ORF307 – Optimization

18. Interior-point methods II

Ed Forum

• 2nd Midterm: April 18

Time: 11:00am — 12:20pm

Students with extensions please reach out to me

Location: Same room as lecture

Topics: linear optimization

Material allowed: Single sheet of paper. Double sided. Hand-written or typed.

Exercises to prepare: past midterm + extra exercises on canvas

Questions

- How are tau, sigma, and mu related?
- I was still a little confused by SY1. Why do we need to include it in the matrix?

Recap

(Sparse) Cholesky factorization

Every positive definite matrix A can be factored as

$$A = PLL^T P^T \longrightarrow P^T AP = LL^T$$

P permutation, L lower triangular

Permutations

- Reorder rows/cols of A with P to (heuristically) get sparser L
- P depends only on sparsity pattern of A (unlike LU factorization)
- If A is dense, we can set P = I

Cost

- If A dense, typically $O(n^3)$ but usually much less
- It depends on the number of nonzeros in A, sparsity pattern, etc.
- Typically 50% faster than LU (need to find only one matrix)

Linear optimization as a root finding problem

Optimality conditions

Primal

minimize $c^T x$ subject to Ax < b

minimize
$$c^Tx$$
 subject to $Ax + s = b$ $s \ge 0$

Dual

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c = 0 \\ & y \geq 0 \end{array}$$

KKT conditions

$$Ax + s - b = 0$$

$$ATy + c = 0$$

$$siyi = 0, \quad i = 1, ..., m$$

$$s, y \ge 0$$

Linear optimization as a root finding problem

$$Ax + s - b = 0$$

$$ATy + c = 0$$

$$siyi = 0, \quad i = 1, ..., m$$

$$s, y \ge 0$$

Diagonalize complementary slackness

$$S = \operatorname{diag}(s) = \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_m y_m \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_m y_m \end{bmatrix} \begin{bmatrix} s_1 \\ s_1 \\ \vdots \\ s_m y_m \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_m y_m \end{bmatrix}$$

$$Y = \operatorname{diag}(y) = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ s_m y_m \end{bmatrix} \begin{bmatrix} y_1 \\ \vdots \\ s_m y_m \end{bmatrix} \begin{bmatrix} s_1 \\ \vdots \\ s_m y_m \end{bmatrix} \begin{bmatrix} s_1 \\ \vdots \\ s_m y_m \end{bmatrix}$$

$$s_1 y_2 = 0, \quad i = 1, \dots, m \iff SY \mathbf{1} = 0$$

Main idea

Optimality conditions

$$h(y, x, s) = \begin{bmatrix} Ax + s - b \\ A^Ty + c \\ SY1 \end{bmatrix} = \begin{bmatrix} r_p \\ r_d \\ SY1 \end{bmatrix} = 0$$
 $S = \mathbf{diag}(s)$ $Y = \mathbf{diag}(y)$

- Apply variants of Newton's method to solve h(x, s, y) = 0
- Enforce s, y > 0 (strictly) at every iteration
- Motivation avoid getting stuck in "corners"

Smoothed optimality conditions

Optimality conditions

$$Ax + s - b = 0$$

$$A^{T}y + c = 0$$

$$s_{i}y_{i} = \tau \quad \text{Same } \tau \text{ for every pair}$$

$$s, y \geq 0$$

Same optimality conditions for a "smoothed" version of our problem

Duality gap

$$s^T y = (b - Ax)^T y = b^T x - x^T A^T y = b^T y + c^T x$$

Central path

minimize
$$c^Tx - \tau \sum_{i=1}^m \log(s_i)$$
 subject to $Ax + s = b$

Set of points $(x^{\star}(\tau), s^{\star}(\tau), y^{\star}(\tau))$ with $\tau > 0$ such that

$$Ax + s - b = 0$$

$$A^{T}y + c = 0$$

$$s_{i}y_{i} = \tau$$

$$s, y \ge 0$$

Main idea

Follow central path as $\tau \to 0$

Analytic Center $au o \infty$

1000

1

1/5

1/100

 \mathcal{T}

9

The path parameter

Duality measure

$$\mu = \frac{s^T y}{m}$$
 (average value of the pairs $s_i y_i$)

Linear system

$$egin{bmatrix} 0 & A & I \ A^T & 0 & 0 \ S & 0 & Y \end{bmatrix} egin{bmatrix} \Delta y \ \Delta x \ \Delta s \end{bmatrix} = egin{bmatrix} -r_p \ -r_d \ -SY\mathbf{1} + \pmb{\sigma}\mu\mathbf{1} \end{bmatrix}$$

