ORF307 - Optimization

5. Multi-objective least squares

Bartolomeo Stellato — Spring 2024



Ed Forum

 Would it be possible to post lecture notes a few weeks in advance, in case we
ever want to review material ahead of class? —> Last year’s material is
available at: https://stellato.io/teaching/orf307/2023/

 Can you go over autoregressive time series models again?






Least squares data fitting

Vector form
Express problems with N-vectors

y = (y\V, ..., y™)), vector of outcomes Goal
e 94 = (g, ..., gN), vector of predictions =~ — minimize  ||r4||?
e rd = () . ), vector of residuals
We can write () = f(2(®) in terms of parameters 6,
90 = Ainby 4+ Aipby, Ay =fi(z") —— gl = A0

Least squares problem

Y2 = lly? =997 = ly* — 40> = || A0 — y9|?

minimize ||r

Solution
(ATA)H* — ATy



Auto-regressive time series model

21, 22,... IS a time series

auto-regressive (AR) prediction model
Zip1 =z + -+ O0zi—p1, t=M,M+1,...

(predict z; 1 based on previous M values, where M is the memory)

Goal: Chose 6 to minimize sum of squares of prediction errors

(73M+1 — ZM+1)2 + et (73T — ZT)2

General data fitting form

(1) = (Z)_(ZM_|_Z ey 2i)y, t=1,....,T— M

— ZM+is
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Auto-regressive time series model

5 days hourly temperature at  * Previous hour: z; 1 = 2z, MSE 1.35

Los Angeles International * 24 hours before: z; 1 = z;_23, MSE = 3.00
Airport (LAX) « AR model with M = &, MSE = 1.02
AR model
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Today'’s lecture

Multi-objective least squares

 Multi-objective least squares problem
e Control
e Estimation

* Regularized data fitting



Multi-objective least squares
problem



Multi-objective least squares

Ji = |41z — by |?
Goal choose n-vector x such that
k norm squared objectives are small

J. = [[Arx — by ||?

A, are m; X n matrices and b; are m;-vectorsfor: =1,.... k



Multi-objective least squares

Ji = |41z — by |?
Goal choose n-vector x such that
k norm squared objectives are small

2
Jk — HA;CCIZ — ka
A, are m; X n matrices and b; are m;-vectorsfor: =1,.... k

J; are the objectives in a multi-objective (-criterion) optimization problem

Could choose z to minimize
any one J;, but we want
to make them all small



Weighted sum objective
Choose positive weights A\, ..., A\ and form weighted sum objective
J=AJ1 4+ -+ A Jk
= Ml Az = bulI* + - - + Ag || Az — b |®
Choose x to minimize J

10



Weighted sum objective

Choose positive weights A\, ..., A\ and form weighted sum objective
J=MJ1 4+ + A Jk
= A1 || A1z — b1H2 + -+ A || Ak — ka2
Choose x to minimize J

Primary objective
- Often \{ = 1 and J; is the primary objective
 Interpretation )\; is how much we care about .J;
being small, relative to J;
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Weighted sum objective

Choose positive weights A\, ..., A\ and form weighted sum objective
J=MJ1 4+ + A Jk
= A1 || A1z — b1H2 + -+ A || Ak — ka2
Choose x to minimize J

Primary objective
- Often \{ = 1 and J; is the primary objective
 Interpretation )\; is how much we care about .J;
being small, relative to J;

Bi-criterion optimization
Ji + Ao = || A1z — bi||* + \|| Az — b))
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Weighted sum mlnlmlzatlon as regular least squares

= (\qlv 3
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J =\

‘All‘ — b1H2
\K(Alw — bl)

\/Tk(AkZC — bk)_

2

)\kHAkx — kaZ

stack objectives
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Weighted sum minimization as regular least squares

J =\

Regular (single-criterion) least squares

‘All‘ — b1H2
\m(AlfB — b1)

