ORF307 - Optimization

3. Least squares

Bartolomeo Stellato — Spring 2024



Ed Forum

 Why do we need docker? Can we use Colab instead?

The docker image has all the packages installed, including jupyterlab and the right tools to export notebooks to pdf. Once you start docker, you have
everything you need in the images we specifically designed for this class. We used Colab in the past and students had several issues exporting the notebooks
(plots are cut between pages, some equations are not readable, etc). Also, Colab automatically disconnects/shuts down if you do not use it and you lose your
data. You can use colab at your own risk. If submissions are not readable, we will discard points. It is your responsibility to have readable submissions.

* |rina’s office hours moved from Monday 2pm-3:30pm to Monday
3:30pm-5pm

* | was confused about Ax=b and PLUx=Db solving for x. How does PLUx=b get
to x=...7?

 How does the factor-solve procedure actually help us in real applications?
—> We will see this today!






Flop counts

 Computers store real numbers in floating-
point format

e Basic arithmetic operations (addition,
multiplication, etc...) are called floating
point operations (flops)

* Algorithm complexity: total number of
flops needed as function of dimensions

 Execution time =~ (flops)/(computer speed)
[Very grossly approximated]

 Modern computers can go at 1 Gflop/sec
(10° flops/sec)




Summary of easy linear systems
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Summary of easy linear systems

method flops

diagonal
A = diag(aq,...,ay,) r; = bi/a; n
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A;; =0fori <y substitution n




Summary of easy linear systems

method flops
diagonal
A = diag(aq,...,ay,) r; = bi/a; n
lower triangular forward ,
A;; =0fori <y substitution n

upper triangular backward ,
A =0fori>j substitution n




Summary of easy linear systems

AN
A

A

diagonal
A= diag(al, c e ,an)

lower triangular
Af,;j — (0 for: < ]

upper triangular
Az’j =0fori >y

permutation

Pf,;j else 0

method

forward
substitution

backward
substitution

Inverse
permutation

R



The factor-solve method for solving Ax = b

1. Factor A as a product of simple matrices:
A:A1A2°°°Ak, BE— AlAQ,...AkCIZ:b

(A; diagonal, upper/lower triangular, permutation, etc)
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The factor-solve method for solving Ax = b

1. Factor A as a product of simple matrices:
A:A1A2°°°Ak, BE— AlAQ,...AkCIZ:b

(A; diagonal, upper/lower triangular, permutation, etc)

A1$1 =%,

A To = X
2. Compute z = A~ lb=A_"-. . AT'D 242 1
by solving k “easy” systems

At = Tp—1

Note: step 2 Is much cheaper than step 1



Multiple right-hand sides

You now have factored A and you want to solve d linear systems
with different righ-hand side m-vectors b;

A$:b]_ AZU:[?Q AQE:bd
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2. Solve all linear systems using the same factorization (cheap)



Multiple right-hand sides

You now have factored A and you want to solve d linear systems
with different righ-hand side m-vectors b;

A$:b1 AZU:[?Q AQE:bd

Factorization-caching procedure

1. Factor A = A4,..., A, only once (expensive)
2. Solve all linear systems using the same factorization (cheap)

Solve many “at the price of one”



LL" (Cholesky) Factorization

Every positive definite matrix A can be factored as
A=LL"

L lower triangular
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L lower triangular

Procedure
» Works only on symmetric with positive definite matrices

» No need to permute as in LU
» One of Infinite possible choices of L



LL" (Cholesky) Factorization

Every positive definite matrix A can be factored as
A=LL"

L lower triangular

Procedure
» Works only on symmetric with positive definite matrices

» No need to permute as in LU
» One of Infinite possible choices of L

Complexity

» (1/3)n° flops (half of LU decomposition)
» Less if A has special structure (sparse, diagonal, etc)



LL' (Cholesky) Solution

Ar=b, = LL'z=1

Iterations

2. Backward substitution: Solve L'z = x i(nz flops)




LL' (Cholesky) Solution

Ar=b, = LL'z=1
Iterations

1. Forward substitution: Solve Lx; = b (n* flops)
2. Backward substitution: Solve L'z = x (n? flops)

Complexity

- Factor + solve: (1/3)n’ + 2n? ~ (1/3)n° (for large n)
- Just solve (prefactored): 2n?