Centering parameter

$$\sigma \in [0, 1]$$

$$\sigma = 0 \Rightarrow \text{Newton step}$$

$$\sigma = 1 \Rightarrow \text{Centering step towards } (y^*(\mu), x^*(\mu), s^*(\mu))$$

Line search to enforce s, y > 0

$$(y, x, s) \leftarrow (y, x, s) + \alpha(\Delta y, \Delta x, \Delta s)$$

Path-following algorithm idea

Centering step

It brings towards the **central path** and is usually biased towards s,y>0. **No progress** on duality measure μ

Newton step

It brings towards the **zero duality** measure μ . Quickly violates s, y > 0.

Combined step

Best of both worlds with longer steps

Path-following algorithm idea

Centering step

It brings towards the **central path** and is usually biased towards s,y>0. **No progress** on duality measure μ

Newton step

It brings towards the zero duality measure μ . Quickly violates s, y > 0.

Combined step

Best of both worlds with longer steps

Primal-dual path-following algorithm

Initialization

1. Given (x_0, s_0, y_0) such that $s_0, y_0 > 0$

Iterations

1. Choose $\sigma \in [0,1]$

2. Solve
$$\begin{bmatrix} 0 & A & I \\ A^T & 0 & 0 \\ S & 0 & Y \end{bmatrix} \begin{bmatrix} \Delta y \\ \Delta x \\ \Delta s \end{bmatrix} = \begin{bmatrix} -r_p \\ -r_d \\ -SY\mathbf{1} + \sigma\mu\mathbf{1} \end{bmatrix} \text{ where } \mu = s^Ty/m$$

- 3. Find maximum α such that $y + \alpha \Delta y > 0$ and $s + \alpha \Delta s > 0$
- 4. Update $(y, x, s) \leftarrow (y, x, s) + \alpha(\Delta y, \Delta x, \Delta s)$

Today's lecture Interior-point methods II

- Mehrotra predictor-corrector algorithm
- Implementation and linear algebra
- Interior-point vs simplex

Predictor-corrector algorithm

Main idea

Predict and select centering parameter

Predict

Compute Newton direction

Estimate

How good is the Newton step? (how much can μ decrease?)

Select centering parameter

Very roughly:

Pick $\sigma \approx 0$ if Newton step is good Pick $\sigma \approx 1$ if Newton step is bad

How good is the Newton step?

Newton step

$$(\Delta x_a, \Delta s_a, \Delta y_a)$$

Maximum step-size

$$\alpha_p = \max\{\alpha \in [0, 1] \mid s + \alpha \Delta s_a \ge 0\}$$

$$\alpha_d = \max\{\alpha \in [0, 1] \mid y + \alpha \Delta y_a \ge 0\}$$

Two issues

- The new points will not produce much improvement: $(s + \alpha_p \Delta s_a)_i (y + \alpha_d \Delta y_a)_i$ much larger than 0
- The complementarity error depends on step lengths α_p and α_d

Choosing a centering parameter to make good improvement

Newton step

$$(\Delta x_a, \Delta s_a, \Delta y_a)$$

Maximum step-size

$$\alpha_p = \max\{\alpha \in [0, 1] \mid s + \alpha \Delta s_a \ge 0\}$$
 $\alpha_d = \max\{\alpha \in [0, 1] \mid y + \alpha \Delta y_a \ge 0\}$

Duality measure candidate

(after Newton step)

$$\mu_a = \frac{(s + \alpha_p \Delta s_a)^T (y + \alpha_d \Delta y_a)}{m}$$

Centering parameter heuristic σ

$$\sigma = \left(\frac{\mu_a}{\mu}\right)^3$$

Correcting for complementary error

Newton step

$$\begin{bmatrix} 0 & A & I \\ A^T & 0 & 0 \\ S & 0 & Y \end{bmatrix} \begin{bmatrix} \Delta y_a \\ \Delta x_a \\ \Delta s_a \end{bmatrix} = \begin{bmatrix} -r_p \\ -r_d \\ -SY\mathbf{1} \end{bmatrix} \longrightarrow s_i(\Delta y_a)_i + y_i(\Delta s_a)_i + s_i y_i = 0$$

Complementarity error

$$(s_i + (\Delta s_a)_i)(y_i + (\Delta y_a)_i) = (\Delta s_a)_i(\Delta y_a)_i \neq 0$$

