ORF307 - Optimization

12. The simplex method implementation

Bartolomeo Stellato — Spring 2023



Ed Forum

 Final exam time window: May 12 - May 17. 24hours total take-home time.
 Midterm grades this week.
* | ecture questions:

* | was hoping that in the next lecture we could review the two steps to
computing the reduced cost vector on slide 22.

e Towards the end of the lecture, we learned that in the case of finite
convergence, the simplex method terminates after a finite number of
iterations. How costly (in flops) is this algorithm, and why?
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C; =c d= E cid; =c; +cgdp =c; —cgAgz A,

gzl



How does the cost change?

Cost improvement
cl(x+0d) —c'z = 0c'd

N

New cost Old cost

We call ¢, the reduced cost of
(introducing) variable z; in the basis

T
C; =c d= E cid; =c; +cgdp =c; —cgAgz A,
1=1

» ¢; > 0: adding z; will increase the objective (bad)
- ¢; < 0: adding z; will decrease the objective (good)



Vector of reduced costs

Reduced costs Full vector in one shot?
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Cj:Cj—CBAB Aj C—(Cl,...,Cn)
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Reduced costs Full vector in one shot?
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|Isolate basis B-related components p
(they are the same across j)



Vector of reduced costs

Reduced costs Full vector in one shot?

_ T 1—1 _ = _
Cj—Cj—CBAB Aj C—(Cl,...,Cn)

|Isolate basis B-related components p

(they are the same across ;) Obtain p by solving linear system

o A—INT T

Note: (M—1)1 = (M*)~!
for any square invertible M



Vector of reduced costs

Reduced costs

T A—-14
C; =cj —CgpAg A;

|Isolate basis B-related components p
(they are the same across j)

Full vector in one shot?

c=(C1y...,Cn)

Obtain p by solving linear system

D = (Agl)TCB —> Agp — Cp

Note: (M—1)1 = (M*)~!
for any square invertible M

Computing reduced cost vector
1. Solve Agp = CB

2. c=c— A'p
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Stepsize

7

What happens if some ¢; < 07
We can decrease the cost by bringing z; into the basis
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Stepsize

What happens if some ¢; < 07
We can decrease the cost by bringing z; into the basis

How far can we go?

* = max{f |0 > 0and x + 6d > 0} d is the j-th basic direction



Stepsize

What happens if some ¢; < 07
We can decrease the cost by bringing z; into the basis

How far can we go?

* = max{f |0 > 0and x + 6d > 0} d is the j-th basic direction

Unbounded
If d > 0, then 6 = oco. The LP I1s unbounded.
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Stepsize 0d:s s
What happens if some ¢; < 07 O< _ 8y R
We can decrease the cost by bringing z; into the basis @2,\;' i
How far can we go?
0* = max{0 |60 > 0and x + 6d > 0} d is the j-th basic direction
Unbounded
If d > 0, then 6 = oo. The LP Iis unbounded.
Bounded
If d; < O for some 7, then 0* = min ( ) —  min ( )
{i|d; <0} d; {i€e B|d; <0} d;

(Since d; > 0, i ¢ B) 5



Moving to a new basis

Next feasible solution
x + 07d




Moving to a new basis

Next feasible solution
x + 07d

Let B(¢) € {B(1), ..., B(m)} be the index such that 6* — le“). Then,
B(£)

$B(g) + H*dB(g) = (



Moving to a new basis b

Next feasible solution
x + 07d

Let B(¢) € {B(1), ..., B(m)} be the index such that 6* — le“). Then,
B(£)

$B(g) -+ H*dB(g) — ()

New solution
* T () becomes 0 (exits)
» x; becomes 6* (entersjl




Moving to a new basis

Next feasible solution
x + 07d

L B (#)
dp(0)

Let B(¢) € {B(1),...,B(m)} be the index such that §* = . Then,

$B(g) —|— H*dB(g) — O
New solution

* T () becomes 0 (exits)
- x,; becomes 6* (enters)