Today'’s lecture

Least squares

e | east squares optimization
e Gram matrix
e Solving least squares

 Example

10



L east squares optimization



Solving overdetermined linear systems

You have an overdetermined m x n linear system (m > n)

ﬂfg

(with tall A)

12



Solving overdetermined linear systems

You have an overdetermined m x n linear system (m > n)

XL:': '4
/2 e 2}4( :'{

9= ¢
(with tall A) 2. —~¥1¢ig =
example QKZ =~
2 ol 1 |1
- . L1
Typically no solution -1 1 = | 0
o 2of 21 |4

12



Least squares problem

residual vector

r=Ax — b —

Goal: make it as small as possible
minimize ||r|]

13



Least squares problem

residual vector

r=Ax — b —

Goal: make it as small as possible
minimize ||r|]

Least squares problem

minimize || Az — b||3

* 1 IS the decision variable
» ||Axz — bl|3 is the objective function

13



Least squares solution

minimize || Az — b||3
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Least squares solution

minimize || Az — b||3

x™ IS a solution of least squares problem if

optmality ... 112 42— p||2,  for any n-vector z
condition
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Least squares solution

optimality
condition

minimize || Az — b||3

x™ IS a solution of least squares problem if

|Az* — b||* < ||Az — b||*, for any n-vector z

x* need not (and usually does not) satisfy Ax™ = b

What happens if +* does satisfy Ax™ = b?

14



Column interpretation

A= |ay,...,a,|, ai,...,a, are columns of A

Goal: find a linear combination of the columns of A that is closest to b
|Az — b||* = |[(z1a1 + - - - + zpay,) — b]|?
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Column interpretation

A= |ay,...,a,|, ai,...,a, are columns of A

Goal: find a linear combination of the columns of A that is closest to b
|Az — b||* = |[(z1a1 + - - - + zpay,) — b]|?

If £* Is a solution of the least squares problem, the m-vector

* * *
Ax™ =xja1+ -+ 2] an,

IS the closest to b among all linear combinations of the columns of A

15



. i = As b
Row iInterpretation

A= |, al,...,al arerows of A

The residual components are r; = a: = — b;

(



A= |, al,...,al arerows of A

The residual components are r; = a: = — b;

(

Goal minimize sum of squares of the residuals

Az = b]* = (a1 2 = b1)” + - + (@, % — b))
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Row iInterpretation

A= |, al,...,al arerows of A

The residual components are r; = a: = — b;

(

Goal minimize sum of squares of the residuals

Az —b]|" = (a1 = b1)* + -+ + (@ — bin)°

Comparison

» Solving Ax = b forces all residuals to be zero
» Least squares attempts to make them small

16



Least squares problem
Compute = to minimize

0 2 xz —1 |Az — b])* = (221 — 1) + (=21 + 22)” + (222 + 1)°

17



Least squares problem
Compute = to minimize

0 2] L7 —1 Az —b||* = (2z1 — 1) + (=21 + 22)° + (222 + 1)°

Solution z* = (1/3, —1/3) (via calculus)

_15\\ N | , //\/ /| 17

210 =05 0.0 0.5 1.0 1.5



£z
1 1 L —
£z
o 2| U -1
|Az — b||7

Least squares problem
Compute = to minimize

Az — b||* = (221 — 1)° + (—21 + 22)° + (225 + 1)7

Solution z* = (1/3, —1/3) (via calculus)

Interpretations

* ||Az* — b]|* = 2/3 smallest
possible value of ||[Az — bHZ

» Ax* = (2/3,-2/3,—2/3) is the
linear combination of columns

of A closest to b
17



Gram matrix



Gram matrix m2b

Given an m x n matrix A with columns a4, ..., a,

the Gram matrix of A is

T\ T
(AA A = Q'\\O-Q_ A [T 7.2: T,

arar asas ... asan
T
ATA=| . .
hxo : : :
62 T T T
a, a1 Qa2 Q,, Gy,

Very useful in least squares problems



Gram matrix
Invertibility

A has linearly independent columns if and only if A* A is invertible

20



Gram matrix
Invertibility

A has linearly independent columns if and only if A* A is invertible

Proof
We show that Ax =0 <— A1 Az =0
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Gram matrix
Invertibility

