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* what are the general ways for relaxing an LP?

 how creating the duality problem can be useful in practical applications?






Weak and strong duality




Optimal objective values

Primal
minimize clx
subjectto Az <b

p* 1S the primal optimal value

Primal infeasible: p* = +oc
Primal unbounded: p* = —o0¢

Dual
maximize —bly

subjectto Aly+c=0

y 2> 0

d* 1s the dual optimal value

Dual infeasible: d* = —o¢

Dual unbounded: d* =

O



Weak duality

Theorem
It x,y satisty:

» x IS a feasible solution to the primal problem

T T
. y is a feasible solution to the dual problem ~— .~ ysca



Weak duality
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» x IS a feasible solution to the primal problem
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We know that Az < b, Ay + ¢ = 0andy > 0. Therefore,

0<y' (b—Ax)=by—y Ar=c'z+b'y




Weak duality

Theorem
If x,y satisty:

» x IS a feasible solution to the primal problem

T T
. y is a feasible solution to the dual problem ~— .~ ysca

Proof
We know that Az < b, Ay + ¢ = 0andy > 0. Therefore,

0<y' (b—Ax)=by—y Ar=c'z+b'y

Remark
» Any dual feasible y gives a lower bound on the primal optimal value

» Any primal feasible x gives an upper bound on the dual optimal value
- ¢!z 4+ bly is the duality gap



Weak duality

Corollaries

Unboundedness vs feasibility
* Primal unbounded (p* = —o0) = dual infeasible (d* = —o0)
* Dual unbounded (d* = +o0) = primal infeasible (p* = +o0)



Weak duality

Corollaries

Unboundedness vs feasibility
* Primal unbounded (p* = —o0) = dual infeasible (d* = —o0)
* Dual unbounded (d* = +o0) = primal infeasible (p* = +o0)

Optimality condition

If x, y satisfy:
» x IS a feasible solution to the primal problem
» y Is a feasible solution to the dual problem
- The duality gap is zero, i.e., cl'z + bl y =0

Then x and y are optimal solutions to the primal and dual problem respectively i



Strong duality

Theorem
If a linear optimization problem has an optimal solution, so does its dual, and
the optimal value of primal and dual are equal

d*:p*



i VX
\ A* =5

Strong duality 3.0
Constructive proof
Given a primal optimal solution x> we will construct a dual optimal solution y*
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Strong duality

Constructive proof
Given a primal optimal solution x> we will construct a dual optimal solution y*

Apply simplex to problem in standard form

minimize ¢’z - optimal basis B
subjectto Az =b  —— ¢ optimal solution z* with Az =0
>0 » reduced costs ¢ =c — AT AL cg > 0



wax — Ry
Strong duality 8. Ay >0

Constructive proof
Given a primal optimal solution x> we will construct a dual optimal solution y*

Apply simplex to problem in standard form

minimize ¢’z - optimal basis B
subjectto Az =b  —— ¢ optimal solution z* with Az =0
>0 » reduced costs ¢ =c — AT AL cg > 0

Define y* such that y* = —A;TCB. Therefore, A y* + ¢ > 0 (y* dual feasible).
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Strong duality b, Al >0

Constructive proof
Given a primal optimal solution x> we will construct a dual optimal solution y*

Apply simplex to problem in standard form

minimize ¢’z - optimal basis B
subjectto Az =b  —— ¢ optimal solution z* with Apz; =0
>0 » reduced costs ¢ =c — AT AL cg > 0

Define y* such that y* = —A;TCB. Therefore, A y* + ¢ > 0 (y* dual feasible).

—bhy* = AbT (£AL cg) = ch(AR'D) = cprly = ¢l x*



Strong duality

Constructive proof
Given a primal optimal solution x> we will construct a dual optimal solution y*

Apply simplex to problem in standard form

minimize ¢’z - optimal basis B
subjectto Az =b  —— ¢ optimal solution z* with Az =0
>0 » reduced costs ¢ =c — AT AL cg > 0

Define y* such that y* = —A;TCB. Therefore, A y* + ¢ > 0 (y* dual feasible).
—bly* = b (A, cg) = ch(AZ'D) = chrly =l x*

By weak duality theorem corollary, y* is an optimal solution of the dual.

