ORF307 – Optimization

12. The simplex method implementation

Ed Forum

- Final exam time window: May 12 May 17. 24hours total take-home time.
- Midterm grades this week.
- Lecture questions:
 - I was hoping that in the next lecture we could review the two steps to computing the reduced cost vector on slide 22.
 - Towards the end of the lecture, we learned that in the case of finite convergence, the simplex method terminates after a finite number of iterations. How costly (in flops) is this algorithm, and why?

Recap

Cost improvement

$$c^T(x + \theta d) - c^T x = \theta c^T d$$

Cost improvement

$$c^T(x+\theta d)-c^Tx=\theta c^Td$$
 New cost

Cost improvement

min $C^{T}x$ t. Ax = 5

Cost improvement

$$c^T(x+\theta d)-c^Tx=\theta c^Td$$
 New cost Old cost

We call \bar{c}_j the **reduced cost** of (introducing) variable x_j in the basis

$$\bar{c}_j = c^T d = \sum_{j=1}^n c_j d_j = c_j + c_B^T d_B = c_j - c_B^T A_B^{-1} A_j$$

Cost improvement

We call \bar{c}_j the **reduced cost** of (introducing) variable x_j in the basis

$$\bar{c}_j = c^T d = \sum_{i=1}^n c_i d_j = c_i + c_B^T d_B = c_i - c_B^T A_B^{-1} A_j$$

- $\bar{c}_j > 0$: adding x_j will increase the objective (bad)
- $\bar{c}_i < 0$: adding x_i will decrease the objective (good)

Reduced costs

$$\bar{c}_j = c_j - c_B^T A_B^{-1} A_j$$

Full vector in one shot?

$$\bar{c} = (\bar{c}_1, \dots, \bar{c}_n)$$

Reduced costs

$$\bar{c}_j = c_j - c_B^T A_B^{-1} A_j$$

Isolate basis B-related components p (they are the same across j)

$$\bar{c}_j = c_j - A_j^T (A_B^{-1})^T c_B = c_j - A_j^T p$$

Full vector in one shot?

$$\bar{c} = (\bar{c}_1, \dots, \bar{c}_n)$$

Reduced costs

$$\bar{c}_j = c_j - c_B^T A_B^{-1} A_j$$

Isolate basis B-related components p (they are the same across j)

$$\bar{c}_j = c_j - A_j^T (A_B^{-1})^T c_B = c_j - A_j^T p$$

Full vector in one shot?

$$\bar{c} = (\bar{c}_1, \dots, \bar{c}_n)$$

Obtain p by solving linear system

$$p = (A_B^{-1})^T c_B \quad \Rightarrow \quad A_B^T p = c_B$$

Note:
$$(M^{-1})^T = (M^T)^{-1}$$
 for any square invertible M

Reduced costs

$$\bar{c}_j = c_j - c_B^T A_B^{-1} A_j$$

Isolate basis B-related components p (they are the same across j)

$$\bar{c}_j = c_j - A_j^T (A_B^{-1})^T c_B = c_j - A_j^T p$$

Full vector in one shot?

$$\bar{c} = (\bar{c}_1, \dots, \bar{c}_n)$$

Obtain p by solving linear system

$$p = (A_B^{-1})^T c_B \quad \Rightarrow \quad A_B^T p = c_B$$

Note: $(M^{-1})^T = (M^T)^{-1}$ for any square invertible M

Computing reduced cost vector

1. Solve
$$A_B^T p = c_B$$

2.
$$\bar{c} = c - A^T p$$

What happens if some $\bar{c}_j <$ 0? We can decrease the cost by bringing x_j into the basis

What happens if some $\bar{c}_j < 0$?

We can decrease the cost by bringing x_i into the basis

How far can we go?

$$\theta^* = \max\{\theta \mid \theta \ge 0 \text{ and } x + \theta d \ge 0\}$$

d is the j-th basic direction

Stepsize

What happens if some $\bar{c}_j < 0$?

We can decrease the cost by bringing x_j into the basis

How far can we go?

$$\theta^* = \max\{\theta \mid \theta \ge 0 \text{ and } x + \theta d \ge 0\}$$

d is the j-th basic direction

Unbounded

If $d \geq 0$, then $\theta^* = \infty$. The LP is unbounded.

Stepsize

What happens if some $\bar{c}_i < 0$?

We can decrease the cost by bringing x_j into the basis

YJ YEB

How far can we go?

$$\theta^* = \max\{\theta \mid \theta \ge 0 \text{ and } x + \theta d \ge 0\}$$

d is the j-th basic direction

Unbounded

If $d \geq 0$, then $\theta^* = \infty$. The LP is unbounded.