New basis

AB — _AB(l) .« o AB(g_D A] AB(€—|—1) .« .. AB(m)_



- = - ot AX:B
An iteration of the simplex method £50
Initialization %0l 2.0
* a basic feasible solution x ] -
» a basis matrix Ap = _AB(1) . ,AB(m)_ 1 X & K—QQO\\I

Ilteration steps

1. Compute the reduced costs ¢ 4. Compute search direction d with

d: =1and Agdp = — A
. Solve ATp = cp / = /

cc=c—A'p 5. If dg > 0, the problem is unbounded

_ and the optimal value is —oc. break
2. If ¢ > 0, x optimal. break

7
. - 6. C te step length 0* =  mi :
3. Choose j such that ¢; < 0 ompute step ieng {ieé%?@} ( )

/. Define y such that y = « + 6*d

8. Get new basis B (i exits and j enters)



Example

P={x|x14+x2+2x3=2, x>0}

r = (2,0,0) B ={1}

Basicindex j =3 —— d=(-1,0,1)
d; =1
ABdB — —Aj —> dB = —1




Example

P={x|x14+x2+2x3=2, x>0}

r = (2,0,0) B ={1}

Basicindex j =3 —— d=(-1,0,1)
d; =1
ABdB — —Aj — dp = —1
L1

Stepsize 0* = = 2
dq




Example

P={x|x14+x2+2x3=2, x>0}

r = (2,0,0) B ={1}

Basicindex j =3 —— d=(-1,0,1)
d; =1
ABdB — —Aj — dp = —1
L1

Stepsize 0* = = 2
dq

New solution y =z +6"d = (0,0,2) B = {3}




Finite convergence

Assume that

» P={x| Az =b,x > 0} not empty
» Every basic feasible solution non degenerate

10



Finite convergence

Assume that

» P={x| Az =b,x > 0} not empty
» Every basic feasible solution non degenerate

Then

» The simplex method terminates after a finite number of iterations
» At termination we either have one of the following

- an optimal basis B
- adirection d such that Ad =0, d > 0, ¢’ d < 0 and the optimal cost is —cc

10



Finite convergence
Proof sketch

At each Iteration the algorithm improves

» by a positive amount 6*
- along the direction d such that ¢! d < 0
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Finite convergence
Proof sketch

At each Iteration the algorithm improves

» by a positive amount 6*
- along the direction d such that ¢! d < 0

Therefore
» The cost strictly decreases

* No basic feasible solution can be visited twice
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Finite convergence
Proof sketch

At each Iteration the algorithm improves

» by a positive amount 6*
- along the direction d such that ¢! d < 0

Therefore
» The cost strictly decreases

* No basic feasible solution can be visited twice

Since there is a finite number of basic feasible solutions
The algorithm must eventually terminate

11



Today'’s lecture

The simplex method implementation

* Finding an initial basic feasible solution
 Degeneracy
e Full simplex example

o Efficiency

12



Find an initial point



Initial basic feasible solution

minimize ¢!z
subjectto Az =10
xr > 0

How do we get an initial basic feasible solution z and a basis B ?

Does it exist?

14



Finding an initial basic feasible solution

minimize c¢lx
subjectto Az =0
r > 0

15



Finding an initial basic feasible solution

Auxiliary problem

minimize ¢’z minimize 1%y
subjectto Ax =10 —— > subjectto Ax+y=0>

15



Finding an initial basic feasible solution

Auxiliary problem Minimize
minimize ¢’z minimize 11y ~— violations
subjectto Ax =10 —— > subjectto Ax+y=0>

r > 0 r >0,y >0

15



Finding an initial basic feasible solution

Auxiliary problem

Minimize
minimize ¢’z minimize 11y ~— violations
subjectto Ax =0 ——>  subjectto Ax+y=0>

Assumption b > 0 w.l.o.g. (if not multiply constraint by —1)
Trivial basic feasible solution: =0,y = b

15



Finding an initial basic feasible solution

Auxiliary problem

Minimize
minimize ¢’z minimize 11y ~— violations
subjectto Ax =10 —— > subjectto Ax+y=0>

Assumption b > 0 w.l.o.g. (if not multiply constraint by —1)
Trivial basic feasible solution: =0,y = b

Possible outcomes

 Feasible problem (cost = 0): v* = 0 and z* is a basic feasible solution

» Infeasible problem (cost > 0): y* > 0 are the violations .