Therefore, d* = p*. m



Exception to strong duality

Primal Dual
maximize vy

subjectto O0-y+1=0
y =0

minimize x
subjectto 0.z < -1

Optimal value is p* = 400 Optimal value is d* = —oc

10



Exception to strong duality

Primal Dual
maximize vy

subjectto O0-y+1=0
y =0

minimize x
subjectto 0.z < -1

Optimal value is p* = 400 Optimal value is d* = —oc

Both primal and dual infeasible

10



Relationship between primal and dual

p* = 400 p* finite p* = —00

-

primal inf.
dual unb.

d* finite optimal values
— ( equal
? d* = —oo M

» Upper-right excluded by weak duality
* (1,1) and (3, 3) proven by weak duality
* (3,1) and (2, 2) proven by strong duality

d* = 400

11






Production problem

maximize xi1 + 2x-
subjectto z; <100

219 < 200

1 + xo < 150

L1, L2 2 0




Production problem

maximize xi + 2xo <+— Profits
subjectto z; <100

219 < 200

1+ 2o < 150

L1, L2 2 0




Production problem

maximize xq1 + 2xo <+— Profits
subjectto z; <100

209 < 200 «—— Resources
Tr1 + T2 S 150

L1, L2 2 0

13



Production problem

maximize xq1 + 2xo <+— Profits

subjectto x; < 100 B
c=(—1,—2)
209 < 200 «<—— Resources - -
x1,To > 0
b A=11 1
Dualize 1 0
minimize !z 0 —1

1. Transform in inequality form . i i
quality subjectto Az < b b = (100, 200, 150, 0, 0)

13



Production problem

maximize xq1 + 2xo <+— Profits

subjectto x; < 100 B
c=(—1,—2)
209 < 200 «<—— Resources - -
x1,To > 0
b A=11 1
Dualize 1 0
minimize !z 0 —1

1. Transform in inequality form . i i
quality subjectto Az < b b = (100, 200, 150, 0, 0)

maximize —bly
2. Derive dual subjectto Aly+c=0
Y > () 13



Production problem

Dualized

maximize
subject to

—bTy
Aty +c=0
y >0

c=(—1,—-2)
TS
0 2
A=1]1 1
—1 0
0 -1

b = (100, 200, 150, 0, 0)

14



Production problem

Dualized
maximize —bly
subjectto ATy +c =0
y > 0
Fill-in data

minimize  100y; + 200ys + 150ys3
subjectto y1 +y3—ys =1
202 + Y3 — Y5 = 2
Y1,Y2, Y3, Y4,Y5 = 0

b = (100, 200, 150, 0, 0)

14



Production problem c=(-1,-2)

Dualized 10
maximize —b'y 0 2
subjectto Ay +c=0 A=11 1
y >0 -1 0
/ 0 —1
b = (100, 200, 150, 0, 0)
Fill-in data Eliminate variables
minimize 100y, + 200y + 150y3 minimize 100y, + 200y + 150y3
subjectto vy + ys3 —/ﬂ: 1 subjectto y; +ys >1
292+3/37’g5=2 2Y2 +ys = 2

Yi1,Y2,Y3, Y4, Ys > 0 Yi1,Y2,Ys >0 14



Production problem

The dual

minimize  100y; + 200ys

subjectto vy +y3>1
292 + Y3 > 2
Y1,Y2,ys = 0

15Oy3

15



Production problem

The dual
minimize  100y; + 200ys + 150ys3

subjectto y; +y3 > 1
2Y2 + Yz = 2
Y1,Y2,y3 = 0

Interpretation

» Sell all your resources at a fair (minimum) price
» Selling must be more convenient than producing:

— Product 1 (price 1, needs 1x resource 1 and 3): y; +vy3 > 1
— Product 2 (price 2, needs 2 x resource 2 and 1x resource 3): 2ys + yz > 2

15



Today’s agenda

More on duality

* [wO-person zero-sum games
 Farkas lemma
 Complementary slackness

e KKT conditions

16



Two-person games



Rock paper scissors

Rules
At count to three declare one of: Rock, Paper, or Scissors

Winners

|dentical selection is a draw, otherwise:
 Rock beats (“dulls”) scissors

e Scissors beats (“cuts”) paper
 Paper beats (“covers”) rock

Extremely popular: world RPS society, USA RPS league, etc.