Bounded

If
$$d_i < 0$$
 for some i , then

$$\theta^* = \min_{\{i | d_i < 0\}} \left(-\frac{x_i}{d_i} \right) = \min_{\{i \in B | d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$$

(Since
$$d_i \geq 0, i \notin B$$
)

Next feasible solution

$$x + \theta^{\star} d$$

Next feasible solution

$$x + \theta^* d$$

Let
$$B(\ell)\in\{B(1),\dots,B(m)\}$$
 be the index such that $\theta^\star=-\frac{x_{B(\ell)}}{d_{B(\ell)}}.$ Then, $x_{B(\ell)}+\theta^\star d_{B(\ell)}=0$

Next feasible solution

$$x + \theta^* d$$

Let
$$B(\ell)\in\{B(1),\dots,B(m)\}$$
 be the index such that $\theta^\star=-\frac{x_{B(\ell)}}{d_{B(\ell)}}.$ Then, $x_{B(\ell)}+\theta^\star d_{B(\ell)}=0$

New solution

- $x_{B(\ell)}$ becomes 0 (exits)
- x_i becomes θ^* (enters)

Next feasible solution

$$x + \theta^{\star} d$$

Let
$$B(\ell)\in\{B(1),\dots,B(m)\}$$
 be the index such that $\theta^\star=-\frac{x_{B(\ell)}}{d_{B(\ell)}}.$ Then, $x_{B(\ell)}+\theta^\star d_{B(\ell)}=0$

New solution

- $x_{B(\ell)}$ becomes 0 (exits)
- x_j becomes θ^* (enters)

New basis

$$A_{\bar{B}} = \begin{bmatrix} A_{B(1)} & \dots & A_{B(\ell-1)} & A_j & A_{B(\ell+1)} & \dots & A_{B(m)} \end{bmatrix}$$

An iteration of the simplex method

Initialization

- a basic feasible solution \boldsymbol{x}
- a basis matrix $A_B = \begin{bmatrix} A_{B(1)} & \dots, A_{B(m)} \end{bmatrix}$

Iteration steps

- 1. Compute the reduced costs \bar{c}
 - Solve $A_B^T p = c_B$
 - $\bar{c} = c A^T p$
- 2. If $\bar{c} \geq 0$, x optimal. break
- 3. Choose j such that $\bar{c}_j < 0$

- 4. Compute search direction d with $d_j=1$ and $A_Bd_B=-A_j$
- 5. If $d_B \ge 0$, the problem is **unbounded** and the optimal value is $-\infty$. **break**

x,00 >0

- 6. Compute step length $\theta^{\star} = \min_{\{i \in B \mid d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$
- 7. Define y such that $y = x + \theta^* d$
- 8. Get new basis \bar{B} (i exits and j enters)

Example

$$A = \begin{bmatrix} \Lambda & \Lambda \Lambda \\ A & 1 \end{bmatrix}$$

$$AB = 1$$

$$P = \{x \mid x_1 + x_2 + x_3 = 2, \quad x \ge 0\}$$

$$x = (2, 0, 0)$$
 $B = \{1\}$

Basic index
$$j=3$$
 \longrightarrow $d=(-1,0,1)$ $d_j=1$ $A_Bd_B=-A_j$ \Rightarrow $d_B=-1$

Example

$$P = \{x \mid x_1 + x_2 + x_3 = 2, \quad x \ge 0\}$$

$$x = (2, 0, 0)$$
 $B = \{1\}$

Basic index
$$j=3 \longrightarrow d=(-1,0,1)$$

$$d_j=1$$

$$A_B d_B = -A_j \quad \Rightarrow \quad d_B = -1$$

Stepsize
$$\theta^{\star} = -\frac{x_1}{d_1} = 2$$

Example

$$P = \{x \mid x_1 + x_2 + x_3 = 2, \quad x \ge 0\}$$

$$x = (2, 0, 0)$$
 $B = \{1\}$

Basic index
$$j=3$$
 \longrightarrow $d=(-1,0,1)$ $d_j=1$

$$A_B d_B = -A_j \quad \Rightarrow \quad d_B = -1$$

Stepsize
$$\theta^{\star} = -\frac{x_1}{d_1} = 2$$

New solution
$$y=x+\theta^{\star}d=(0,0,2)$$
 $\bar{B}=\{3\}$

Assume that

- $P = \{x \mid Ax = b, x \ge 0\}$ not empty
- Every basic feasible solution non degenerate

Assume that

- $P = \{x \mid Ax = b, x \ge 0\}$ not empty
- Every basic feasible solution non degenerate

Then

- The simplex method terminates after a finite number of iterations
- At termination we either have one of the following
 - an optimal basis \boldsymbol{B}
 - a direction d such that $Ad=0,\ d\geq 0,\ c^Td<0$ and the optimal cost is $-\infty$

Proof sketch

At each iteration the algorithm improves

- by a **positive** amount θ^*
- along the direction d such that $c^T d < 0$

Proof sketch

At each iteration the algorithm improves

- by a **positive** amount θ^*
- along the direction d such that $c^T d < 0$

Therefore

- The cost strictly decreases
- No basic feasible solution can be visited twice

Proof sketch

At each iteration the algorithm improves

- by a **positive** amount θ^*
- along the direction d such that $c^T d < 0$

Therefore

- The cost strictly decreases
- No basic feasible solution can be visited twice

Since there is a **finite number of basic feasible solutions**The algorithm **must eventually terminate**

Today's lecture

The simplex method implementation

- Finding an initial basic feasible solution
- Degeneracy
- Full simplex example
- Efficiency

Find an initial point

Initial basic feasible solution

minimize
$$c^Tx$$
 subject to $Ax = b$
$$x \ge 0$$

How do we get an initial basic feasible solution x and a basis B?