Complementarity violation depends on step length

Corrected direction

$$\begin{bmatrix} 0 & A & I \\ A^T & 0 & 0 \\ S & 0 & Y \end{bmatrix} \begin{bmatrix} \Delta y \\ \Delta x \\ \Delta s \end{bmatrix} = \begin{bmatrix} -r_p \\ -r_d \\ -SY\mathbf{1} - \Delta S_a \Delta Y_a \mathbf{1} + \sigma \mu \mathbf{1} \end{bmatrix}$$

$$\Delta S_a = \mathbf{diag}(\Delta s_a)$$
 $\Delta Y_a = \mathbf{diag}(\Delta y_a)$

Mehrotra predictor-corrector algorithm

Initialization

Given (x, s, y) such that s, y > 0

1. Termination conditions

$$r_p = Ax + s - b, \quad r_d = A^T y + c, \quad \mu = (s^T y)/m$$

If $||r_p||, ||r_d||, \mu$ are small, break Optimal solution (x^*, s^*, y^*)

2. Newton step (affine scaling)

$$egin{bmatrix} 0 & A & I \ A^T & 0 & 0 \ S & 0 & Y \end{bmatrix} egin{bmatrix} \Delta y_a \ \Delta x_a \ \Delta s_a \end{bmatrix} = egin{bmatrix} -r_p \ -r_d \ -SY\mathbf{1} \end{bmatrix}$$

Mehrotra predictor-corrector algorithm

3. Barrier parameter

$$\alpha_{p} = \max\{\alpha \in [0, 1] \mid s + \alpha \Delta s_{a} \ge 0\}$$

$$\alpha_{d} = \max\{\alpha \in [0, 1] \mid y + \alpha \Delta y_{a} \ge 0\}$$

$$\mu_{a} = \frac{(s + \alpha_{p} \Delta s_{a})^{T} (y + \alpha_{d} \Delta y_{a})}{m}$$

$$\sigma = \left(\frac{\mu_{a}}{\mu}\right)^{3}$$

4. Corrected direction

$$\begin{bmatrix} 0 & A & I \\ A^T & 0 & 0 \\ S & 0 & Y \end{bmatrix} \begin{bmatrix} \Delta y \\ \Delta x \\ \Delta s \end{bmatrix} = \begin{bmatrix} -r_p \\ -r_d \\ -SY\mathbf{1} - \Delta S_a \Delta Y_a \mathbf{1} + \sigma \mu \mathbf{1} \end{bmatrix}$$

Mehrotra predictor-corrector algorithm

5. Update iterates

$$\alpha_p = \max\{\alpha \ge 0 \mid s + \alpha \Delta s \ge 0\}$$

$$\alpha_d = \max\{\alpha \ge 0 \mid y + \alpha \Delta y \ge 0\}$$

$$(x,s) = (x,s) + \min\{1, \eta\alpha_p\}(\Delta x, \Delta s)$$
$$y = y + \min\{1, \eta\alpha_d\}\Delta y$$

Avoid corners

$$\eta = 1 - \epsilon \approx 0.99$$

Implementation and linear algebra

Search equations

Step 2 (Newton) and 4 (Corrected direction) solve equations of the form

$$egin{bmatrix} 0 & A & I \ A^T & 0 & 0 \ S & 0 & Y \end{bmatrix} egin{bmatrix} \Delta y \ \Delta x \ = \ b_x \ b_s \end{bmatrix}$$

The **Newton** step right hand side: $\begin{vmatrix} b_y \\ b_x \end{vmatrix} = \begin{vmatrix} -r_p \\ -r_d \\ -SV1 \end{vmatrix}$

$$egin{bmatrix} b_y \ b_x \ b_s \ \end{bmatrix} = egin{bmatrix} -r_p \ -r_d \ -SY1 \ \end{bmatrix}$$

The **corrector** step right hand side:
$$\begin{bmatrix} b_y \\ b_x \\ b_s \end{bmatrix} = \begin{bmatrix} -r_p \\ -r_d \\ -SY\mathbf{1} - \Delta S_a \Delta Y_a \mathbf{1} + \sigma \mu \mathbf{1} \end{bmatrix}$$

Solving the search equations

Our linear system is not symmetric

$$egin{bmatrix} 0 & A & I \ A^T & 0 & 0 \ S & 0 & Y \end{bmatrix} egin{bmatrix} \Delta y \ \Delta x \ = \ b_x \ b_s \end{bmatrix}$$

Substitute last equation, $\Delta s = Y^{-1}(b_s - S\Delta y)$, into first

$$\begin{bmatrix} -Y^{-1}S & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} \Delta y \\ \Delta x \end{bmatrix} = \begin{bmatrix} b_y - Y^{-1}b_s \\ b_x \end{bmatrix}$$

