ORF307 - Optimization

18. Interior-point methods Il

Bartolomeo Stellato — Spring 2023



Ed Forum

e 2nd Midterm: April 18
Time: 11:00am — 12:20pm
Students with extensions please reach out to me
Location: Same room as lecture
Topics: linear optimization
Material allowed: Single sheet of paper. Double sided. Hand-written or typed.
Exercises to prepare: past midterm + extra exercises on canvas

 Questions
 How are tau, sigma, and mu related??

* | was still a little confused by SY1. Why do we need to include it in the
matrix”?






(Sparse) Cholesky factorization

Every positive definite matrix A can be factored as
A=PLL"P* — P'AP=LL"

P permutation, L lower triangular

Permutations

» Reorder rows/cols of A with P to (heuristically) get sparser L
» P depends only on sparsity pattern of A (unlike LU factorization)
* |f Aisdense, wecanset P =1

Cost
- If A dense, typically O(n°) but usually much less
» |t depends on the number of nonzeros in A, sparsity pattern, etc.
» Typically 50% faster than LU (need to find only one matrix)



Linear optimization as a root finding problem

Optimality conditions

Primal Dual
minimize ¢!z ___,  minimize clx maximize —bly
subjectto Az < subjectto Az +s=05 subjectto Aly+c=0

s >0 y >0
KKT conditions
Ar+s—b=0
Aty +c=0

s;y; =0, 1=1,....m
s,y 20



Linear optimization as a root finding problem

S = diag(s) =

Y = diag(y) =

_y1

Y2

Diagonalize complementary slackness

Ym _

Ar+s—b=0
Aty+c=0
siy; = 0,

s,y >0

SY1 = diag(s)diag(y)1l =

SiY; — U, Z:L...

i=1,...

S1Y1

o TT0

S2Y2

<

SY1 =0

S1Y1

S2Y2

SmYm_

6




Main idea

Optimality conditions

Axr 45— Tp S = diag(s)

h(y,z,s) = | Aly+c | =1 rqa | =0 Y = diag(y)
- sy1 | |svi
s,y >0

» Apply variants of Newton’s method to solve h(x, s,y) = 0
» Enforce s,y > 0O (strictly) at every iteration

- Motivation avoid getting stuck in “corners”



Smoothed optimality conditions

Optimality conditions

Ar+s—b=0

Aty +c=0
s;y; =T <+——— Same 7 for every pair

s,y > 0

Same optimality conditions for a “smoothed” version of our problem

Duality gap
sty=0b—Ax) y=b'z—2' Aly=>bly+cx



Analytic

Central path Center 1000
T — OO
minimize ¢’z — 7> " log(s;)
subjectto Az +s=50 |
Set of points (z*(7), s*(7),y* (7))
with 7 > 0 such that
Ar+s5s—-0=0 1/5
Aty +ec=0
SiYi = T
s,y > 0
Main idea 1/100
T

Follow central pathas  — 0



The path parameter

Linear system

Duality measure 0 A 11T Ay i —r, i
- sTy (average value of AT o0 ol |Azl = —r
"7 " the pairs s;y;) S 0 Y| [As —=SY1+opul
Centering parameter =0 = Newton step
o € [0,1] c=1 = Centering step towards (y*(u), x* (1), s* (1))

Line search to enforce s,y > 0
(:U,Q?,S) % (y7aj78) _l_ (X(Ay,AQE,AS) 19



Path-following algorithm idea

Newton step .

-y

~Centering step. "}

o=1

|

’I

o =0

Combined step

Centering step
It brings towards the central path

and Is usually biased towards s,y > 0.
No progress on duality measure u

Newton step

It brings towards the zero duality
measure ;.. Quickly violates s,y > 0.

Combined step
Best of both worlds with longer

steps 11



Path-following algorithm idea

Central path

*
L4
L4
’
4
L4
L4
’
’
L4
L4
L4
’
L4
L4
4
L4

S2Y2 ,

Centering step

Newton step .~
o=0 |

S1Y1

Centering step
It brings towards the central path

and Is usually biased towards s,y > 0.
No progress on duality measure u

Newton step

It brings towards the zero duality
measure ;.. Quickly violates s,y > 0.