Two-phase simplex method

Phase |

1. Construct auxiliary problem such that b > 0
2. Solve auxiliary problem using simplex method starting from (z, y) = (0, b)
3. If the optimal value is greater than 0, problem infeasible. break.

Phase |l

1. Recover original problem (drop variables y and restore original cost)
2. Solve original problem starting from the solution = and its basis B.

16



Degeneracy




Degenerate basic feasible solutions

Inequality form polyhedron

A solution y is degenerate if |Z(y)| > n

o>

P={z | Ax < b}

18



Degenerate basic feasible solutions

Standard form polyhedron _
Given a basis matrix Ap = |Apny ... Ap@m)

we have basic feasible solution z:

° ABQZ‘B =%
» x; =0, Vi # B(1),...,B(m)



Degenerate basic feasible solutions

Standard form polyhedron _
Given a basis matrix Ap = |Apny ... Ap@m)

we have basic feasible solution z: If some of the x5 = 0, then
it Is a degenerate solution

° ABQZ‘B =%
» x; =0, Vi # B(1),...,B(m)

19



Degenerate basic feasible solutions

Standard form polyhedron _
Given a basis matrix Ap = |Apny ... Ap@m)
we have basic feasible solution z: _ If some of the x5 = 0, then

E——

e Apzp =b it Is a degenerate solution

» x; =0, Vi # B(1),...,B(m)

P={{x| Az =0b, z > 0}

>, 19




Degenerate basic feasible solutions

Example

r1+x9 +2x3 =1
—x1+2x9 — 23 =1

L1,L2,L3 2 0

20



Degenerate basic feasible solutions

Example

r1+ a9 £xg =1
—T1 +x9 —x3 =1

L1,L2,L3 2 0

Degenerate solutions

Basis B = {1,2}, ——» 2 =(0,1,0)

20



Degenerate basic feasible solutions

Example

¥1+x2t+x3 =1
<21+ 29 —x3 =1

L1,L2,L3 2 0

Degenerate solutions
Basis B = {1,2}, ——» 2 =(0,1,0)
Basis B={2,3}, — y=(0,1,0)

20



Cycling

Stepsize

min

6. Compute step length 6~
{1€B|d; <0}

21



Cycling

Stepsize

6. Compute step length 6* =  min (
{1€B|d; <0}

If . € B, d; < 0and x; = 0 (degenerate)
0* =0

21



Cycling

Stepsize

6. Compute step length 6* =  min ( xZ)

|

{1€B|d; <0} dz

If . € B, d; < 0and x; = 0 (degenerate)
0* =0

Therefore y =z + 0*x =z and B # B

Same solution and cost
Different basis

21



Cvclin
y g 6. Compute step length 6* = min ( $Z>

Stepsize (ieB|d;<0} \ d;

|

If . € B, d; < 0and x; = 0 (degenerate)
0* =0

Same solution and cost

Thereforey=x+0*r=xand B # B Different basis

Finite termination no longer guaranteed!

How can we fix it?

21



Cvclin
y g 6. Compute step length 6* = min ( :EZ)

Stepsize (ieB|d;<0} \ d;

|

If . € B, d; < 0and x; = 0 (degenerate)
0* =0

Same solution and cost

Thereforey=x+0*r=xand B # B Different basis

Finite termination no longer guaranteed!

How can we fix it?

Pivoting rules

21



Pivoting rules

Choose the index entering the basis

Simplex iterations
3. Choose j such thatc; < 0

22



Pivoting rules

Choose the index entering the basis

Simplex iterations
3. Choose j such that ¢; < 0 ——  Which ;?
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Pivoting rules

Choose the index entering the basis

Simplex iterations
3. Choose j such that ¢; < 0 ——  Which ;?