18



Two-person zero-sum game

» Player 1 (P1) chooses a number i € {1,...,m} (one of m actions)
* Player 2 (P2) chooses a number j € {1,...,n} (one of n actions)

Two players make their choice independently

19



Two-person zero-sum game

» Player 1 (P1) chooses a number i € {1,...,m} (one of m actions)
* Player 2 (P2) chooses a number j € {1,...,n} (one of n actions)

Two players make their choice independently

Rule Rock, Paper, Scissors
R P S ]
Player 1 pays A;; to player 2 R| O 1 -1
A e R™*" is the payoff matrix A=P|-1 0 1
S| 1 -1 0




Mixed (randomized) strategies

Deterministic strategies can be systematically defeated

20



Mixed (randomized) strategies

Deterministic strategies can be systematically defeated

Randomized strategies
* P1 chooses randomly according to distribution x:

x; = probablility that P1 selects action 2

» P2 chooses randomly according to distribution v:
y,; = probability that P2 selects action

20



Mixed (randomized) strategies

Deterministic strategies can be systematically defeated

Randomized strategies
* P1 chooses randomly according to distribution x:

= probability that P1 selects action ¢

» P2 chooses randomly according to distribution v:
y,; = probability that P2 selects action

Expected payoff (from P1 P2) If they use mixed- st;;gtegles r and v,

szlyj iJ —fTAy ZX Z %*SA

=1 j=1 s

20



Mixed strategies and probability simplex

Probability simplex in R
P,={peR"[p>0, 17p=1}

Mixed strategy

For a game player, a mixed strategy is a distribution over all possible
deterministic strategies.

The set of all mixed strategies is the probability simplex — x € F,,, vy € P,

21



Optimal mixed strategies

P1: optimal strategy =* Is the solution of

minimize  max z’ Ay
ye Py,

subjectto z € P,

P2: optimal strategy y* is the solution of

maximize min z' Ay
xeP,,

subjectto y € P,

22



= = = )/
Optimal mixed strategies S
)
. . . ‘ :(Ol( OJ
P1: optimal strategy z* is the solution of Cy =l
2 =(0g)
minimize  max z* Ay minimize  max (ATz),
ye Py, - j=1,...,n
subjectto z € P, subjectto z € P,
P2: optimal strategy y* is the solution of €
maximize xrg]ijﬂ z' Ay maximize _min (Ay); /

_ ——
subjectto y € P, subjectto y € P,

22



Optimal mixed strategies

P1: optimal strategy =* Is the solution of

minimize  max x" Ay minimize  max (ATz),
ye Py - j=1,....,n
subjectto x € P, subjectto  z € Py "\

Inner problem over
deterministic
strategies (vertices)

P2: optimal strategy y* is the solution of /
maximize xfg]ijﬂ r' Ay maximize _min (Ay);

—_—mm

subjectto y € P, subjectto y € P,

22



Optimal mixed strategies

P1: optimal strategy =* Is the solution of

minimize  max x" Ay minimize  max (ATz),
ye Py - j=1,....,n
subjectto x € P, subjectto  z € Py "\

Inner problem over
deterministic
strategies (vertices)