Combined step
Best of both worlds with longer

steps 12



Primal-dual path-following algorithm

Initialization

1. Given (CC(), S0 y()) such that sg, yg > 0

Iterations

1. Choose o € |0, 1]

2. Solve

0 A I
AT 0 0
S 0 Y

—SY1+oul

where 1 = st y/m

3. Find maximum « such that y + aAy > 0 and s + aAs > 0

4. Update (y,x,s) < (y,z,s) + a(Ay, Az, As)

13



Today'’s lecture

Interior-point methods li

 Mehrotra predictor-corrector algorithm
* |mplementation and linear algebra

* |nterior-point vs simplex

14



Predictor-corrector algorithm



Main idea

Predict and select centering parameter

Predict
Compute Newton direction

T Estimate
- Centering step. 3

5 =1 How good is the Newton step?

(how much can i decrease?)

& |
Newton step .= -
o =10 N

Select centering parameter

Very roughly:
Pick o =~ 0 If Newton step Is good

Combined step Pick 0 =~ 1 if Newton step Is 1t%ad



How good is the Newton step?

Newton step
(Axy, Asq, Ay,)

Maximum step-size

a, = max{a € [0,1] | s + aAs, > 0}
ag = max{a € [0,1] | y + aAy, > 0}

TwWO Issues

» The new points will not produce much improvement:
(s + apAsy)i(y + agAy,); much larger than 0

* The complementarity error depends on step lengths «,, and ay



Choosing a centering parameter to make good improvement

Newton step
(Axy, Asq, Ay,)

Maximum step-size

o, = max{a €
g = max{a €

Duality measure candidate

Ha

(after Newton step)

(s + CVpASa)T(y + agAyg)

T

0,1

0,1

Centering parameter heuristic o

S_

y_

g

- aAs, > 0}
— &Aya 2 O}

Pa
v

:

18



(5i+(ASq)i)(yi + (Aya)i) = (Asq)i(Ayg)i # O

0 A I
AT 0 0
S 0 Y

Correcting for complementary error

Newton step

Ay,
Az,
As,

—SY1.

Complementarity error

Corrected direction

0 A I
AT 0 0
S 0 Y

Ay
Ax
As

—SY1 - AS,AY,1+oul

E———

Si(Aya)i =+ yi(ASa)i + s;y; = 0

Complementarity violation
depends on step length

AS, = diag(As,)
AYCL — diag(Aya>

19



Mehrotra predictor-corrector algorithm

Initialization

Given (z, s,y) such that s,y > 0

1. Termination conditions
r, =Ax+s—5b, 1y =Aly+ec, p= (sTy)/m

If [|[7,], |7, © @are small, break Optimal solution (z*, s*, y*)

2. Newton step (affine scaling)

0 A I [Ay, —T)
A0 0 Az, —7y
S 0 Y| |As, —-5SY1




Mehrotra predictor-corrector algorithm

3. Barrier parameter
a, = max{a € [0,1] | s + aAs, > 0}
ag = max{a € |0,1] | y + aAy, > 0}

€ oszsa)T(y g Ay,
m

Mg —

= (%)

4. Corrected direction

0 A I] |Ay —T)
A0 0 Ax| = —7g
S 0 Y| |As —SY1—-AS5,AY,1+oul




Mehrotra predictor-corrector algorithm

5. Update iterates
a, = max{a > 0| s+ alAs > 0}
ag =max{a > 0|y + alAy > 0}

Avoid corners
(z,8) = (z,s) + min{1, na, } (Ax, As) n=1—¢~ 0.99
y =y +min{l, nog Ay

22



Implementation and linear algebra




Search equations

Step 2 (Newton) and 4 (Corrected direction) solve equations of the form

0 A I [Ay
AT 0 0 Ax| = | b,

S 0 Y| |As s
351 T
The Newton step right hand side: by | = | —Td
s —SY1
_by_ i —Tp ]
The corrector step right hand side: [0z | = —Td
by| | -SY1-AS,AY,1+opul