Possible rules

- Smallest subscript: smallest ; such that c; < 0
* Most negative: choose j with the most negative c;
- Largest cost decrement: choose ; with the largest 0*|c;]

22



Pivoting rules

Choose index exiting the basis
Simplex iterations

6. Compute step length 6* =  min
{1€B|d; <0}

(

Lg

di

)

23



Pivoting rules

Choose index exiting the basis
We can have more than

Simplex iterations one ¢ for which z; = 0
(next solution is degenerate)

6. Compute step length 6 =  min ( m@) —_—

11€B]d; <03 Which i?

23



Pivoting rules

Choose index exiting the basis
We can have more than

Simplex iterations one ¢ for which z; = 0
(next solution is degenerate)

2/1’/‘.
6. Compute step lenath 6* = ' A N
P P TS {@eéﬂ(f@} ( )

Which :?

Smallest index rule
L g

Smallest 7 such that 6* = 7

23



Bland’s rule to avoid cycles

Theorem

If we use the smallest index rule for choosing both the ; entering the basis
and the 1 leaving the basis, then no cycling will occur.

24



Bland’s rule to avoid cycles

Theorem

If we use the smallest index rule for choosing both the ; entering the basis
and the 1 leaving the basis, then no cycling will occur.

Proof idea [Vanderbei, Ch 3, Sec 4]|Bertsimas and Tsitsiklis, Sec 3.4}

 Assume Bland’s rule is applied and there exists a cycle with different bases.
* Obtain contradiction.

24






Example

Inequality form

minimize
subject to

—10x1 — 1229 — 1223
r1 + 2x9 + 223 < 20
201 + x9 + 13 < 20

201 + 219 + 3 < 20

L1,L2,L3 2 0

20



Inequality form
minimize  —10x1 — 1225 — 1225
subjectto x1 + 229 + 223 < 20

201 + x9 + 13 < 20
201 + 229 + 3 < 20

L1,L2,L3 2 0

Standard form

minimize  —10x7 — 1225 — 125
o
— — xQ — —
1 2 2 1 0 0 20
: L3
subjectto (2 1 2 0 1 O = |20
e
2 2 10 0 1] | 20
i 1|, <Y
L6 26




Example
Start

Initialize
r = (0,0,0, 20, 20, 20)

minimize
subject to

Ap = |0

CTZE

Axr =0
r >0

c=(—10,-12,-12,0,0,0)

1 2 2 1 0 0
A=12 1 2 0 1 0

2 2 10 0 1
b = (20, 20, 20)

z3

27



Example

Iteration 1

Current point

r = (0,0,0, 20, 20, 20)

e =0

Basis: {4,5,6}
1 O

A= 10 1
0 0

;
0
1_

c=(—10,—-12,-12,0,0,0)

12 2 1 0 0
A=12 1 2 0 1 0

2 2 10 0 1
b = (20, 20, 20)

28



Current point c = (-10,-12,-12,0,0,0)

Example 7 (0:9,0,20,20,20) 12210 0
Iteration 1 . _
Basis: {4,5,6} A =120 L0
0 o 22100 1
As=10 1 0 b = (20,20, 20)
00 1

Reduced costs ¢ = ¢
SolveAgp:cB = p=cp =0 3
c=c— Alp=c

28



Current point

x = (0,0,0,20, 20, 20)
uEe):gimele cw =0
Basis: {4,5,6}
1 0 O
Ap=10 1 0
0 0 1

Reduced costs ¢ = ¢
Solve Ahpp=cg = p=cg=0
c=c— Alp=c

Direction d = (1,0,0,—-1,-2,-2), j=1
Solve ABdB — —Aj — dp = (—1, —2, —2)

c=(—10,—-12,-12,0,0,0)

1 2 21 0 0
A=12 1 2 0 1 0

2 2 10 0 1
b = (20,20, 20)

28



Current point

x = (0,0,0,20, 20, 20)
uEe):gimele cw =0
Basis: {4,5,6}
I 0 O
Ap=1(0 1 O
0 0 1

Reduced costs ¢ = ¢
Solve Abp=cg = p=cg=0
c=c— Alp=c

Direction d = (1,0,0,—-1,-2,-2), j=1
Solve ABdB — —Aj — dp = (—1, —2, —2)