A has linearly independent columns if and only if A* A is invertible

Proof
We show that Ax =0 <— A1 Az =0

= If Ax = 0 then we can write

At Ax = AT (Az) = AT0 =0
—= G e

20



Gram matrix
Invertibility

A has linearly independent columns if and only if A* A is invertible

Proof
We show that Az =0 «— Al Az =0

= if Az = 0 then we can write [\4,[[ ~
2

At Ax = AT (Az) = AT0 =0
< if AL Ax = 0 then we can write

0=z'0=2a" (A" Az) =2 A" Az = || Az|”
=

20



Gram matrix
Invertibility

A has linearly independent columns if and only if A* A is invertible

Proof
We show that Ax =0 <— A1 Az =0

= If Az = 0 then we can write
At Ax = AT (Az) = AT0 =0
< if AT Ax = 0 then we can write
0=2"'0=za" (A" Az) = 2* A" Az = || Ax||?
which implies that Ax = 0 (definition of norm) B

20



Positive (semi)definiteness of Gram matrix

CXYAY) :@"(\\ Positive semidefinite (always)

vt AY Ax = (Az)' (Az) = ||Az||? >0,  for any n-vector z
v ar

21
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AT A is positive definite if and only if A has linearly independent columns
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Positive (semi)definiteness of Gram matrix

Positive semidefinite (always)

vt AY Ax = (Az)' (Az) = ||Az||? >0,  for any n-vector z

Positive definite
AT A is positive definite if and only if A has linearly independent columns

Proof

If the columns of A are linearly independent, then
Ax # 0 forany x # 0
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Positive (semi)definiteness of Gram matrix

Positive semidefinite (always)

vt AY Ax = (Az)' (Az) = ||Az||? >0,  for any n-vector z

Positive definite
AT A is positive definite if and only if A has linearly independent columns

Proof

If the columns of A are linearly independent, then
Ax # 0 forany x # 0

Therefore, ' A* Az = || Az||* > 0 (definition of norm) [

21



Solving least squares problems



Main assumption

Least squares problem

minimize ||Az — b||5

A has linearly independent columns

True In most practical examples such as data fitting (next lecture)

23



Calculus derivation

(AL

f(z) = |4z —b)> =3

1=1

:

n

Z Az-ja:j — bz

J=1

24



Calculus derivation

2
f(z)= Az —b* = (Z Ajjrj — bi)
i=1 \ j=1

The solution * satisfies

of

Vf(x") = 9z

(z7) =0,

fork=1,...,n

24



Calculus derivation

2
f(z)= Az —b* = (Z Ajjrj — bi)
i=1 \ j=1

oot
The solution z* satisfies 8% = 2 Z (Z A;jxj — b ) ik)
o0f L -
Vi e =5—-@)=0, —— r—vﬁ
fork=1,...,n

24



AxYAx — (b
= = T " ?
Calculus derivation in vector form —°%«%b

f(x) =||Az = b||? = (Ax — b)" (Az — b) = 2' AT Ax — 2(A" b) =+ b" b
.._5\—7; (Qf;() = 7 o ‘i
—~>Q>«()5Hx3 = LM«

T

s Tan C

25



Calculus derivation in vector form

f(x) =||Az = b||? = (Ax — b)" (Az — b) = 2' AT Ax — 2(A" b) =+ b" b

Vi(z*) = : = 2A" Ax* —2A" b =2A" (Az" — b) =0

25



Calculus derivation in vector form

f(x) =||Az = b||? = (Ax — b)" (Az — b) = 2' AT Ax — 2(A" b) =+ b" b

Vi(z*) = : = 2A" Ax* —2A" b =2A" (Az" — b) =0

normal equations
(AT A)x* = A b

25



Calculus derivation in vector form

f(x) =||Az = b||? = (Ax — b)" (Az — b) = 2' AT Ax — 2(A" b) =+ b" b

Vi(z*) = : = 2A" Ax* —2A" b =2A" (Az" — b) =0

normal equations
XN

square —— (AT A)x*=A"b

linear system
25



Optimality

For z* such that A* Axz* = ATb, we have

20



] ] (‘ e d [l 1: (/\r.(, l,\ “'Cn* 1\ — a{\’”.‘z~t . l\’L
Optimality )