2

)\kHAkQZ‘ — kaZ

J = Hﬁx — l’;H2

S

stack objectives

11



Weighted sum solution

Assuming the columns of A are linearly independent
(AT A)z* = AT

()\114{141 -+ -+ )\k.AZAk)QE* — (AlAfbl i )\k‘AZbk)

12



Weighted sum solution

Assuming the columns of A are linearly independent
(AT A)z* = AT

()\114{141 -+ -+ )\k.AZAk)QE* — (AlAfbl i )\k‘AZbk)

Remarks

- Can compute z* via the Cholesky factorization of AT A
» A, can be wide or have dependent columns (A can’t)
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Optimal trade-off curve

Bi-criterion problem

minimize Ji(x) + AJ2(x)

13



Optimal trade-off curve

Bi-criterion problem

minimize Jy(x) + AJo(x) ~——

Pareto optimal +*()\)
There is no point z that satisfies

Jl(Z) < Jl(ﬁ*()\)) and JQ(Z) < JQ(QZ‘*()\))

with one of the inequalities holding strictly
(no other point beats =* on both objectives)

13



Optimal trade-off curve

Bi-criterion problem

minimize Ji(z) + AJo(x) ——

Pareto optimal +*()\)
There is no point z that satisfies

Jl(Z) < Jl(ﬁ*()\)) and JQ(Z) < JQ(QZ‘*()\))

with one of the inequalities holding strictly
(no other point beats =* on both objectives)

Optimal trade-off curve
(Ji(x"(A)), J2(z"(A), A >0

13



Optimal trade-off curve

Example

minimize Ji(z) + AJs(x) (A1, Ao are both 10 x 5)

Trade-off curve

30

- Jl
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8_

201
<
15 < 0
10- A
5 > .
e 102 100 102 10 10 20 30
A Ji(N)
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Using multi-objective least squares

1. ldentify primary objective
basic quantity to minimize

2. Choose one or more secondary objectives
quantities that we would like to be small, if possible
(e.g., size of x, roughness of x, distance from give point)

3. Tweak/tune weights until we like z*(\)

15



Using multi-objective least squares

1. ldentify primary objective
basic quantity to minimize

2. Choose one or more secondary objectives
quantities that we would like to be small, if possible
(e.g., size of x, roughness of x, distance from give point)

3. Tweak/tune weights until we like z*(\)

Bi-criterion problem
minimize Ji(x) + AJ2(x)

» |If J5 too big, increase A
» |If J; too big, decrease A

15



Control



Control

System

Input/Actions Output/Results
n-vector x y = Ax + b m-vector y

A and b are the known input-output mapping of the system.
(analytical models, data fitting, etc.)

17



Control

System

Input/Actions Output/Results
n-vector x y = Ax + b m-vector y

A and b are the known input-output mapping of the system.
(analytical models, data fitting, etc.)

Goal

Choose x (which determines y) to optimize
multiple objectives of x and vy

17



Multi-objective control S QNW

Optimization problem
minimize Ji(x) + AJ2(x)

32’: L\Azk.\ bl[[k

~)=T
Primary objective Secondary objective ( by~ O
Ji = lly =y + Jo = |zl
I (make x small)
Ty = o — o
desired (x close to nominal input)

output
18



Product demand shaping

Given n-products,
induce change in demands, n-vector §4°™,
by adjusting prices, n-vector §Price,

5dem _ Edéprice

19



Product demand shaping

Given n-products,
induce change in demands, n-vector §4°™,
by adjusting prices, n-vector §Price,

5dem _ Edéprice

\ price elasticity of
demand matrix

19



Product demand shaping

Given n-products,
induce change in demands, n-vector §4°™,
by adjusting prices, n-vector §Price,

example E£¢

0.4
0.2

X

X

X

X

5dem _ Edéprice

5P = 0.01
(first price +1%)

\ price elasticity of
demand matrix

+ §¢em = —(.004
(first demand: —0.4%)
e §3em = (0.002
(second demand: +0.2%)

19



Product demand shaping

System
5dem __ Edé’price

Optimization problem
minimize Ji(x) + AJ2(x)