Step 6* =10, =5

0* = min (—x,;/d;) = min{20, 10, 10
{iﬁlgo}( z;/d;) = min{ h

New z < x + 6*d = (10,0, 0, 10,0, 0)

c=(—10,—-12,-12,0,0,0)

1 2 2 1 0 0
A=12 1 2 0 1 0
2 2 10 0 1
b = (20,20, 20)
L3
L1

28



Example

Iteration 2

Current point
r = (10,0,0,10,0,0)

¢l = —100

Basis: {4,1,6}
1 1 0

Ag=1(0 2 0O
0 2 1

c=(—10,—-12,-12,0,0,0)

12 2 1 0 0
A=12 1 2 0 1 0

2 2 10 0 1
b = (20, 20, 20)

29



Current point c = (-10,-12,-12,0,0,0)

Example 7= 10,0,0,10,0,0 12210 0
Ilteration 2 Basis: {4.1,6) A=12 1 2 0 1 0
101 0 22100 1
A =10 2 0 b = (20, 20, 20)
0 2 1
Reduced costs ¢ = (0,—7,—2,0,5,0)
Solve A%p:cB = p=(0,-5,0) L3
c=c—A'p=(0,-7,-2,0,5,0)
T

29



Current point

Example x = (10,0,0,10,0,0)
T
| e = —100
lteration 2 Basis: {4,1,6)
1 1 0
Ag=10 2 0
0 2 1

Reduced costs ¢ = (0,—7,—2,0,5,0)
Solve Akp=cg = p=(0,-5,0)
c=c—A'p=(0,-7,-2,0,5,0)

Direction d = (-0.5,1,0,—1.5,0,—1), j =2
Solve Agdp = —Aj = dp = (—1.5, —0.9, —1)

c=(—10,—-12,-12,0,0,0)

1 2 21 0 0
A=12 1 2 0 1 0

2 2 10 0 1
b = (20,20, 20)

29



Current point

Example z = (10,0,0,10,000)
T
: c-x = —100
Iteration 2 Basis: {4, 1,6)
11 0
Ap= (0 2 0
0 2 1

Reduced costs ¢ = (0,—7,—2,0,5,0)
Solve Akp=cg = p=(0,-5,0)
c=c—A'p=(0,-7,-2,0,5,0)

Direction d = (—-0.5,1,0,—1.5,0,—1), j =2
Solve Agdp = —Aj = dp = (—1.5, —0.9, —1)

Step 0" =0, =26

9* = min (—x;/d;) = min{6.66,20(0}
min (—/d,) = min{ }

New z < x + 6*d = (10,0, 0, 10,0, 0)

c=(—10,—-12,-12,0,0,0)

1 2 2 1 0 0
A=12 1 2 0 1 0
2 2 10 0 1
b = (20,20, 20)
L3
L1

29



Current point c = (-10,-12,-12,0,0,0)

Example T (10’%8’ 10,0,0 12 2 1 0 0
C"T = —
Iteration . —
eration 3 Basis: {4, 1,2} A 2 1 2 0 1 0
19 2 2 1 0 0 1
A =10 2 1 b = (20,20, 20)
0 2 2
L3
T

30



Current point c = (-10,-12,-12,0,0,0)

C" T = —
Ilteration . —
eration 3 Basis: {4,1,2} A 2 L2 010
19 22100 1
Ar=10 2 1 b = (20, 20, 20)
0 2 2
Reduced costs ¢ = (0,0,—9,0, —2,7)

Solve Agp = CR = p= (O, 2, —7)
c=c—A'p=1(0,0,-9,0,—2,7)




Current point c = (-10,-12,-12,0,0,0)

C" T = —
Ilteration . —
eration 3 Basis: {4,1,2} A 2 L2 010
19 22100 1
Ar=10 2 1 b = (20, 20, 20)
0 2 2
Reduced costs ¢ = (0,0,—9,0, —2,7)