For z* such that A* Axz* = ATb, we have

|Az —b]|" = [[(Az — Az¥) + (Az* — b)||°
= ||A(z — 2)||* + ||Az* — b||* + 2(A(x — :z:*))!Z (Ax™ — b)
— || A(x — 2*)||* + [|[Az* — b|]? + 2(x — 2*)* A" (Ax* — b)
= ||A(z — 2)||* + ||Az™ — b]|? -

20



Optimality

For z* such that A* Axz* = ATb, we have

|Az — b} = [|[(Az — Az*) + (Az* — b)||°
t’./l *\ || 2 * 2 A *\\ 1’ Ar*
gé% = [|[A(x — 27)||” + [|[Az™ = b||* + 2(A(x — ™))" (Ax™ — b)
— || A(x — 2*)||* + [|[Az* — b|]? + 2(x — 2*)" A" (Ax* — b)
= ||A(z — z%)||? + ||Axz™ — b||? ‘
 —— (A* (Ax* — b) = 0)



Optimality

For z* such that A* Axz* = ATb, we have

|Az — b = [|[(Az — Az*) + (Az* — b)||°
= [|A(z — z%)||” + ||Az* — b||* + 2(A(xz — 2*))" (Az* — b)
— || A(x — 2*)||* + [|[Az* — b|]? + 2(x — 2*)" A" (Ax* — b)
= ||A(z — 2%)||? + ||Ax™ — b||? . ‘
SO (A" (Azxz™ — b) = 0)

Therefore, for any =, we have
|Az — b > || Az* — b||°



Optimality

| Az — b|*

For z* such that A* Axz* = ATb, we have

|(Ax — Ax™)
Az — 2*)||?
Az — 2)||?
Az — )7

R

Therefore, for any =, we have
|Az — b > || Az* — b||°

+ 4+ 4+ T

(Az* —b)|17

Ax* — b||?

|V
c _\

Ax* = b||? + 2(A(z — z*))* (Axz* — b)
Az* = b||* +2(z — )T AT (Az* —b)

(AT (Az* — b) = 0)

If equality holds, A(z —2*) =0 =z =z~
since columns of A are linearly independent

20



Solving normal equations

(AT A)x* = A" b

27



Solving normal equations

(AT A)x* = A" b
Inversion

r* = (AT A) 1A

27



Solving normal equations

(AT A)x* = A" b

Inversion

T (ATA)_lATb —_

Pseudo-inverse

AT = (AT A)71TAT

27



Solving normal equations

(AT A)x* = A" b

Inversion

T (ATA)_lATb —_

Factor-solve method
A has linearly independent columns

l

AT A is symmetric positive-definite

Pseudo-inverse

AT = (AT A)71TAT

27



Solving normal equations

(AT A)x* = A" b

Inversion

r* = (AT A)"TATD —

Factor-solve method
A has linearly independent columns

l

AT A is symmetric positive-definite

Pseudo-inverse

AT = (AT At AT

Cholesky factorization

ATA=LL"

27



Solving normal equations

(AT A)x* = A" b
Inversion

T (ATA)_lATb —_

Factor-solve method
A has linearly independent columns

'
AT A is symmetric positive-definite

Which method is faster?

Pseudo-inverse

AT = (AT A)71TAT

Cholesky factorization

ATA=LL"

27



Solving normal equations with Cholesky

1. Form linear system A! Az = A'b
« Form M = A* A (2mn? flops)
» Form g = A’ b: (2mn flops)

28



Solving normal equations with Cholesky
A?A eﬂ(ﬂkh

1. Form linear system A! Az = A'b
« Form M = A* A (2mn? flops)

» Form g = A’ b: (2mn flops)
2. Factor M = LL* ((1/3)n° flops)
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Solving normal equations with Cholesky

1. Form linear system A! Az = A'b
« Form M = A* A (2mn? flops)
» Form g = A’ b: (2mn flops)

2. Factor M = LL* ((1/3)n° flops)

3. Solve LL' x = q (2n? flops)
(with forward/backward substitution)

28



Solving normal equations with Cholesky

1. Form linear system A! Az = A'b
e Form M = AT A 2mn? flops)j
W Form ¢ = A’ b: (2mn flops)

2. Factor M = LL* ((1/3)n° flops)j

3. Solve LL' x = q (2n? flops)
(with forward/backward substitutio

Complexity

+ Factor + solve:12mn? + 2mn’-F (1 /3)n U 2n° ~ 2mn?
- Solve given a new b (prefactored): 2mn + 2n? ~ 2mn

/,

28






Optimal advertising

m demographic groups
we want to advertise to

——

v4es is the m-vector
of desired views/impressions
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Optimal advertising

m demographic groups
we want to advertise to

n advertising channels
(web publishers, radio, print, etc.)

