1) \\ \vdots \\ \sqrt{\lambda_k} (A_k x - b_k) \end{bmatrix} \right\|^2$$

stack objectives

Regular (single-criterion) least squares

$$\begin{split} \tilde{A} &= \begin{bmatrix} \sqrt{\lambda_1} A_1 & \sqrt{\lambda_2} A_2 & ... & \sqrt{\lambda_k} A_k \end{bmatrix} \\ \tilde{A} &\in \mathcal{R} & (m_{i+} m_{2-} + m_{K}) \times h \ \tilde{A} = \begin{bmatrix} \sqrt{\lambda_1} A_1 \\ \vdots \\ \sqrt{\lambda_k} A_k \end{bmatrix}, \qquad \tilde{b} = \begin{bmatrix} \sqrt{\lambda_1} b_1 \\ \vdots \\ \sqrt{\lambda_k} b_k \end{bmatrix} \end{split}$$

Weighted sum solution

Assuming the columns of \tilde{A} are linearly independent

$$(\tilde{A}^T \tilde{A}) x^* = \tilde{A}^T \tilde{b}$$

$$(\lambda_1 A_1^T A_1 + \dots + \lambda_k A_k^T A_k) x^* = (\lambda_1 A_1^T b_1 + \dots + \lambda_k A_k^T b_k)$$

Weighted sum solution

Assuming the columns of \tilde{A} are linearly independent

$$(\tilde{A}^T \tilde{A}) x^* = \tilde{A}^T \tilde{b}$$

$$(\lambda_1 A_1^T A_1 + \dots + \lambda_k A_k^T A_k) x^* = (\lambda_1 A_1^T b_1 + \dots + \lambda_k A_k^T b_k)$$

Remarks

- Can compute x^{\star} via the Cholesky factorization of $\tilde{A}^T\tilde{A}$
- A_i can be wide or have dependent columns (\tilde{A} can't)

Optimal trade-off curve

Bi-criterion problem

minimize
$$J_1(x) + \lambda J_2(x) \longrightarrow x^*(\lambda)$$

Optimal trade-off curve

Bi-criterion problem

minimize
$$J_1(x) + \lambda J_2(x) \longrightarrow x^*(\lambda)$$

Pareto optimal $x^*(\lambda)$

There is no point z that satisfies

$$J_1(z) \leq J_1(x^*(\lambda))$$
 and $J_2(z) \leq J_2(x^*(\lambda))$

with one of the inequalities holding strictly (no other point beats x^* on both objectives)

Optimal trade-off curve

Bi-criterion problem

minimize
$$J_1(x) + \lambda J_2(x) \longrightarrow x^*(\lambda)$$

Pareto optimal $x^*(\lambda)$

There is no point z that satisfies

$$J_1(z) \leq J_1(x^*(\lambda))$$
 and $J_2(z) \leq J_2(x^*(\lambda))$

with one of the inequalities holding strictly (no other point beats x^* on both objectives)

Optimal trade-off curve

$$(J_1(x^*(\lambda)), J_2(x^*(\lambda)), \lambda > 0$$

Optimal trade-off curve Example

minimize $J_1(x) + \lambda J_2(x)$

 $(A_1, A_2 \text{ are both } 10 \times 5)$

Trade-off curve

Using multi-objective least squares

- 1. Identify **primary objective** basic quantity to minimize
- 2. Choose one or more **secondary objectives** quantities that we would like to be small, if possible (e.g., size of x, roughness of x, distance from give point)
- 3. Tweak/tune weights until we like $x^*(\lambda)$

Using multi-objective least squares

- 1. Identify primary objective basic quantity to minimize
- 2. Choose one or more **secondary objectives** quantities that we would like to be small, if possible (e.g., size of x, roughness of x, distance from give point)
- 3. Tweak/tune weights until we like $x^*(\lambda)$