Does it exist?

```
\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}
```

Auxiliary problem

minimize
$$c^Tx$$
 minimize $\mathbf{1}^Ty$ subject to $Ax = b$ subject to $Ax + y = b$ $x \ge 0$ $x \ge 0, y \ge 0$

Assumption $b \ge 0$ w.l.o.g. (if not multiply constraint by -1) **Trivial** basic feasible solution: x = 0, y = b

Finding an initial basic feasible solution

minimize c^Tx minimize 1^Ty violations subject to Ax = b subject to Ax + y = b $x \ge 0, y \ge 0$

Assumption $b \ge 0$ w.l.o.g. (if not multiply constraint by -1) **Trivial** basic feasible solution: x = 0, y = b

Possible outcomes

- Feasible problem (cost = 0): $y^* = 0$ and x^* is a basic feasible solution
- Infeasible problem (cost > 0): $y^* > 0$ are the violations

Two-phase simplex method

Phase I

- 1. Construct auxiliary problem such that $b \ge 0$
- 2. Solve auxiliary problem using simplex method starting from (x, y) = (0, b)
- 3. If the optimal value is greater than 0, problem infeasible. break.

Phase II

- 1. Recover original problem (drop variables y and restore original cost)
- 2. Solve original problem starting from the solution x and its basis B.

Degeneracy

Inequality form polyhedron

$$P = \{x \mid Ax \le b\}$$

A solution y is degenerate if $|\mathcal{I}(y)| > n$

Standard form polyhedron

Given a basis matrix
$$A_B = \begin{bmatrix} A_{B(1)} & \dots & A_{B(m)} \end{bmatrix}$$

we have basic feasible solution x:

- $A_B x_B = b$
- $x_i = 0, \ \forall i \neq B(1), \dots, B(m)$

Standard form polyhedron

Given a basis matrix $A_B = \begin{bmatrix} A_{B(1)} & \dots & A_{B(m)} \end{bmatrix}$ we have basic feasible solution x:

- $A_B x_B = b$
- $x_i = 0, \ \forall i \neq B(1), \dots, B(m)$

If some of the $x_B=0$, then it is a degenerate solution

Standard form polyhedron

Given a basis matrix $A_B = \begin{bmatrix} A_{B(1)} & \dots & A_{B(m)} \end{bmatrix}$

we have basic feasible solution x:

•
$$A_B x_B = b$$

•
$$x_i = 0, \ \forall i \neq B(1), \dots, B(m)$$

$$P = \{x \mid Ax = b, \ x \ge 0\}$$

it is a degenerate solution

If some of the $x_B = 0$, then

Degenerate basic feasible solutions Example

$$x_1 + x_2 + x_3 = 1$$

$$-x_1 + x_2 - x_3 = 1$$

$$x_1, x_2, x_3 \ge 0$$

Example

$$x_1 + x_2 + x_3 = 1$$

$$-x_1 + x_2 - x_3 = 1$$

$$x_1, x_2, x_3 \ge 0$$

Degenerate solutions

Basis
$$B = \{1, 2\}$$
 \longrightarrow $x = (0, 1, 0)$ $\xrightarrow{\times (4 \times 2 \times 1)}$

Degenerate basic feasible solutions Example

$$x_1 + x_2 + x_3 = 1$$

 $x_1 + x_2 - x_3 = 1$
 $x_1, x_2, x_3 \ge 0$

Degenerate solutions

Basis
$$B=\{1,2\}$$
 \longrightarrow $x=(0,1,0)$ Basis $B=\{2,3\}$ \longrightarrow $y=(0,1,0)$

Cycling

Stepsize

6. Compute step length
$$\theta^\star = \min_{\{i \in B | d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$$

CyclingStepsize

6. Compute step length $\theta^\star = \min_{\{i \in B \mid d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$

If
$$i \in B$$
, $d_i < 0$ and $x_i = 0$ (degenerate)
$$\theta^{\star} = 0$$

Cycling

Stepsize

6. Compute step length $\theta^\star = \min_{\{i \in B \mid d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$

If
$$i \in B$$
, $d_i < 0$ and $x_i = 0$ (degenerate)
$$\theta^{\star} = 0$$

Therefore
$$y=x+\theta^{\star}x=x$$
 and $B\neq \bar{B}$

Same solution and cost **Different** basis

CyclingStepsize

6. Compute step length $\theta^\star = \min_{\{i \in B \mid d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$

If
$$i \in B$$
, $d_i < 0$ and $x_i = 0$ (degenerate)
$$\theta^{\star} = 0$$

Therefore
$$y=x+\theta^{\star}x=x$$
 and $B\neq\bar{B}$

Same solution and cost Different basis

Finite termination no longer guaranteed!

How can we fix it?