Solving the search equations

Our linear system is not symmetric

0 A I]| |Ay b,
AT 0 0| |Ax
S 0 Y| [As b

|
S
2

Substitute last equation, As = Y~ 1(b, — SAy), into first

—y-15 Al Ayl b, —Ylb,
Al 0| | Ax b,




Solving the search equations

Our reduced system is symmetric but not positive definite

—y-1s 4| [Ay]  [b,—Y b,
Al 0| | Ax b,

Substitute first equation, Ay = S~'Y(AAx — b, + Y 'b), into second

A"ST'YAAxr = b, + A" ST'Yb, — AT ST b,



Reduced linear system

Coefficient matrix

B=A'S"v A

Characteristics

- A Is large and sparse
- S~1Y is positive and diagonal, different at each iteration
» B is positive definite if rank(A) = n

- Sparsity pattern of B is the pattern of A* A (independent of S~'Y)

27



Reduced linear system

Coefficient matrix

B=A'S"v A

Cholesky factorizations

B =PLL' P!

» Reordering only once to get P
Per-iteration
- One numerical factorizaton per interior-point iteration O(n®) —— complexity

O(n°)

28

- Forward/backward substitution twice per iteration O(n?)



Convergence

Mehrotra’s algorithm

No convergence theory

Examples where it diverges (rare!)
Fantastic convergence in practice — Less than 30 iterations

Floating point
Theoretical iteration complexity operations

Alternative versions (slower than Mehrotra) 3 5
. N . O(n®?)
converge in O(y/n) iterations

Average iteration complexity
Average iterations complexity is O(log n) — O(n”logn)

29



Warm-starting

Interior-point methods are difficult to warm-start

Badly centered
initial point

Previous solution

Hard to make progress
with long steps

30



Interior-point vs simplex



Example

minimize  —10x7 — 1225 — 125

subjectto x1 + 229 + 223 < 20
201 + 22 + 23 < 20
201 + 229 + x5 < 20

r1,22,x3 = 0

¢ = (—10,-12, —12)

minimize ¢z 1 2 2
subjectto Ax <b A=12 1 2
r > 0 _2 2 1_

b = (20,20, 20) .,



Example with real solver
CVXOPT (open-source)

Code ()lItFHUt

pcost dcost

import numpy as np

import cvxpy as cp : -1.3077e+02 -2.3692e+02

0

l: -1.3522e+02 -1.4089e+02

2: -1.3599e+02 -1.3605e+02

3: -1.3600e+02 -1.3600e+02

4: -1.3600e+02 -1.3600e+02
Optimal solution found.

C np.array([-10, -12, -12])
A np.array([[1l, 2

[2, 1

[2, 2

2

r 21,

r 21,

r 111)
0, 207)

np.array([20,
len(c)
. Solution
cp.Variable(n)
problem = cp.Problem(cp.Minimize(c @ x),
[A @ x <= b, x >= 0])
problem.solve(solver=cp.CVXOPT, verbose=True)

In [3]: x.value

Out[3]: array([3.99999999, 4.

[The CVXOPT linear and quadratic cone program solvers, L. Vandenberghe 2010] 33



Average interior-point complexity
Random LPs

—_
D

Number of iterations

0

@)

minimize
subject to

Iterations: O(logn)

—_
I

—_
DO

—_
-

— C(C'log(x)

oo

0 200 400

(1

600

300

1000

CTZE

Ax < b

n variables
3n constraints

Time: O(n”logn)

| —— C2?log(z)

600 00 1000
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Comparison between interior-point method and simplex

Primal simplex Dual simplex Primal-dual interior-point
* Primal feasibility * Dual feasibility * |nterior condition
e Zero duality gap e Zero duality gap l

* Primal feasibility
Dual feasibility Primal feasibility » Dual feasibility

e Zero duality gap
Exponential worst-case complexity Polynomial worst-case complexity
Requires feasible point Allows Infeasible start

Can be warm-started Cannot be warm-started i



Which algorithm should | use?

Dual simplex Interior-point (barrier)
e Small-to-medium problems  Medium-to-large problems
 Repeated solves with varying data * Sparse structured problems

How do solvers with multiple options decide?
Concurrent Optimization

Why not both? (crossover)

Interior-point —  Few simplex steps
36


https://www.gurobi.com/documentation/9.0/refman/concurrent_optimizer.html

Interior-point methods implementation

Today, we learned to:

* Apply Mehrotra predictor-corrector algorithm
 EXxploit linear algebra to speedup computations
* Analyze empirical complexity

 Compare interior-point and simplex methods

37
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Next lecture

 Overview for linear optimization

39