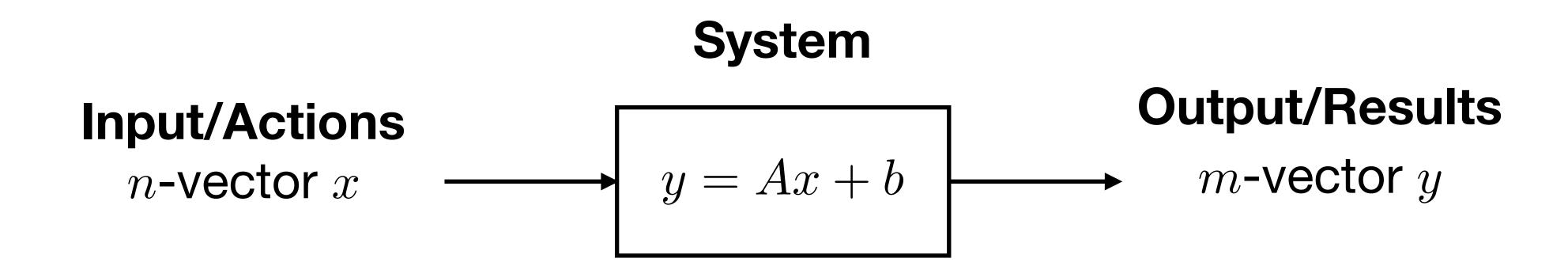
Bi-criterion problem

minimize $J_1(x) + \lambda J_2(x)$

- If J_2 too big, increase λ
- If J_1 too big, decrease λ

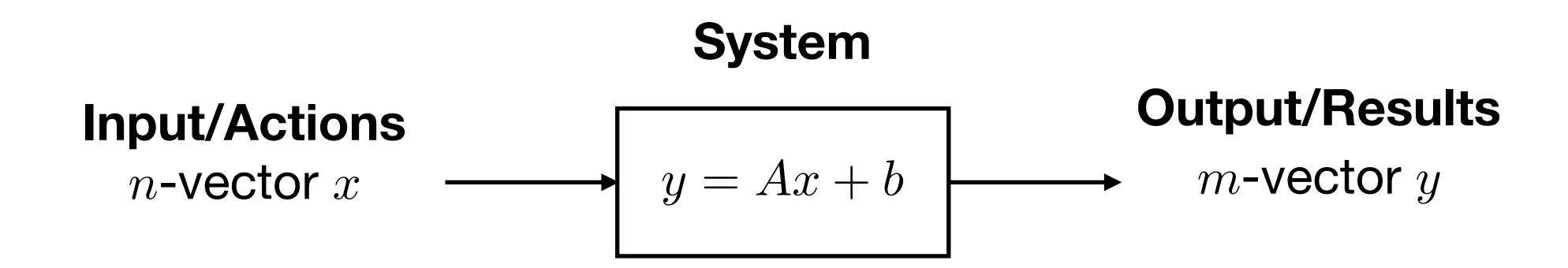
Control

Control



A and b are the known *input-output mapping* of the system. (analytical models, data fitting, etc.)

Control

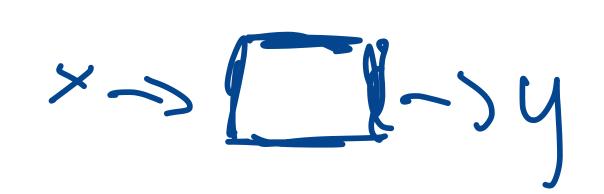


A and b are the known *input-output mapping* of the system. (analytical models, data fitting, etc.)

Goal

Choose x (which determines y) to optimize multiple objectives of x and y

Multi-objective control



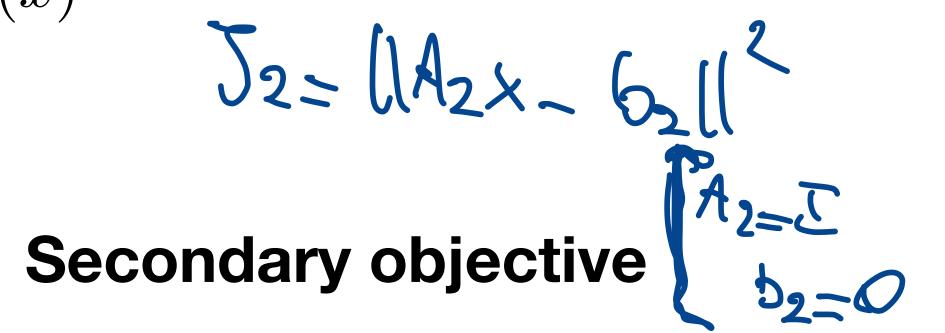
Optimization problem

minimize
$$J_1(x) + \lambda J_2(x)$$

Primary objective

$$J_1 = \|y-y^{\mathrm{des}}\|^2$$

$$\int \int \int \mathrm{desired} \int \mathrm{desired}$$

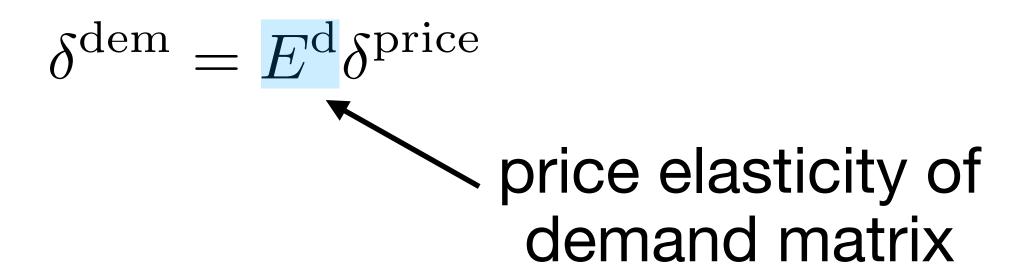


- $J_2 = ||x||^2$ (make x small)
- $J_2 = ||x x^{\text{nom}}||^2$ (x close to nominal input)