Cycling

Stepsize

6. Compute step length $\theta^\star = \min_{\{i \in B | d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$

If
$$i \in B$$
, $d_i < 0$ and $x_i = 0$ (degenerate)
$$\theta^{\star} = 0$$

Therefore
$$y=x+\theta^{\star}x=x$$
 and $B\neq \bar{B}$

Same solution and cost **Different** basis

Finite termination no longer guaranteed!

How can we fix it?

Pivoting rules

Choose the index entering the basis

Simplex iterations

3. Choose j such that $\bar{c}_j < 0$

Choose the index entering the basis

Simplex iterations

3. Choose j such that $\bar{c}_j < 0$ ——— Which j?

Choose the index entering the basis

Simplex iterations

3. Choose j such that $\bar{c}_i < 0$ ——— Which j?

Possible rules

- Smallest subscript: smallest j such that $\bar{c}_j < 0$
- Most negative: choose j with the most negative \bar{c}_j
- Largest cost decrement: choose j with the largest $\theta^{\star}|\bar{c}_j|$

Choose index exiting the basis

Simplex iterations

6. Compute step length
$$\theta^* = \min_{\{i \in B | d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$$

Choose index exiting the basis

Simplex iterations

6. Compute step length
$$\theta^* = \min_{\{i \in B \mid d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$$

We can have more than one i for which $x_i = 0$ (next solution is degenerate)

Which i?

Choose index exiting the basis

Simplex iterations

We can have more than one i for which $x_i = 0$ (next solution is degenerate)

Which i?

Smallest index rule

Smallest
$$i$$
 such that $\theta^{\star} = -\frac{x_i}{d_i}$

Bland's rule to avoid cycles

Theorem

If we use the **smallest index rule** for choosing both the j entering the basis and the i leaving the basis, then **no cycling will occur**.

Bland's rule to avoid cycles

Theorem

If we use the **smallest index rule** for choosing both the j entering the basis and the i leaving the basis, then **no cycling will occur**.

Proof idea [Vanderbei, Ch 3, Sec 4][Bertsimas and Tsitsiklis, Sec 3.4]

- Assume Bland's rule is applied and there exists a cycle with different bases.
- Obtain contradiction.

Example

Inequality form

Example

minimize
$$-10x_1 - 12x_2 - 12x_3$$
 subject to $x_1 + 2x_2 + 2x_3 \le 20$ $2x_1 + x_2 + x_3 \le 20$ $2x_1 + 2x_2 + x_3 \le 20$

 $x_1, x_2, x_3 \ge 0$

Example

Inequality form

minimize
$$-10x_1-12x_2-12x_3$$
 subject to $x_1+2x_2+2x_3\leq 20$ $2x_1+x_2+x_3\leq 20$ $2x_1+2x_2+x_3\leq 20$ $x_1,x_2,x_3\geq 0$

Standard form

minimize
$$-10x_1 - 12x_2 - 12x_3$$

subject to
$$\begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 20 \\ 20 \\ 20 \end{bmatrix}$$

Example Start

minimize subject to Ax = b $x \ge 0$

Initialize
$$x = (0, 0, 0, 20, 20, 20) \qquad A_B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$c = (-10, -12, -12, 0, 0, 0)$$
 $A = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$

$$b = (20, 20, 20)$$

Current point

$$x = (0, 0, 0, 20, 20, 20)$$

 $c^T x = 0$

Basis: {4, 5, 6}

$$A_B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = egin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \ 2 & 1 & 2 & 0 & 1 & 0 \ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$
 $b = (20, 20, 20)$

$$b = (20, 20, 20)$$

Current point

$$x = (0, 0, 0, 20, 20, 20)$$

 $c^T x = 0$

Basis:
$$\{4, 5, 6\}$$

$$A_B = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$$

Reduced costs
$$\bar{c} = c$$

Solve
$$A_{B,T}^T = c_B \implies p = c_B = 0$$

$$\bar{c} = c - A^T p = c$$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = egin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \ 2 & 1 & 2 & 0 & 1 & 0 \ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

Current point

$$x = (0, 0, 0, 20, 20, 20)$$

 $c^T x = 0$

Basis: {4, 5, 6}

$$A_B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Reduced costs $\bar{c} = c$

Solve
$$A_B^T p = c_B \Rightarrow p = c_B = 0$$

 $\bar{c} = c - A^T p = c$

Direction
$$d = (1, 0, 0, -1, -2, -2), \quad j = 1$$

Solve $A_B d_B = -A_j \implies d_B = (-1, -2, -2)$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = egin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \ 2 & 1 & 2 & 0 & 1 & 0 \ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

Current point

$$x = (0, 0, 0, 20, 20, 20)$$

 $c^T x = 0$

Basis: $\{4, 5, 6\}$

$$A_B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Reduced costs $\bar{c}=c$

Solve
$$A_B^T p = c_B \Rightarrow p = c_B = 0$$

 $\bar{c} = c - A^T p = c$

Direction
$$d = (1, 0, 0, -1, -2, -2), \quad j = 1$$

Solve $A_B d_B = -A_j \implies d_B = (-1, -2, -2)$

Step
$$\theta^{\star} = 10, \quad i = 5$$

$$\theta^{\star} = \min_{\{i \mid d_i < 0\}} (-x_i/d_i) = \min\{20, 10, 10\}$$
New $x \leftarrow x + \theta^{\star}d = (10, 0, 0, 10, 0, 0)$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = egin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \ 2 & 1 & 2 & 0 & 1 & 0 \ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