P2: optimal strategy y* is the solution of /
maximize xfg]ijﬂ r' Ay maximize min (Ay);
| ™ 1=1,....m

subjectto y € P, subjectto y € P,

Optimal strategies x* and y* can be computed using linear optimization ,



Minmax theorem

Theorem

max min ' Ay = min max z’ Ay
ye P, xeP,, ze P, ye P,

23



Minmax theorem

Theorem

max min ' Ay = min max z’ Ay
ye P, xeP,, ze P, ye P,

Proof
The optimal =™ is the solution of

minimize t
subjectto A'z <t1
11 =1

xr > 0

23



Minmax theorem

Theorem

max min ' Ay = min max z’ Ay

ye P, xeP,,

Proof
The optimal =™ is the solution of

minimize t
subjectto A'z <t1
11 =1

xr > 0

ze P, ye P,

The optimal y* is the solution of
maximize w
subjectto Ay > wl
11y =1
y >0

23



Minmax theorem

Theorem
max min ' Ay = min max z’ Ay
ye P, xeP,, ze P, ye P,
Proof
The optimal =* is the solution of The optimal y* is the solution of
minimize t maximize w
subjectto A'lz <t1 subjectto Ay > wl
11 =1 11y =1
x>0 y > 0

The two LPs are duals and by strong duality the equality follows. [l 23



Nash equilibrium

Theorem

max min ' Ay = min max z’ Ay
ye P, xeP,, ze P, ye P,

Consequence

The pair of mixed strategies (z*, y*) attains the Nash equilibrium of the two-
person matrix game, i.e.,

vl Ay* > ot Ay* > o*T Ay, Vax € P, Yy € P,

24



SRV
Optimal deterministic strategies

minmax A;; =3 > —2 = maxmin A;;
? 9 9 1

25



42 0 -3
A=|-2 —4 -3 3
-2 -3 4 1

Optimal deterministic strategies

minmax A4;; = 3 > —2 = maxmin 4,
? 9 9 1

Optimal mixed strategies
r* = (0.37,0.33,0.3), y* = (0.4,0,0.13,0.47)

Expected payoff
o Ayt = 0.2



Farkas lemma



Feasibility of polyhedra

P={x|Ax=0b, x>0} @

27



Feasibility of polyhedra

P={x|Ax=0b, x>0}

How to show that P is feasible?
Easy: we just need to provide an x € P, I.e., a certificate

27



Feasibility of polyhedra

P={x|Ax=0b, x>0}

*

How to show that P is feasible?
Easy: we just need to provide an x € P, I.e., a certificate

How to show that P is infeasible?

27



Farkas lemma

Theorem
Given A and b, exactly one of the following statements is true:

1. There existsan x with Ax = b, x > 0

2. There exists a y with ATy > 0, b''y < 0

28



Farkas lemma

Geometric interpretation

1. First alternative
There exists an x with Az = b6, x > 0

n
b:ZZEfLAZ, CCZ'>O,Z.:1,...,TL
1=1

b IS In the cone generated by the
columns of A

29



Farkas lemma

Geometric interpretation

1. First alternative
There exists an x with Az = b6, x > 0

n
b:ZZEfLAZ, CCZ'>O,Z.:1,...,TL
1=1

b IS In the cone generated by the
columns of A

2. Second alternative
There exists a y with A%y > 0, b1y < 0

ylA; >0, i=1,...,m, ylb <0

The hyperplane y! z = 0
separates b from Aq,..., A,

29



Farkas lemma

There exists x with Az = b, > 0 OR There exists y with A7y > 0, bly < 0

Proof
CAL™®
1 and 2 cannot be both true (easy) SMPRY

/ ™ Bovi)

)
xzwandyTAzo — yTb:yTA&EO
/

30



Farkas lemma
There exists = with Az =b, = > 0 OR There exists y with ATy >0, b'y < 0

Proof
1 and 2 cannot be both false (duality)

Primal Dual
minimize 0
subjectto Az =0

r > 0

maximize —bly
subjectto Aly >0

31



Farkas lemma
There exists = with Az =b, = > 0 OR There exists y with ATy >0, b'y < 0

Proof
1 and 2 cannot be both false (duality)

Primal Dual
minimize 0
subjectto Az =0

r > 0

maximize —bly
subjectto Aly >0

T Strong duality holds

y = 0 always feasible d* # —oco, p"=d"

31



Farkas lemma
There exists = with Az =b, = > 0 OR There exists y with ATy >0, b'y < 0

roof
1 and 2 cannot be both false (duality)