Given n-products, induce change in demands, n-vector δ^{dem} , by adjusting prices, n-vector δ^{price} ,

$$\delta^{\mathrm{dem}} = E^{\mathrm{d}} \delta^{\mathrm{price}}$$

Given n-products, induce change in demands, n-vector δ^{dem} , by adjusting prices, n-vector δ^{price} ,



Given *n*-products, induce change in demands, n-vector δ^{dem} , by adjusting prices, n-vector δ^{price} ,

$$\delta^{
m dem} = E^{
m d} \delta^{
m price}$$
 price elasticity of demand matrix

example E^{d}

$$E^{
m d} = egin{bmatrix} -0.4 & * & * \ 0.2 & * & * \ * & * & * \end{bmatrix} \qquad egin{bmatrix} \delta_1^{
m price} = 0.01 \ ext{(first price} + 1\%) \end{bmatrix}$$

$$\delta_1^{\mathrm{price}} = 0.01$$
 (first price $+1\%$)

•
$$\delta_1^{\mathrm{dem}} = -0.004$$
 (first demand: -0.4%)

•
$$\delta_2^{\mathrm{dem}} = 0.002$$
 (second demand: $+0.2\%$)

System

$$\delta^{\mathrm{dem}} = E^{\mathrm{d}} \delta^{\mathrm{price}}$$

Optimization problem

minimize
$$J_1(x) + \lambda J_2(x)$$

System

$$\delta^{\mathrm{dem}} = E^{\mathrm{d}} \delta^{\mathrm{price}}$$

Optimization problem

minimize
$$J_1(x) + \lambda J_2(x)$$

Primary objective

$$J_1 = \|\delta^{\text{dem}} - \delta^{\text{tar}}\|^2$$
$$= \|E^{\text{d}}\delta^{\text{price}} - \delta^{\text{tar}}\|^2$$

System

$$\delta^{\text{dem}} = E^{\text{d}} \delta^{\text{price}}$$

Optimization problem

minimize
$$J_1(x) + \lambda J_2(x)$$

Primary objective

$$J_1 = \|\delta^{
m dem} - \delta^{
m tar}\|^2$$

$$= \|E^{
m d}\delta^{
m price} - \delta^{
m tar}\|^2$$
 target demand

System

$$\delta^{\text{dem}} = E^{\text{d}} \delta^{\text{price}}$$

Optimization problem

minimize
$$J_1(x) + \lambda J_2(x)$$

Primary objective

$$J_1 = \|\delta^{\mathrm{dem}} - \delta^{\mathrm{tar}}\|^2$$
 $= \|E^{\mathrm{d}}\delta^{\mathrm{price}} - \delta^{\mathrm{tar}}\|^2$
 $= \|\mathrm{demand}^{\mathrm{dem}} - \delta^{\mathrm{tar}}\|^2$

Secondary objective

$$J_2 = \|\delta^{\mathrm{price}}\|^2$$

System

$$\delta^{\text{dem}} = E^{\text{d}} \delta^{\text{price}}$$

Optimization problem

minimize
$$J_1(x) + \lambda J_2(x)$$

Primary objective

$$J_1 = \|\delta^{
m dem} - \delta^{
m tar}\|^2$$

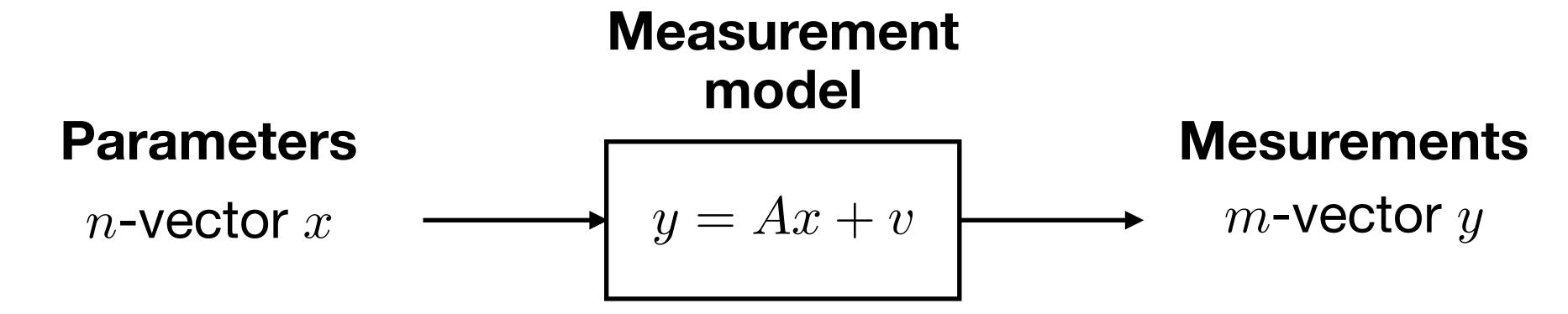
$$= \|E^{
m d}\delta^{
m price} - \delta^{
m tar}\|^2$$
 target demand