20



Product demand shaping

System
5dem __ Edé’price

Optimization problem
minimize Ji(x) + AJ2(x)

Primary objective

J, = 5dem B 5tarH2

__ Edéprice B 5tarH2




Product demand shaping

System
5dem __ Edé’price

Optimization problem
minimize Ji(x) + AJa(x)

Primary objective
J, = 5dem B 5tarH2
__ Edéprice o 5tarH2
\ target

demand




Product demand shaping

System
5dem __ Edé’price

Optimization problem
minimize Ji(x) + AJa(x)

Primary objective Secondary objective
Jl _ 5dem B 5tarH2 J2 _ H(SpriceHZ
__ Edéprice B 5tarH2

\ target

demand




Product demand shaping

System
5dem __ Edé’price

Optimization problem
minimize Ji(x) + AJa(x)

Primary objective

J1 =

5dem B 5tar HQ

Edéprice L 5tarH2
\ target

demand

Secondary objective

J2 _ H(SpriceHZ
\ don’t change
prices
too much

20



Estimation and inversion



Estimation

Measurement
model

Parameters Mesurements
n-vector x m-vector y

m-vector v are (unknown) noises or measurement errors

22



Estimation

Measurement
model

Mesurements
m-vector y

Parameters
n-vector x

m-vector v are (unknown) noises or measurement errors

Basic least squares estimation
(assuming v is small and A as independent columns)

minimize J, = ||Az — y||?

22



Regularized inversion

Basic least squares estimation
(assuming v is small and A as independent columns)

minimize J; = ||Az — y||?

23



Regularized inversion

Basic least squares estimation
(assuming v is small and A as independent columns)

minimize J; = ||Az — y||?

Regularization

We can get much better results by incorporating prior information about «

—1 1 0 ... 0

- x small: J, = ||z]|* (“Tikhonov regularization”) 0 -1 1 ... 0
+ zissmooth: Jy = ||Dz|? = Y1 (w1 —a;)> D= 111
- x close to prior: Jy = ||x — xPror||? 0 0 0 ... —1
0 0 0 0




Regularized inversion

Optimization problem
minimize Ji(x) + AJ2(x)

» Adjust A until you are happy with the results
» curve z*(\) is the reqularization path

24



Regularized inversion

Optimization problem
minimize Ji(x) + AJ2(x)

» Adjust A until you are happy with the results
» curve z*(\) is the reqularization path

Example Tikhonov regularization ]

A
|

minimize || Az — y||* + A||z||* = [[Az — b||? I

S

24




Regularized inversion

Optimization problem
minimize Ji(x) + AJ2(x)

» Adjust A until you are happy with the results
» curve z*(\) is the reqularization path

Example Tikhonov regularization ] _ -
minimize || Az — y||* + Allz||* = || Az — b|]? A= b=

A has always linearly independent columns

Az = (Az,VAz) =0ifand only if VAz =0= 2z =0
24




Images representation

Monochrome images

Images represented as an m x n matrix X

Each value X;; represents a pixel’s
intensity (0 = black, 1 = white)
(sometimes 0 = black, and 255 = white)

We can represent an m x n matrix X
by a single vector r € R™"

Xii = T, k=m(y)—1) 41

Monochrome image

25



Image de-blurring

Given a noisy blurred image vy (vector form of Y)

Model (blurring matrix A,
y=Ar+wv .e., convolution)

20



Image de-blurring

Given a noisy blurred image vy (vector form of Y)

Model (blurring matrix A,
y=Ar+wv .e., convolution)

Least-squares de-blurring
Find x (vector form of X) by solving

minimize ||Az — y||* + ) (HDvaQ T ||Dh93H2)

20



Image de-blurring

Given a noisy blurred image vy (vector form of Y)

Model (blurring matrix A,
y=Ar+wv .e., convolution)

Least-squares de-blurring

Find x (vector form of X) by solving
Smoothing regularization

minimize  [[Az — y||* + A (|[Dyz[| + [ Drz||%) with weight \

20



Image de-blurring

Given a noisy blurred image vy (vector form of Y)