Current point

$$x = (10, 0, 0, 10, 0, 0)$$

 $c^T x = -100$

Basis: {4, 1, 6}

$$A_B = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 2 & 1 \end{bmatrix}$$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = egin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \ 2 & 1 & 2 & 0 & 1 & 0 \ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

Current point

$$x = (10, 0, 0, 10, 0, 0)$$

 $c^T x = -100$

Basis: $\{4, 1, 6\}$

$$A_B = egin{bmatrix} 1 & 1 & 0 \ 0 & 2 & 0 \ 0 & 2 & 1 \end{bmatrix}$$

Reduced costs
$$\bar{c} = (0, -7, -2, 0, 5, 0)$$

Solve $A_B^T p = c_B \Rightarrow p = (0, -5, 0)$
 $\bar{c} = c - A^T p = (0, -7, -2, 0, 5, 0)$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = egin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \ 2 & 1 & 2 & 0 & 1 & 0 \ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

Current point

$$x = (10, 0, 0, 10, 0, 0)$$

 $c^T x = -100$

Basis: $\{4, 1, 6\}$

$$A_B = egin{bmatrix} 1 & 1 & 0 \ 0 & 2 & 0 \ 0 & 2 & 1 \end{bmatrix}$$

Reduced costs $\bar{c} = (0, -7, -2, 0, 5, 0)$ Solve $A_B^T p = c_B \implies p = (0, -5, 0)$ $\bar{c} = c - A^T p = (0, -7, -2, 0, 5, 0)$

Direction $d = (-0.5, 1, 0, -1.5, 0, -1), \quad j = 2$ Solve $A_B d_B = -A_j \quad \Rightarrow \quad d_B = (-1.5, -0.5, -1)$

$$c = (-10, -12, -12, 0, 0, 0)$$
 $A = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$

$$b = (20, 20, 20)$$

Current point

$$x = (10, 0, 0, 10, 0, 0)$$
 $c^T x = -100$

Basis: {4, 1, 6}

$$A_B = egin{bmatrix} 1 & 1 & 0 \ 0 & 2 & 0 \ 0 & 2 & 1 \end{bmatrix}$$

Reduced costs
$$\bar{c} = (0, -7, -2, 0, 5, 0)$$

Solve
$$A_B^T p = c_B \quad \Rightarrow \quad p = (0, -5, 0)$$

$$\bar{c} = c - A^T p = (0, -7, -2, 0, 5, 0)$$

Direction d = (-0.5, 1, 0, -1.5, 0, -1), j = 2

Solve
$$A_B d_B = -A_j \implies d_B = (-1.5, -0.5, -1)$$

Step
$$\theta^* = 0$$
, $i = 6$

$$\theta^{\star} = \min_{\{i \mid d_i < 0\}} (-x_i/d_i) = \min\{6.66, 20, 0\}$$
 New $x \leftarrow x + \theta^{\star}d = (10, 0, 0, 10, 0, 0)$

New
$$x \leftarrow x + \theta^* d = (10, 0, 0, 10, 0, 0)$$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = egin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \ 2 & 1 & 2 & 0 & 1 & 0 \ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

Current point

$$x = (10, 0, 0, 10, 0, 0)$$

 $c^T x = -100$

Basis: $\{4, 1, 2\}$

$$A_B = egin{bmatrix} 1 & 1 & 2 \ 0 & 2 & 1 \ 0 & 2 & 2 \end{bmatrix}$$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = egin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \ 2 & 1 & 2 & 0 & 1 & 0 \ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

Current point

$$x = (10, 0, 0, 10, 0, 0)$$

 $c^T x = -100$

Basis: $\{4, 1, 2\}$

$$A_B = egin{bmatrix} 1 & 1 & 2 \ 0 & 2 & 1 \ 0 & 2 & 2 \end{bmatrix}$$

Reduced costs $\bar{c} = (0, 0, -9, 0, -2, 7)$ Solve $A_B^T p = c_B \Rightarrow p = (0, 2, -7)$ $\bar{c} = c - A^T p = (0, 0, -9, 0, -2, 7)$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = egin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \ 2 & 1 & 2 & 0 & 1 & 0 \ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

Current point

$$x = (10, 0, 0, 10, 0, 0)$$

 $c^T x = -100$

Basis: $\{4, 1, 2\}$

$$A_B = egin{bmatrix} 1 & 1 & 2 \ 0 & 2 & 1 \ 0 & 2 & 2 \end{bmatrix}$$

Reduced costs $\bar{c} = (0, 0, -9, 0, -2, 7)$

Solve
$$A_B^T p = c_B \Rightarrow p = (0, 2, -7)$$

 $\bar{c} = c - A^T p = (0, 0, -9, 0, -2, 7)$

Direction d = (-1.5, 1, 1, -2.5, 0, 0), j = 3Solve $A_B d_B = -A_j \Rightarrow d_B = (-2.5, -1.5, 1)$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = egin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \ 2 & 1 & 2 & 0 & 1 & 0 \ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