Secondary objective

$$J_2 = \| \boldsymbol{\delta}^{ ext{price}} \|^2$$
 don't change prices too much

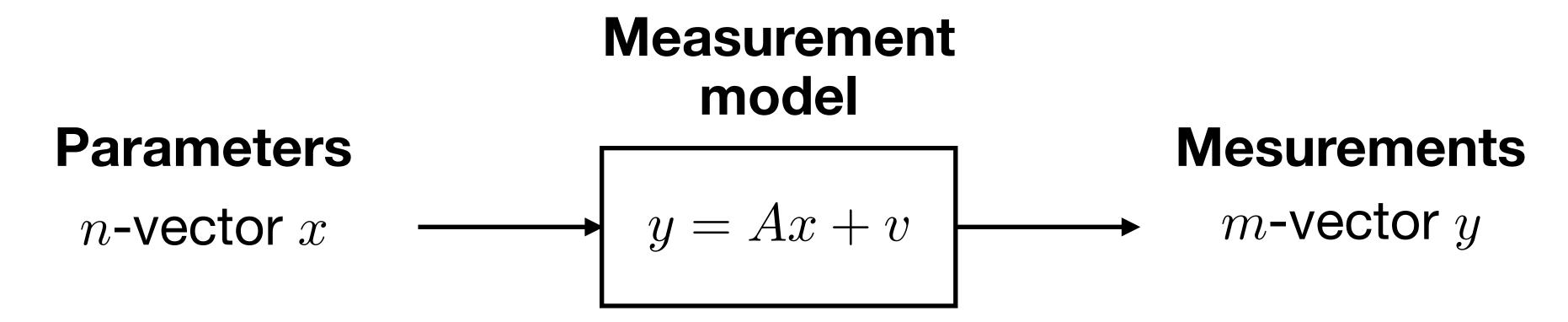
Estimation and inversion

Estimation



m-vector v are (unknown) *noises* or *measurement errors*

Estimation



m-vector v are (unknown) *noises* or *measurement errors*

Basic least squares estimation

(assuming v is small and A as independent columns)

minimize
$$J_1 = ||Ax - y||^2$$

Basic least squares estimation

(assuming v is small and A as independent columns)

minimize
$$J_1 = ||Ax - y||^2$$

Basic least squares estimation

(assuming v is small and A as independent columns)

minimize
$$J_1 = ||Ax - y||^2$$

Regularization

We can get much better results by incorporating prior information about x

•
$$x$$
 small: $J_2 = \|x\|^2$ ("Tikhonov regularization")
• x is smooth: $J_2 = \|Dx\|^2 = \sum_{i=1}^{n-1} (x_{i+1} - x_i)^2$
• x close to prior: $J_2 = \|x - x^{\text{prior}}\|^2$
 $D = \begin{bmatrix} -1 & 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & -1 & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & -1 & 1 & 0 \\ 0 & 0 & 0 & \dots & 0 & -1 & 1 \end{bmatrix}$

Optimization problem

minimize
$$J_1(x) + \lambda J_2(x)$$

- Adjust λ until you are happy with the results
- curve $x^*(\lambda)$ is the *regularization path*

Optimization problem

minimize
$$J_1(x) + \lambda J_2(x)$$

- Adjust λ until you are happy with the results
- curve $x^*(\lambda)$ is the regularization path

Example Tikhonov regularization

minimize
$$||Ax - y||^2 + \lambda ||x||^2 = ||\tilde{A}x - \tilde{b}||^2$$

$$\tilde{A} = \begin{bmatrix} A \\ \sqrt{\lambda}I \end{bmatrix}, \qquad \tilde{b} = \begin{bmatrix} y \\ 0 \end{bmatrix}$$

Optimization problem

minimize
$$J_1(x) + \lambda J_2(x)$$

- Adjust λ until you are happy with the results
- curve $x^*(\lambda)$ is the regularization path

Example Tikhonov regularization

minimize
$$||Ax - y||^2 + \lambda ||x||^2 = ||\tilde{A}x - \tilde{b}||^2$$

$$\tilde{A} = \begin{bmatrix} A \\ \sqrt{\lambda}I \end{bmatrix}, \qquad \tilde{b} = \begin{bmatrix} y \\ 0 \end{bmatrix}$$

 $ilde{A}$ has always linearly independent columns

$$\tilde{A}x = (Ax, \sqrt{\lambda}x) = 0$$
 if and only if $\sqrt{\lambda}x = 0 \Rightarrow x = 0$