Solve Agp = CR = p= (O, 2, —7)
c=c—A'p=1(0,0,-9,0,—2,7)

Direction d = (—1.5,1,1,—-2.5,0,0), 45 =3
Solve ABdB — —Aj — dp = (—2.5, —1.5, 1)




Current point c = (-10,-12,-12,0,0,0)

Example z = (10,0,0,10,0,0) o o 1 0
Iteration N _
eration 3 Basis: {4, 1,2} A 2 1 2 0 1 0
19 22100 1
Ar=10 2 1 b = (20, 20, 20)
0 2 2
Reduced costs ¢ = (0,0,—9,0, —2,7)
Solve ALp=cg = p=1(0,2,-7) T3
c=c—A'p=1(0,0,-9,0,—2,7)
Direction d = (—1.5,1,1,—-2.5,0,0), 45 =3
Solve ABdB — —Aj — dp = (—2.5, —1.5, 1)
T

Step 0" =4, i=14
0* = j —x;/d;) = min{4, 6.67
{iﬁlf@( z;/d;) = min{ h
New x < = + 60*d = (4,4,4,0,0,0) T1



Example

Iteration 4

Current point
r = (4,4,4,0,0,0)

¢ty = —136

Basis: {3,1,2}
2 1 2

A =12 2 1
12 2

c=(—10,—-12,-12,0,0,0)

12 2 1 0 0
A=12 1 2 0 1 0

2 2 10 0 1
b = (20, 20, 20)

31



Current point

Example v = (4,4,4,0,0,0)
lteration 4 c v =150
Basis: {3,1,2}
2 1 2
A =12 2 1
1 2 2

Reduced costs ¢ = (0,0,0,3.6,1.6,1.6)
Solve Akp=cg = p=(-3.6,-1.6,—1.6)
c=c—A"p=1(0,0,0,3.6,1.6,1.6)

c=(—10,—-12,-12,0,0,0)

1 2 2

A=12 1 9

2 2 1

b = (20, 20, 20)
L3

1 0 0
0 1 0

0 0 1

31



Current point

Example v = (4,4,4,0,0,0)
lteration 4 c v =150
Basis: {3,1,2}
2 1 2
A =12 2 1
1 2 2

Reduced costs ¢ = (0,0,0,3.6,1.6,1.6)
Solve Akp=cg = p=(-3.6,-1.6,—1.6)
c=c—A"p=1(0,0,0,3.6,1.6,1.6)

Optimal
— ¥ =(4,4,4,0,0,0)

Ol
[V
-

c=(—10,—-12,-12,0,0,0)

1 2 2

A=12 1 9

2 2 1

b = (20, 20, 20)
L3

1 0 0
0 1 0

0 0 1

31



Complexity



Complexity of a single simplex iteration

1. Compute the reduced costs ¢

» Solve Agp — CRB
»c=c— Alp

2. If ¢ > 0, x optimal. break

3. Choose j such that ¢; < 0

4.

. Compute step length 6* =  min ( wz)

Compute search direction d with
dj — 1 and ABCZB — —Aj

. Ifdg > 0, the problem is unbounded

and the optimal value is —occ. break

{ieB|d; <0} d;

. Define y such that y = = + 6*d

. Get new basis B (i exits and j enters)

33



Complexity of a single simplex iteration

1. Compute the reduced costs ¢ 4,

» Solve Agp — CRB
»c=c— Alp

2. If ¢ > 0, x optimal. break

3. Choose j such that ¢; < 0

. Compute step length 6* =  min ( x’)

Compute search direction d with
dj — 1 and ABdB — —Aj

. Ifdg > 0, the problem is unbounded

and the optimal value is —occ. break

{ieB|d; <0} d;

. Define y such that y = = + 6*d

. Get new basis B (i exits and j enters)

Bottleneck
Two linear systems

33



Linear system solutions

Very similar linear
systems

Agp — CR
ABdB — —Aj

34



Linear system solutions

Very similar linear LU factorization
systems (2/3)n? flops
Agp — CR

Apdg = —A;, Ap = PLU

34



Linear system solutions

Very similar linear LU factorization
systems (2/3)n? flops
ALp =
B “B E— AB = PLU .