Current point

$$x = (10, 0, 0, 10, 0, 0)$$

 $c^T x = -100$

Basis: $\{4, 1, 2\}$

$$A_B = egin{bmatrix} 1 & 1 & 2 \ 0 & 2 & 1 \ 0 & 2 & 2 \end{bmatrix}$$

Reduced costs $\bar{c} = (0, 0, -9, 0, -2, 7)$

Solve
$$A_B^T p = c_B \quad \Rightarrow \quad p = (0, 2, -7)$$

$$\bar{c} = c - A^T p = (0, 0, -9, 0, -2, 7)$$

Direction d = (-1.5, 1, 1, -2.5, 0, 0), j = 3Solve $A_B d_B = -A_i \Rightarrow d_B = (-2.5, -1.5, 1)$

Step
$$\theta^{\star} = 4$$
, $i = 4$ $\theta^{\star} = \min_{\{i \mid d_i < 0\}} (-x_i/d_i) = \min\{4, 6.67\}$ New $x \leftarrow x + \theta^{\star}d = (4, 4, 4, 0, 0, 0)$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = egin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \ 2 & 1 & 2 & 0 & 1 & 0 \ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

Current point

$$x = (4, 4, 4, 0, 0, 0)$$

 $c^T x = -136$

Basis: {3, 1, 2}

$$A_B = egin{bmatrix} 2 & 1 & 2 \ 2 & 2 & 1 \ 1 & 2 & 2 \end{bmatrix}$$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = egin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \ 2 & 1 & 2 & 0 & 1 & 0 \ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

Current point

$$x = (4, 4, 4, 0, 0, 0)$$

 $c^T x = -136$

Basis: $\{3, 1, 2\}$

$$A_B = egin{bmatrix} 2 & 1 & 2 \ 2 & 2 & 1 \ 1 & 2 & 2 \end{bmatrix}$$

Reduced costs $\bar{c} = (0, 0, 0, 3.6, 1.6, 1.6)$ Solve $A_B^T p = c_B \Rightarrow p = (-3.6, -1.6, -1.6)$ $\bar{c} = c - A^T p = (0, 0, 0, 3.6, 1.6, 1.6)$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = egin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \ 2 & 1 & 2 & 0 & 1 & 0 \ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

Current point

$$x = (4, 4, 4, 0, 0, 0)$$

 $c^T x = -136$

Basis: $\{3, 1, 2\}$

$$A_B = egin{bmatrix} 2 & 1 & 2 \ 2 & 2 & 1 \ 1 & 2 & 2 \end{bmatrix}$$

Reduced costs $\bar{c} = (0, 0, 0, 3.6, 1.6, 1.6)$ Solve $A_B^T p = c_B \Rightarrow p = (-3.6, -1.6, -1.6)$ $\bar{c} = c - A^T p = (0, 0, 0, 3.6, 1.6, 1.6)$

$$\overline{c} \geq 0 \longrightarrow x^* = (4, 4, 4, 0, 0, 0)$$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$\begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \end{bmatrix}$$

$$A = egin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \ 2 & 1 & 2 & 0 & 1 & 0 \ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

Complexity

- 1. Compute the reduced costs \bar{c}
 - Solve $A_B^T p = c_B$
 - $\bar{c} = c A^T p$
- 2. If $\bar{c} \geq 0$, x optimal. break
- 3. Choose j such that $\bar{c}_j < 0$

- 4. Compute search direction d with $d_j = 1$ and $A_B d_B = -A_j$
- 5. If $d_B \ge 0$, the problem is **unbounded** and the optimal value is $-\infty$. **break**
- 6. Compute step length $\theta^{\star} = \min_{\{i \in B \mid d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$
- 7. Define y such that $y = x + \theta^* d$
- 8. Get new basis \bar{B} (i exits and j enters)

- 1. Compute the reduced costs \bar{c}
 - Solve $A_B^T p = c_B$
 - $\bar{c} = c A^T p$
- 2. If $\bar{c} \geq 0$, x optimal. break
- 3. Choose j such that $\bar{c}_i < 0$

- 4. Compute search direction d with $d_j = 1$ and $A_B d_B = -A_j$
- 5. If $d_B \ge 0$, the problem is **unbounded** and the optimal value is $-\infty$. **break**
- 6. Compute step length $\theta^{\star} = \min_{\{i \in B \mid d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$
- 7. Define y such that $y = x + \theta^* d$
- 8. Get new basis \bar{B} (i exits and j enters)

Very similar linear systems

$$A_B^T p = c_B$$
$$A_B d_B = -A_j$$

Very similar linear systems

$$LU$$
 factorization $(2/3)n^3$ flops

$$\begin{array}{c}
A_B^T p = c_B \\
A_B d_B = -A_j
\end{array}$$

$$A_B = PLU$$

Very similar linear systems

$$A_B^T p = c_B$$

$$A_B d_B = -A_j$$

LU factorization $(2/3)n^3$ flops

$$A_B = PLU$$
 \longrightarrow

Easy linear systems

 $4n^2$ flops

$$U^T L^T P^T p = c_B$$
$$PLU d_B = -A_j$$

Very similar linear systems

$$A_B^T p = c_B$$

$$A_B d_B = -A_j$$

LU factorization $(2/3)n^3$ flops

$$A_B = PLU$$
 \longrightarrow

Easy linear systems

 $4n^2$ flops

$$U^T L^T P^T p = c_B$$
$$PLU d_B = -A_j$$

Factorization is expensive

Do we need to recompute it at every iteration?