Images representation

Monochrome images

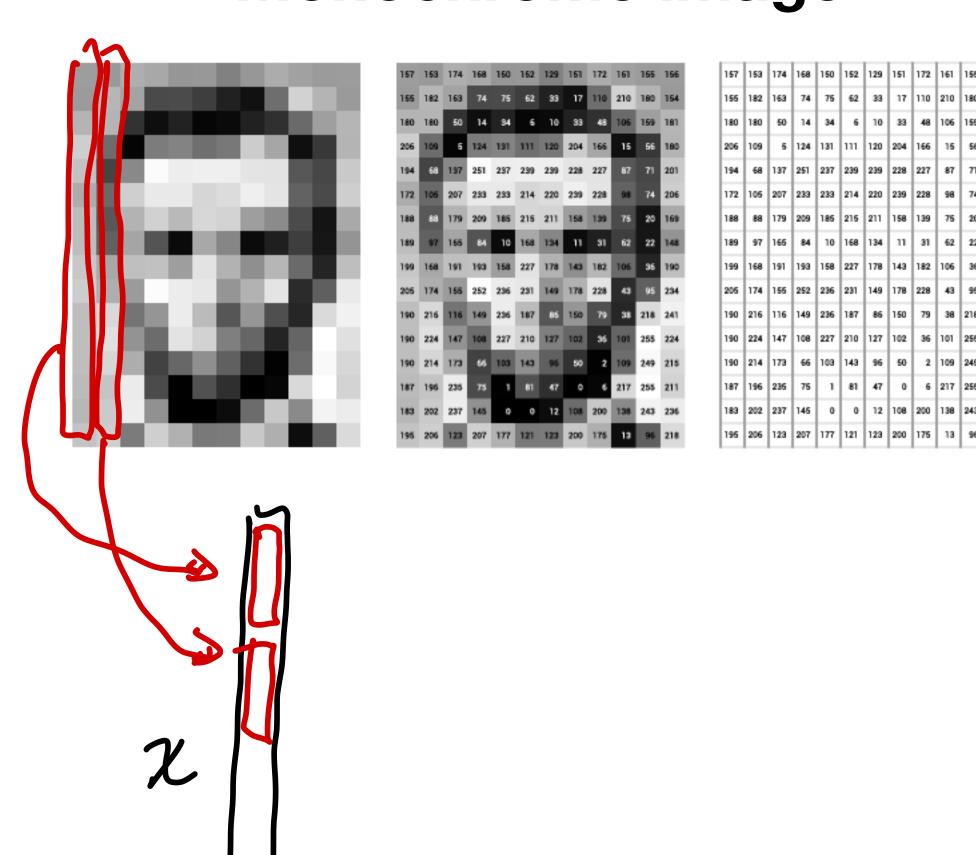
Images represented as an $m \times n$ matrix X

Each value X_{ij} represents a pixel's intensity (0 = black, 1 = white) (sometimes 0 = black, and 255 = white)

We can represent an $m \times n$ matrix X by a single vector $x \in \mathbf{R}^{mn}$

$$X_{ij} = x_k, \qquad k = m(j-1) + i$$

Monochrome image



Given a noisy **blurred image** y (vector form of Y)

(blurring matrix A, i.e., convolution)

Given a noisy **blurred image** y (vector form of Y)

Model

$$y = Ax + v$$

(blurring matrix A, i.e., convolution)

Least-squares de-blurring

Find x (vector form of X) by solving

minimize
$$||Ax - y||^2 + \lambda (||D_v x||^2 + ||D_h x||^2)$$

Given a noisy **blurred image** y (vector form of Y)

Model

$$y = Ax + v$$

(blurring matrix A, i.e., convolution)

Least-squares de-blurring

Find x (vector form of X) by solving

minimize
$$||Ax - y||^2 + \lambda (||D_v x||^2 + ||D_h x||^2)$$

Smoothing regularization with weight λ

Given a noisy **blurred image** y (vector form of Y)

Model

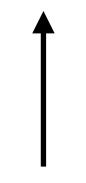
$$y = Ax + v$$

(blurring matrix A, i.e., convolution)

Least-squares de-blurring

Find x (vector form of X) by solving

minimize
$$||Ax - y||^2 + \lambda (||D_v x||^2 + ||D_h x||^2)$$



Vertical differences

$$\sum_{i} \sum_{j} (X_{i,j+1} - X_{ij})^2$$

Smoothing regularization with weight λ

Given a noisy **blurred image** y (vector form of Y)

Model

$$y = Ax + v$$

(blurring matrix A, i.e., convolution)