Primal Dual
minimize 0
subjectto Az =0

r > 0

maximize —b'y
subjectto Aly >0

Alternative 1: primal feasible p* = d* = 0

b1y > 0 for all y such that A*y > 0
32



Farkas lemma
There exists = with Az =b, = > 0 OR There exists y with ATy >0, b'y < 0

Proof ‘%
1 and 2 cannot be both false (duality)

Primal Dual \
_ YW
minimize 0 W I &l

subjectto Az =0

maximize (—b'y

subjectto ATy > 0 904
xr > 0 AQo &ﬂ
AO 00900
Alternative 2: primal infeasible p* = d* = 0

2 NMEGATURS

There exists y such that Ay > 0 an@ -




Farkas lemma
There exists = with Az =b, = > 0 OR There exists y with ATy >0, b'y < 0

Proof
1 and 2 cannot be both false (duality)

Primal Dual
minimize 0

| maximize —bly
subjectto Az =0

subjectto Aly >0

r > 0
Alternative 2: primal infeasible p* = d* = +o¢
y IS an
There exists y such that Ay > 0and b'y < 0 infeasibility

certificate >3



Farkas lemma

Many variations

There exists x with Ax =b, x > 0
OR

There exists y with A7y > 0, bl'y < 0

There exists x with Ax < b, x > 0

OR
There exists y with A7y >0, bly <0, y > 0

There exists  with Ax < b

OR
There exists y with A7y =0, bly <0, y > 0

34



Complementary slackness



Optimality conditions
Primal
minimize ¢!z
subjectto Az <b

Dual
maximize —bly
subjectto A'y+c=0

y >0

36



Optimality conditions

Primal Dual
minimize ¢’z maximize —b"y
subjectto  Ax < b subjectto A’y +c=0
y > 0

r and y are primal and dual optimal if and only if
- x Is primal feasible: Ax < b

- ¢ is dual feasible: A"y +c=0and y > 0

- The duality gap is zero: ¢!z +bly =0

36



Optimality conditions

Primal Dual
minimize ¢’z maximize —b"y
subjectto  Ax < b subjectto A’y +c=0
y > 0

r and y are primal and dual optimal if and only if
- x Is primal feasible: Ax < b

- ¢ is dual feasible: A"y +c=0and y > 0

- The duality gap is zero: ¢!z +bly =0

Can we relate x and y (not only the objective)?

36



Complementary slackness

Primal Dual
minimize ¢’z maximize —b"y
subjectto  Ax < b subjectto A’y +c=0
y > 0

Theorem
Primal,dual feasible x, y are optimal if and only if

yi(lbj —a; ) =0, i=1,...,m
l.e., at optimum, b — Az and y have a complementary sparsity pattern:

Yy, >0 = CLTZE:bZ

(/

CL?ZL‘<bi = y; = 0

37



Complementary slackness

Primal Dual
[ " " [ " T
minimize L'z maximize —b"y )

subjectto Az < b &/ subjectto A"y +c=0 - fc: _ Avj
Oy > 0
Proof

The duality gap at primalfeasible x and dual feasible y can be written as

crx+by=(—A"y) ' z+by=(0b-Ax) y = Z yi(b; —ai ) =0

38



Complementary slackness

Primal Dual
minimize ¢’z maximize —b"y
subjectto  Ax < b subjectto A’y +c=0
y > 0

Proof
The duality gap at primal feasible x and dual feasible y can be written as

crx4+by=(—Ay) ' x+by=(b—Az)' y = Z yi(b; —a; ) =0
i=1

Since all the elements of the sum are nonnegative, they must all be 0

38



Complementary slackness

Primal Dual
minimize ¢’z maximize —b"y
subjectto  Ax < b subjectto A’y +c=0
y > 0

Proof
The duality gap at primal feasible x and dual feasible y can be written as

crx4+by=(—Ay) ' x+by=(b—Az)' y = Z yi(b; —a; ) =0
i=1

Since all the elements of the sum are nonnegative, they must all be 0

For feasible r and y complementary slackness = zero duality gap

38



Example

minimize  —4x1 — 5x-
1 0"
. 2 1
subject to
0 -1
1 2

Let’s show that feasible x = (1, 1) is optimal

VA
W O W O

39



Example

minimize

subject to

—4x1 — dDxo
—1 0

2 1

0 -1
1 2

Let’s show that feasible x = (1, 1) is optimal

o ( ]