Index update

- j enters $(x_j$ becomes θ^*)
- $i = B(\ell)$ exists (x_i becomes 0)

Index update

- j enters $(x_j$ becomes θ^*)
- $i = B(\ell)$ exists (x_i becomes 0)

Basis matrix change

$$A_{\bar{B}} = A_B + (A_i - A_j)e_{\ell}^T$$

Index update

- j enters $(x_j$ becomes θ^*)
- $i = B(\ell)$ exists (x_i becomes 0)

Basis matrix change

$$A_{\bar{B}} = A_B + (A_i - A_j)e_{\ell}^T$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{array}{c} B = \{4, 1, 6\} & \rightarrow & \bar{B} = \{4, 1, 2\} \\ & \bullet & 2 \text{ enters} \\ & \bullet & 6 = B(3) \text{ exists} \end{array}$$

Example

$$B = \{4, 1, 6\} \rightarrow \bar{B} = \{4, 1, 2\}$$

Index update

- j enters $(x_j$ becomes θ^*)
- $i = B(\ell)$ exists (x_i becomes 0)

Basis matrix change

$$A_{\bar{B}} = A_B + (A_i - A_j)e_{\ell}^T$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{array}{c} B = \{4, 1, 6\} & \rightarrow & \bar{B} = \{4, 1, 2\} \\ & \bullet & 2 \text{ enters} \\ & \bullet & 6 = B(3) \text{ exists} \end{array}$$

Example

$$B = \{4, 1, 6\} \rightarrow \bar{B} = \{4, 1, 2\}$$

$$A_{B} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 2 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & 1 \\ 0 & 2 & 2 \end{bmatrix}$$

Smarter linear system solution

Basis matrix change

Matrix inversion lemma

(from homework 2)

$$A_{\bar{B}} = A_B + \overbrace{(A_i - A_j)}^v e_\ell^T \longrightarrow (A_B + v e_\ell^T)^{-1} = \left(I - \frac{1}{1 + e_\ell^T A_B^{-1} v} A_B^{-1} v e_\ell^T\right) A_B^{-1}$$

Smarter linear system solution

Basis matrix change

$$A_{\bar{B}} = A_B + (A_i - A_j) e_{\ell}^T$$

(from homework 2)

$$A_{\bar{B}} = A_B + \overbrace{(A_i - A_j)}^{\circ} e_{\ell}^T \longrightarrow (A_B + ve_{\ell}^T)^{-1} = \left(I - \frac{1}{1 + e_{\ell}^T A_B^{-1} v} A_B^{-1} v e_{\ell}^T\right) A_B^{-1}$$

Solve
$$A_{\bar{B}}d_{\bar{B}}=-A_{j}$$

- 1. Solve $A_B z^1 = e_\ell$ ($2n^2$ flops)
- 2. Solve $A_B z^2 = -A_i$ ($2n^2$ flops)
- 3. Solve $d_{ar{B}} = z^2 \frac{v^T z^2}{1 \perp v \cdot T \cdot 1} z^1$

Smarter linear system solution

Basis matrix change

Matrix inversion lemma

(from homework 2)

$$A_{\bar{B}} = A_B + \underbrace{(A_i - A_j)}^v e_{\ell}^T \longrightarrow (A_B + ve_{\ell}^T)^{-1} = \left(I - \frac{1}{1 + e_{\ell}^T A_B^{-1} v} A_B^{-1} v e_{\ell}^T\right) A_B^{-1}$$

Solve
$$A_{\bar{B}}d_{\bar{B}}=-A_{j}$$

- 1. Solve $A_B z^1 = e_\ell$ ($2n^2$ flops)
- 2. Solve $A_B z^2 = -A_j$ (2n² flops)
- 3. Solve $d_{ar{B}}=z^2-rac{v^Tz^2}{1+v^Tz^1}z^1$

Remarks

- Same complexity for $A_B^T p = c_B \ (4n^2 \ \text{flops})$
- k-th next iteration ($4kn^2$ flops, derive as exercise...)
- Once in a while (e.g., k=100), better to refactor A_B

- 1. Compute the reduced costs \bar{c}
 - Solve $A_B^T p = c_B$
 - $\bar{c} = c A^T p$
- 2. If $\bar{c} \geq 0$, x optimal. break
- 3. Choose j such that $\bar{c}_j < 0$