Least-squares de-blurring

Find x (vector form of X) by solving

minimize
$$||Ax - y||^2 + \lambda (||D_v x||^2 + ||D_h x||^2)$$

Smoothing regularization with weight λ

Vertical differences

$$\sum_{i} \sum_{j} (X_{i,j+1} - X_{ij})^{2}$$

Horizontal differences

$$\sum_{i} \sum_{j} (X_{i+1,j} - X_{ij})^{2}$$

Example

Blurred image

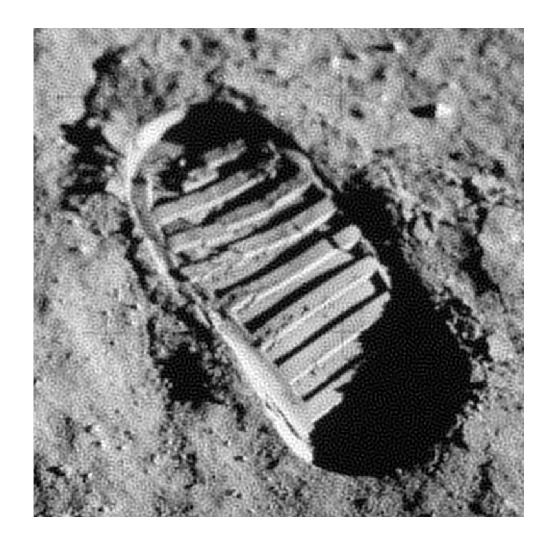
[VMLS book, Page 332]

Example

Blurred image

Regularization path

$$\lambda = 10^{-6}$$



$$\lambda = 10^{-4}$$

$$\lambda = 10^{-2}$$

$$\lambda = 10^{-1}$$

Motivation for regularization

Consider the data fitting model (of $y \approx f(x)$)

$$\hat{f}(x) = \theta_1 f_1(x) + \dots + \theta_p f_p(x)$$

with
$$f_1(x) = 1$$

Motivation for regularization

Consider the data fitting model (of $y \approx f(x)$)

$$\hat{f}(x) = \theta_1 f_1(x) + \dots + \theta_p f_p(x)$$

with
$$f_1(x) = 1$$

Motivation for regularization

Consider the data fitting model (of $y \approx f(x)$)

$$\hat{f}(x) = \theta_1 f_1(x) + \dots + \theta_p f_p(x)$$

with
$$f_1(x) = 1$$

Therefore, we want to **make** $\theta_2, \dots, \theta_p$ **small** (θ_1 is an exception, since $f_1(x) = 1$ never changes)

Suppose we have training data

$$n\text{-vectors} \quad x^{(1)},\dots,x^{(N)}, \qquad \text{and scalars} \quad y^{(1)},\dots,y^{(N)}$$

We can express the training error as

$$A\theta - y$$

Suppose we have training data

$$n\text{-vectors} \quad x^{(1)},\dots,x^{(N)}, \qquad \text{and scalars} \quad y^{(1)},\dots,y^{(N)}$$

We can express the training error as

$$A\theta - y$$

Regularized data fitting

minimize
$$||A\theta - y||^2 + \lambda ||\theta_{2:p}||^2$$

Suppose we have training data

$$n\text{-vectors} \quad x^{(1)},\ldots,x^{(N)}, \quad \text{ and scalars } \quad y^{(1)},\ldots,y^{(N)}$$

We can express the training error as

$$A\theta - y$$

Ridge regression

Regularized data fitting

minimize
$$||A\theta - y||^2 + \lambda ||\theta_{2:p}||^2 \longrightarrow \text{minimize} ||X^T\beta + v\mathbf{1} - y||^2 + \lambda ||\beta||^2$$

$$\hat{y}^{(i)} = (x^{(i)})^T \beta + v \longrightarrow \hat{y} = X^T \beta + v \mathbf{1}$$

minimize
$$||X^T\beta + v\mathbf{1} - y||^2 + \lambda ||\beta||^2$$

Suppose we have training data

$$n\text{-vectors} \quad x^{(1)},\ldots,x^{(N)}, \qquad \text{and scalars} \quad y^{(1)},\ldots,y^{(N)}$$