_ 0 %rngg
< ’ V2% 83
5132_ 0 3\)

_3_

Second and fourth constraints are activeat t —— vy = (0, y2,0, y4)

Aty = —c

—

4
O

and Y2 Z 07 Y4 Z 0

39



Example

minimize

subject to

—4x1 — dDxo
—1 0
2 1
0 -1
1 2

Let’s show that feasible x = (1, 1) is optimal

VA
W O W O

Second and fourth constraints are activeat t —— vy = (0, y2,0, y4)

2 1| [

Aly=— =
_1 2_ Ya

4
O

and

yQZov

yqs = 0

y = (0, 1,0, 2) satisfies these conditions and proves that z is optimal



Example

minimize

subject to

—4x1 — dDxo
—1 0
2 1
0 -1
1 2

Let’s show that feasible x = (1, 1) is optimal

VA
W O W O

Second and fourth constraints are activeat t —— vy = (0, y2,0, y4)

2 1| [

Aly=— =
_1 2_ Ya

4
O

and

yQZov

yqs = 0

y = (0, 1,0, 2) satisfies these conditions and proves that z is optimal

Complementary slackness is useful to recover y* from z*



Geometric interpretation

Example in R?

Two active constraints at optimum: a

1w

a1

*:bb

ai

*

40



Geometric interpretation

Example in R? “,  —c

Two active constraints at optimum: aipaz* = by, agx* = by

Optimal dual solution y satisfies:
ATy_I_C:Ov y > 0, yZ:OfOrZ#{l,Q}

In other words, |—c = a1y1 + asys With y1,y2 > 0
40



KKT Conditions



Lagrangian and duality

Primal
minimize clx
subjectto Ax <9

Dual
maximize —bly
subjectto Aly+c=0
y >0

42



Lagrangian and duality

Primal
minimize clx
subjectto Ax <9

Dual function
g(y) = minimize (¢' = + y' (Az — b))

— —bly+ minimize (c+ ATy)T T

B —bly ife+Aty=0
| =00 otherwise

Dual
maximize —bly
subjectto Aly+c=0
y >0

42



Lagrangian and duality

Primal Dual
minimize ¢’z maximize —b"y
subjectto Az < b subjectto A'y+c¢=0
y > 0
Dual function Lagrangian
g(y) = minimize (¢' = + y' (Az — b)) L(z,y) =c =z +y"' (Az — b)

— —bly+ minimize (c+ ATy)T T

B —bly ife+Aty=0
| =00 otherwise



Lagrangian and duality

Primal Dual
minimize ¢’z maximize —b"y
subjectto Az < b subjectto A'y+c¢=0
y > 0
Dual function Lagrangian
g(y) = minimize (¢' = + y' (Az — b)) L(z,y) =c =z +y"' (Az — b)

— —bly+ minimize (c+ ATy)T T

B bty ifet+Aly=0 ———  V,L(z,y)=c+ A"y =0
|- otherwise



KRarush-Kuhn-Tucker conditions

Optimality conditions for linear optimization

Primal Dual
minimize ¢!z maximize —b'y
subjectto Az < b subjectto Aly+c=0
y >0
Primal feasibility Ax < b
Dual feasibility Vol(z,y) =A'y+c=0 and y >0

Complementary slackness yi(Ar —0); =0, i=1,...,m



KRarush-Kuhn-Tucker conditions

Solving linear optimization problems

Primal Dual
minimize ¢!z maximize —b'y
subjectto Az < b subjectto Aly+c=0

y 20

We can solve our optimization problem by solving a system of equations
Vol(z,y) = A"y +c=0
b— Ax > 0
y >0
y' (b— Az) =0

44



Linear optimization duality

Today, we learned to:

* Interpret linear optimization duality using game theory

* Prove Farkas lemma using duality

 Geometrically link primal and dual solutions with complementary slackness

 Derive KKT optimality conditions

45
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Next lecture

e Sensitivity analysis
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