ABdB — —Aj

Easy linear systems
4n? flops
UTLTPTp — CB

PLUdp = —A;

34



Linear system solutions

Very similar linear LU factorization Easy linear systems
systems (2/3)n> flops 4n? flops
AT — UTLTPT _
BPZOB . Ap=PLU ——s P=cp
Apdp = —A; PLUdp = —A;

Factorization Is expensive

Do we need to recompute it at every iteration?

34



Basis update

Index update

* j enters (x; becomes 6%)
» ¢ = B(/{) exists (x; becomes 0)
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Basis update

Index update

* j enters (x; becomes 6%)
» ¢ = B(/{) exists (x; becomes 0)

Basis matrix change
Ap = Ap + (Ai — Aj)ey
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Basis update

Index update
- j enters (z; becomes (%)

Basis matrix change

- i = B({) exists (z; becomes 0) Ag = A+ (4; — Aj)e,
i Example )
1 2 2 1 0 0 B=1{4,1,6} — B=1{412}
A=12 1 2 0 1 0 - 2 enters
2 2 1 0 0 1 * 6 = B(3) exists

35



Basis update

o O =

o DN

Index update

* j enters (x; becomes 6%)
» ¢ = B(/{) exists (x; becomes 0)

N DN

=N DN

o DN

= O O

o O =

o = O

T

o O O

b—‘OOI

o O O

Example
B=1{4,1,6} —

O DO

T

|
o O O

Basis matrix change

Ap = Ap + (Ai — Aj)ey

B=1{4,1,2}

¢ 2 enters
* 6 = B(3) exists

o O O

;
0
1_

35



Smarter linear system solution

Matrix inversion lemma
Basis matrix change (from homework 2)

—_— — |
Ap=Ap+{Ai-Ajer  —— (Ao Fver) = (I 1+ el At

A;%éf) A;l

36



Smarter linear system solution

Matrix inversion lemma

Basis matrix change (from homework 2)
/_})ﬁ . ]. —1 —1
AB:AB+(A7;_AJ-)@€T — (AB—l—veéT) 1 — (I 1+egAglvAB ve?) Ag

Solve Agdg — —Aj
1. Solve Apz! = e, (2n° flops)
2. Solve Agz* = —A; (2n” flops)

T _2

3. Solve dg = 2° vz ol

14+v1 21
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Smarter linear system solution

Matrix inversion lemma

Basis matrix change (from homework 2)
’_’UA T\— 1 —1,..T —1
AB:AB+(A7;_AJ-)@€T —> (Ap +vey) I — ([ 1+egAglvAB ve€>AB

Solve Agdg — —Aj
1. Solve Apz! = e, (2n° flops)
2. Solve Agz* = —A; (2n” flops)

T _2

3. Solve dg = 2° vz ol

14+v1 21

Remarks
» Same complexity for ALp = cp (4n? flops)
- k-th next iteration (4kn? flops, derive as exercise...)
* Once in a while (e.g., k = 100), better to refactor Ag 36



Complexity of a single simplex iteration

1. Compute the reduced costs ¢

» Solve Agp = CB
»c=c— Alp

2. If ¢ > 0, x optimal. break

3. Choose j such that ¢c; < 0

Bottleneck
Two linear systems

4.

. Compute step length 6 =  min ( xZ)

Compute search direction d with
dj — 1 and ABdB — —Aj

. If dg > 0, the problem is unbounded

and the optimal value Is —oo. break

{1€B|d; <0} dz

. Define y such that y = = + 6*d

. Get new basis B (i exits and j enters)
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Complexity of a single simplex iteration

1. Compute the reduced costs ¢

» Solve Agp — CRB
»c=c— Alp

2. If ¢ > 0, x optimal. break

3. Choose j such that ¢c; < 0

Bottleneck
Two linear systems

4.