We can express the training error as

$$A\theta - y$$

Ridge regression

Regularized data fitting

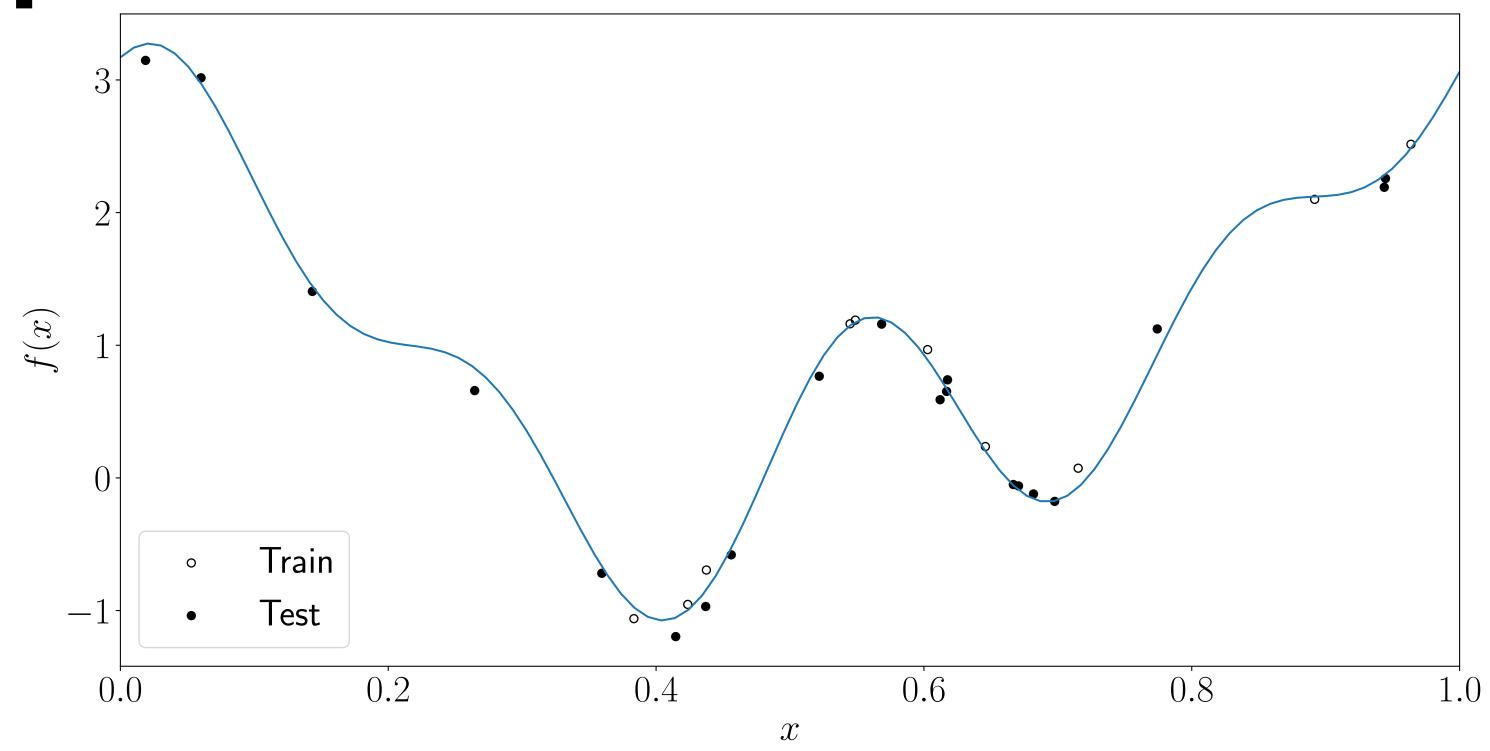
minimize
$$||A\theta - y||^2 + \lambda ||\theta_{2:p}||^2 \longrightarrow \text{minimize} ||X^T\beta + v\mathbf{1} - y||^2 + \lambda ||\beta||^2$$

$$\hat{y}^{(i)} = (x^{(i)})^T \beta + v \longrightarrow \hat{y} = X^T \beta + v \mathbf{1}$$

minimize
$$||X^T\beta + v\mathbf{1} - y||^2 + \lambda ||\beta||^2$$

Choose λ with validation

Example



- Solid line to generate synthetic (simulated data)
- Fit a model with 5 parameters $\theta_1, \ldots, \theta_5$