Model (blurring matrix A,
y=Ar+wv .e., convolution)

Least-squares de-blurring

Find x (vector form of X) by solving
Smoothing regularization

minimize  [[Az — y||* + A (|[Dyz[| + [ Drz||%) with weight \

|

Vertical differences

DD (Xijr — Xy)?
i

20



Image de-blurring

Given a noisy blurred image vy (vector form of Y)

Model (blurring matrix A,
y=Ar+wv .e., convolution)

Least-squares de-blurring

Find x (vector form of X) by solving
Smoothing regularization

minimize  [[Az — y||* + A (|[Dyz[| + [ Drz||%) with weight \

RN

Vertical differences Horizontal differences

Z Z(Xi,jﬂ — Xij)° Z Z(Xz’—l—l,j — X;;)°
) i

20



Example

[VMLS book, Page 332]

Blurred image

27



Blurred image

Regularizat

21
[VMLS book, Page 332]



Regularized data fitting



Motivation for regularization

Consider the data fitting model (of y ~ f(x))

f(z) =01 fi(z) + -+ O, fp()

with f,(z) = 1

29



Motivation for regularization

Consider the data fitting model (of y ~ f(x))

f(z) =01 fi(z) + -+ O, fp()

with f,(z) = 1

9; is the sensitivity of f(z) to fi(x) —

It cannot be too large!

29



Motivation for regularization

Consider the data fitting model (of y ~ f(x))

f(z) =01 fi(z) + -+ O, fp()

with f,(z) = 1

0, is the sensitivity of f(z) to fi(x) —— It cannot be too large!

Therefore, we want to make 6,, ..., 6, small
(/1 is an exception, since fi(x) = 1 never changes)

29



Regularized data fitting

Suppose we have training data

n-vectors M ... 2 andscalars yY,...

We can express the training error as
Ab — vy

' Y

(V)

30



Regularized data fitting

Suppose we have training data

n-vectors M ... 2 andscalars yY,...

We can express the training error as
Ab — vy

Regularized data fitting
minimize || A0 — yl|? + A[|62:,]|2

' Y

(V)

30



Regularized data fitting

Suppose we have training data
n-vectors W ... 2™  andscalars yV),..., yW)

We can express the training error as
Ab — vy

Ridge regression

A1) — (A NT ~ T
Regularized data fitting g =(@\") f+v — y=X" pB+vl

minimize ||A9 — y||* + A|[|02.,||° <+—  minimize || X' 5+ vl —y||* + )5



Regularized data fitting

Suppose we have training data
n-vectors W ... 2™  andscalars yV),..., yW)

We can express the training error as
Ab — vy

Ridge regression

A1) — (A NT ~ T
Regularized data fitting g =(@\") f+v — y=X" pB+vl

minimize ||A9 — y||* + A|[|02.,||° <+—  minimize || X' 5+ vl —y||* + )5

Choose )\ with validation

30



Train
—1- . Test

0.0 0.2 0.4 0.6 0.8 1.0
£z

+ Solid line to generate synthetic (simulated data)
» Fit a model with 5 parameters 64, ..., 05

A

4
f(iC) — 01 + Z Hk:—|—1 Sin(wkaz -+ ¢]<;), with given Wi, Dk
k=1

31



Train and test errors across regularization

Error
Train
1.0- Test
B
" " H\
Minimum test error A\ =~ 0.013 05
Dashed lines: coefficients
0.0- | | | | |
1079 1074 1072 10V 107 10 100

to generate data \

Coefficients

For A =~ 0.013, estimated
coefficients close to
true values

92;5%038)\%00

106 104 102 10" 10? 10%



Multi-objective least-squares

Today, we learned to:
« Recognize and write multi-objective least squares problems
« Solve multi-objective least squares problems

 Add regularization to improve solutions performance

33
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Matrices, and Least Squares

 Chapter 15: multi-objective least squares
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Next lecture

 Constrained least squares
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