——

——

v4es is the m-vector
of desired views/impressions

s Is the n-vector
of purchases
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Optimal advertising

m demographic groups
we want to advertise to

n advertising channels
(web publishers, radio, print, etc.)

m X n matrix A gives
demographic reach of channels

vdes is the m-vector

——

of desired views/impressions

s Is the n-vector
of purchases

——

A;; 1s the number of views
—— for group 2 and dollar spent
on channel j (1000/$)
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Optimal advertising

m demographic groups vdes is the m-vector

we want to advertise to of desired views/impressions
n advertising channels s IS the n-vector

(web publishers, radio, print, etc.) of purchases

A;; 1s the number of views
—— for group 2 and dollar spent
on channel j (1000/$)

m X n matrix A gives
demographic reach of channels

Views across demographic groups
v = As
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Optimal advertising

m demographic groups vdes is the m-vector

we want to advertise to of desired views/impressions
n advertising channels s IS the n-vector

(web publishers, radio, print, etc.) of purchases

A;; 1s the number of views
—— for group 2 and dollar spent
on channel j (1000/$)

m X n matrix A gives
demographic reach of channels

Views across demographic groups
v = As

Goal
minimize || As — v9%||?

30



Optimal advertising

Results

m = 10 groups, n = 3 channels

desired views vector v9° = (10°)1

minimize || As — v9%||?

|

optimal spending s* = (62, 100, 1443)

1200

1000

8001

Views

400

2001

6001

31




Optimal advertising

Reusing factorization on large example
m = 100, 000 groups, n = 5,000 channels
minimize || As — v9||?

32



Optimal advertising

Reusing factorization on large example
m = 100, 000 groups, n = 5,000 channels
minimize || As — v9||?

Pseudoinverse
Time: 263 sec

32



Optimal advertising

Reusing factorization on large example
m = 100, 000 groups, n = 5,000 channels
minimize || As — v9||?

First solve
desired views v = (10°)1

1. Form linear system Mx = q
Pseudoinverse where M = AT A, q = A'b
2. Factor M = LL"

Time: 263 sec -
3. Solve LL ' x = q
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Optimal advertising

Reusing factorization on large example
m = 100, 000 groups, n = 5,000 channels
minimize || As — v9||?

First solve
desired views v = (10°)1

1. Form linear system Mx = q
Pseudoinverse where M = AT A, q = A'b
2. Factor M = LL"

Time: 263 sec -
3. Solve LL ' x = q

Complexity
2mn?

Time: 9 sec

32



Optimal advertising

Reusing factorization on large example
m = 100, 000 groups, n = 5,000 channels
minimize || As — v9||?

First solve Second solve
desired views v = (10°)1 desired views v9¢% = 5001
1. Form linear system Mx = ¢ 1. Form g = A™b
Pseudoinverse where M = A" A, q = A"b 2. Solve LL Tz = g

2. Factor M = LL1

Time: 263 sec -
3. Solve LL'x = ¢

Complexity
2mn?

Time: 9 sec 32



Optimal advertising

Reusing factorization on large example
m = 100, 000 groups, n = 5,000 channels
minimize || As — v9||?

First solve Second solve
desired views v = (10°)1 desired views v9¢% = 5001
1. Form linear system Mx = ¢ 1. Form g = A™b
Pseudoinverse where M = A" A, q = A"b 2. Solve LL Tz = g

2. Factor M = LL1

Time: 263 sec -
3. Solve LL ' x = q

Complexity Complexity
2mn? 2mn

Time: 9 sec Time: 0.37 sec 3o



Least squares

Today, we learned to:
 Define and recognize least squares problems
e Solve least squares problems using Cholesky factorization

 Understand the benefits of reusing factorizations

33
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Next lecture

* | east squares and data fitting
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