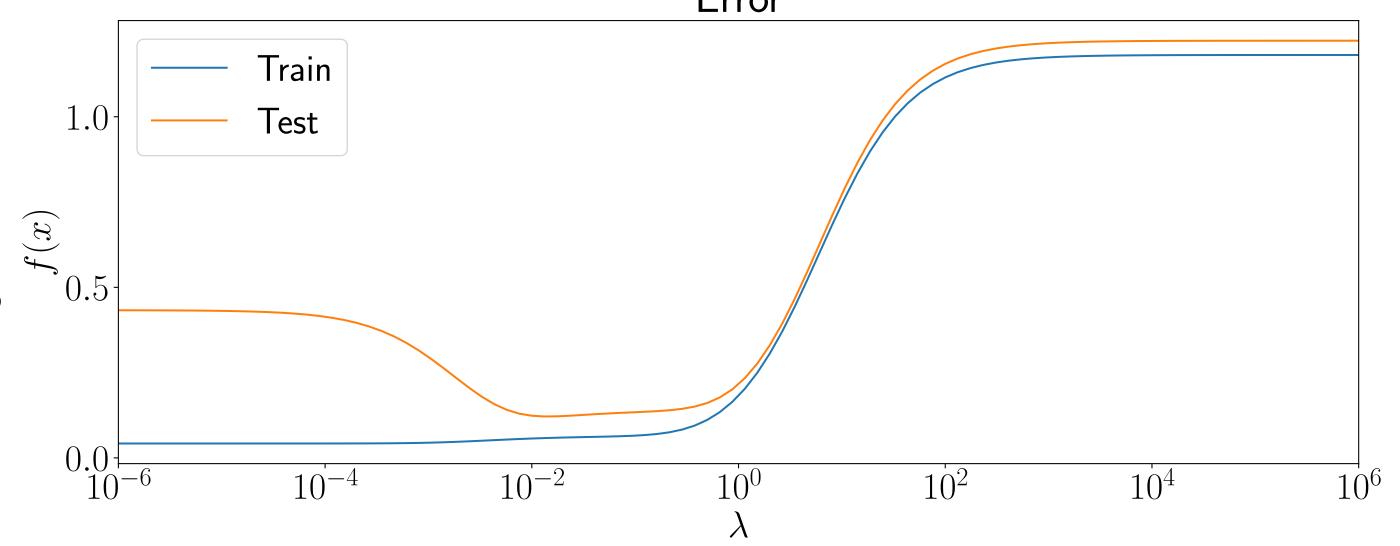
$$\hat{f}(x) = \theta_1 + \sum_{k=1}^{4} \theta_{k+1} \sin(w_k x + \phi_k), \quad \text{with given } w_k, \phi_k$$

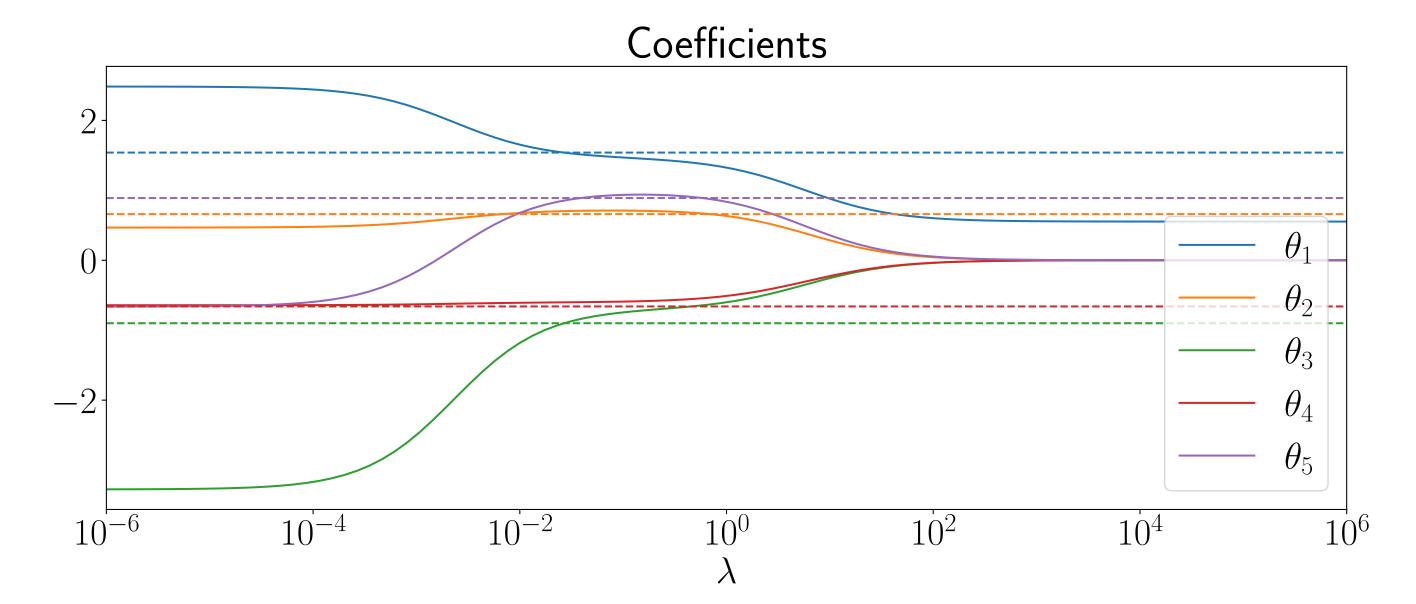
Train and test errors across regularization

• Minimum test error $\lambda \approx 0.013$

 Dashed lines: coefficients to generate data

- For $\lambda \approx 0.013$, estimated coefficients close to true values
- $\theta_{2:5} o 0$ as $\lambda o \infty$





Multi-objective least-squares

Today, we learned to:

- Recognize and write multi-objective least squares problems
- Solve multi-objective least squares problems
- Add regularization to improve solutions performance

References

- S. Boyd, L. Vandenberghe: Introduction to Applied Linear Algebra Vectors, Matrices, and Least Squares
 - Chapter 15: multi-objective least squares

Next lecture

Constrained least squares