——

. Compute step length 6 =  min ( xZ)

Compute search direction d with
dj — 1 and ABdB — —Aj

. If dg > 0, the problem is unbounded

and the optimal value Is —oo. break

{1€B|d; <0} dz

. Define y such that y = = + 6*d

. Get new basis B (i exits and j enters)

Matrix inversion lemma trick
~ n° per iteration
(very cheap)
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Complexity of a single simplex iteration

1. Compute the reduced costs ¢

» Solve Agp — CRB
»c=c— Alp

2. If ¢ > 0, x optimal. break

3. Choose j such that ¢c; < 0

Bottleneck

Two linear systems

4.

——

. Compute step length 6 =  min ( xZ)

Compute search direction d with
dj — 1 and ABdB — —Aj

. If dg > 0, the problem is unbounded

and the optimal value Is —oo. break

{1€B|d; <0} dz

. Define y such that y = = + 6*d

. Get new basis B (i exits and j enters)

Matrix inversion lemma trick
~ n° per iteration
(very cheap)

How many iterations do we need? 37



Complexity of the simplex method

Example of worst-case behavior

Innocent-looking problem
minimize  —x,,
subjectto 0<z <1

2" vertices

2™ /2 vertices: cost =1
2™ /2 vertices: cost = 0

38



Complexity of the simplex method

Example of worst-case behavior -
*
Innocent-looking problem ?’
minimize —z, 2" vertices
. 2™ /2 vertices: cost =1
subjectto 0 <z <1 2" /2 vertices: cost = 0

Perturb unit cube
minimize  —x,
subjectto e<z; <1

€$7;_1§£Ei<1—€$7;_1, iIQ,...,TL

38



Complexity of the simplex method

Example of worst-case behavior
minimize  —x.,
subjectto e<z; <1

€$i_1§$i<1—€$i_1, iZQ,...,?’L
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Complexity of the simplex method ..

Example of worst-case behavior x/*.
minimize  —x.,
subjectto e<z; <1

€$i_1§$i<1—€$i_1, iZQ,...,?’L

L1
Theorem
» The vertices can be ordered so that each one Is adjacent to and has a
lower cost than the previous one

» There exists a pivoting rule under which the simplex method terminates
after 2" — 1 iterations
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Complexity of the simplex method ..

Example of worst-case behavior x/*.
minimize  —x.,
subjectto e<z; <1

€$i_1§$i<1—€$i_1, iZQ,...,?’L

L1
Theorem
» The vertices can be ordered so that each one Is adjacent to and has a
lower cost than the previous one

» There exists a pivoting rule under which the simplex method terminates
after 2" — 1 iterations

Remark
A different pivot rule would have converged in one iteration.

» We have a bad example for every pivot rule.
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Complexity of the simplex method

We do not know any polynomial | _
version of the simplex method, ———  Still open research question!

no matter which pivoting rule we pick.
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Complexity of the simplex method

We do not know any polynomial | _
version of the simplex method, ———  Still open research question!

no matter which pivoting rule we pick.

Worst-case

There are problem instances where the simplex method will run an exponential
number of iterations in terms of the dimensions, e.g. 2"
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Complexity of the simplex method

We do not know any polynomial | _
version of the simplex method, ———  Still open research question!

no matter which pivoting rule we pick.

Worst-case

There are problem instances where the simplex method will run an exponential
number of iterations in terms of the dimensions, e.g. 2"

Good news: average-case

Practical performance is very good. On average, it stops in n iterations.
40



Average simplex complexity

Random LPs minimize ¢!« n variables
subjectto Az <b 3n constraints
lterations n Time n°
3000 i —— Cubic polynomial °
-------- Square polynomial

0 6000
iq"c:: 4000-
£
= 2000

O_

0 250 500 750 1000 0 250 500 750 1000

n n



The simplex method implementation

Today, we learned to:
* FInd an initial basic feasible solution (Phase-I/lIl Simplex)
 Deal with degenerate basic feasible solution (Bland’s rule)

 Compute the simplex method complexity (per iteration and overall)

42
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Next lecture

* Duality
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