- 4. Compute search direction d with $d_j = 1$ and $A_B d_B = -A_j$
- 5. If $d_B \ge 0$, the problem is **unbounded** and the optimal value is $-\infty$. **break**
- 6. Compute step length $\theta^* = \min_{\{i \in B \mid d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$
- 7. Define y such that $y = x + \theta^* d$
- 8. Get new basis \bar{B} (i exits and j enters)

Bottleneck
Two linear systems

- 1. Compute the reduced costs \bar{c}
 - Solve $A_B^T p = c_B$
 - $\bar{c} = c A^T p$
- 2. If $\bar{c} \geq 0$, x optimal. break
- 3. Choose j such that $\bar{c}_j < 0$

- 4. Compute search direction d with $d_j = 1$ and $A_B d_B = -A_j$
- 5. If $d_B \ge 0$, the problem is **unbounded** and the optimal value is $-\infty$. **break**
- 6. Compute step length $\theta^* = \min_{\{i \in B | d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$
- 7. Define y such that $y = x + \theta^* d$
- 8. Get new basis \bar{B} (i exits and j enters)

Bottleneck
Two linear systems

$$\approx n^2$$
 per iteration (very cheap)

- 1. Compute the reduced costs \bar{c}
 - Solve $A_B^T p = c_B$
 - $\bar{c} = c A^T p$
- 2. If $\bar{c} \geq 0$, x optimal. break
- 3. Choose j such that $\bar{c}_j < 0$

- 4. Compute search direction d with $d_j = 1$ and $A_B d_B = -A_j$
- 5. If $d_B \ge 0$, the problem is **unbounded** and the optimal value is $-\infty$. **break**
- 6. Compute step length $\theta^* = \min_{\{i \in B | d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$
- 7. Define y such that $y = x + \theta^* d$
- 8. Get new basis \bar{B} (i exits and j enters)

BottleneckTwo linear systems

Matrix inversion lemma trick $\approx n^2$ per iteration

(very cheap)

Example of worst-case behavior

Innocent-looking problem

minimize $-x_n$ subject to $0 \le x \le 1$

2^n vertices

 $2^n/2$ vertices: $\cos t = 1$ $2^n/2$ vertices: $\cos t = 0$

Example of worst-case behavior

Innocent-looking problem

minimize $-x_n$ subject to $0 \le x \le 1$

2^n vertices

 $2^n/2$ vertices: $\cos t = 1$ $2^n/2$ vertices: $\cos t = 0$

Perturb unit cube

minimize
$$-x_n$$

subject to
$$\epsilon \leq x_1 \leq 1$$

$$\epsilon x_{i-1} \le x_i \le 1 - \epsilon x_{i-1}, \quad i = 2, \dots, n$$

Example of worst-case behavior

minimize
$$-x_n$$
 subject to $\epsilon \le x_1 \le 1$
$$\epsilon x_{i-1} \le x_i \le 1 - \epsilon x_{i-1}, \quad i=2,\dots,n$$

Example of worst-case behavior

minimize
$$-x_n$$
 subject to $\epsilon \le x_1 \le 1$
$$\epsilon x_{i-1} \le x_i \le 1 - \epsilon x_{i-1}, \quad i=2,\dots,n$$

Theorem

- The vertices can be ordered so that each one is adjacent to and has a lower cost than the previous one
- There exists a pivoting rule under which the simplex method terminates after $2^n 1$ iterations

Example of worst-case behavior

minimize
$$-x_n$$
 subject to $\epsilon \le x_1 \le 1$
$$\epsilon x_{i-1} \le x_i \le 1 - \epsilon x_{i-1}, \quad i=2,\dots,n$$

Theorem

- The vertices can be ordered so that each one is adjacent to and has a lower cost than the previous one
- There exists a pivoting rule under which the simplex method terminates after $2^n 1$ iterations

Remark

- A different pivot rule would have converged in one iteration.
- We have a bad example for every pivot rule.

We do **not know any polynomial version of the simplex method**,
no matter which pivoting rule we pick.

Still **open research question!**

We do **not know any polynomial version of the simplex method**,
no matter which pivoting rule we pick.

Still **open research question!**

Worst-case

There are problem instances where the simplex method will run an **exponential number of iterations** in terms of the dimensions, e.g. 2^n

We do not know any polynomial version of the simplex method, no matter which pivoting rule we pick.

Still open research question!

Worst-case

There are problem instances where the simplex method will run an **exponential number of iterations** in terms of the dimensions, e.g. 2^n

Good news: average-case Practical performance is very good. On average, it stops in n iterations.

Average simplex complexity

Random LPs

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$

n variables 3n constraints

The simplex method implementation

Today, we learned to:

- Find an initial basic feasible solution (Phase-I/II Simplex)
- Deal with degenerate basic feasible solution (Bland's rule)
- Compute the simplex method complexity (per iteration and overall)

References

- Bertsimas and Tsitsiklis: Introduction to Linear Optimization
 - Chapter 3: The simplex method
- R. Vanderbei: Linear Programming Foundations and Extensions
 - Chapter 3: Degeneracy
 - Chapter 4: Efficiency of the simplex method
 - Chapter 8: Implementation issues

Next lecture

Duality