Solving the search equations

Our reduced system is symmetric but not positive definite

$$\begin{bmatrix} -Y^{-1}S & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} \Delta y \\ \Delta x \end{bmatrix} = \begin{bmatrix} b_y - Y^{-1}b_s \\ b_x \end{bmatrix}$$

Substitute first equation, $\Delta y = S^{-1}Y(A\Delta x - b_y + Y^{-1}b_s)$, into second

$$A^{T}S^{-1}YA\Delta x = b_x + A^{T}S^{-1}Yb_y - A^{T}S^{-1}b_s$$

Reduced linear system

Coefficient matrix

$$B = A^T S^{-1} Y A$$

Characteristics

- A is large and sparse
- $S^{-1}Y$ is **positive** and **diagonal**, different at each iteration
- B is positive definite if rank(A) = n
- Sparsity pattern of B is the **pattern** of A^TA (independent of $S^{-1}Y$)

Reduced linear system

Coefficient matrix

$$B = A^T S^{-1} Y A$$

Cholesky factorizations

$$B = PLL^T P^T$$

- Reordering only once to get P
- One numerical factorizaton per interior-point iteration $O(n^3)$ —— com
- Forward/backward substitution twice per iteration $O(n^2)$

Per-iteration complexity

 $O(n^3)$

Convergence

Mehrotra's algorithm

No convergence theory ———— Examples where it **diverges** (rare!)

Fantastic convergence in practice ——— Less than 30 iterations

Theoretical iteration complexity

Alternative versions (slower than Mehrotra) converge in $O(\sqrt{n})$ iterations

Floating point operations

 $O(n^{3.5})$

Average iteration complexity

Average iterations complexity is $O(\log n)$

$$O(n^3 \log n)$$

Warm-starting

Interior-point methods are difficult to warm-start

Interior-point vs simplex

Example

minimize $-10x_1-12x_2-12x_3$ subject to $x_1+2x_2+2x_3\leq 20$ $2x_1+x_2+x_3\leq 20$ $2x_1+2x_2+x_3\leq 20$ $x_1,x_2,x_3\geq 0$

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \\ & x \geq 0 \end{array}$$

$$c = (-10, -12, -12)$$
 $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$
 $b = (20, 20, 20)$

Example with real solver

CVXOPT (open-source)

Code

Output

```
k/t
                dcost
                                           dres
     pcost
                                    pres
                             gap
 0: -1.3077e+02 -2.3692e+02
                             2e+01
                                   1e-16
                                          6e-01
                                                  1e+00
 1: -1.3522e+02 -1.4089e+02
                            1e+00
                                  2e-16
                                          3e-02
                                                  4e-02
 2: -1.3599e+02 -1.3605e+02 1e-02 2e-16
                                          3e-04
                                                  4e - 04
 3: -1.3600e+02 -1.3600e+02 1e-04 1e-16 3e-06
                                                  4e-06
 4: -1.3600e+02 -1.3600e+02 1e-06 1e-16 3e-08
                                                  4e-08
Optimal solution found.
```

Solution

Average interior-point complexity

Random LPs

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$

n variables 3n constraints

Iterations: $O(\log n)$

Time: $O(n^3 \log n)$

Comparison between interior-point method and simplex

Primal simplex

- Primal feasibility
- Zero duality gap

Dual feasibility

Dual simplex

- Dual feasibility
- Zero duality gap

Primal feasibility

Primal-dual interior-point

Interior condition

- Primal feasibility
- Dual feasibility
- Zero duality gap

Exponential worst-case complexity

Requires feasible point

Can be warm-started

Polynomial worst-case complexity

Allows infeasible start

Cannot be warm-started

Which algorithm should I use?

Dual simplex

- Small-to-medium problems
- Repeated solves with varying data

Interior-point (barrier)

- Medium-to-large problems
- Sparse structured problems

How do solvers with multiple options decide?

Concurrent Optimization

Why not both? (crossover)

Interior-point —— Few simplex steps

Interior-point methods implementation

Today, we learned to:

- Apply Mehrotra predictor-corrector algorithm
- Exploit linear algebra to speedup computations
- Analyze empirical complexity
- Compare interior-point and simplex methods

References

- D. Bertsimas and J. Tsitsiklis: Introduction to Linear Optimization
 - Chapter 9.4 9.6: Interior point methods

- R. Vanderbei: Linear Programming
 - Chapter 17: The Central Path
 - Chapter 15: A Path-Following Method

Next lecture

Overview for linear optimization