ORF307 – Optimization

11. The simplex method

Ed Forum

 For the 1-norm optimal control problem I don't quite understand the significance of adding the infinity-norm (max input) and the 1 norm (max-input variation) as the extra inequality constraints and how that translates to the optimal state trajectory and optimal input trajectory graphs.

Recap

1-norm with constraints

Linear optimization can have more interesting constraints

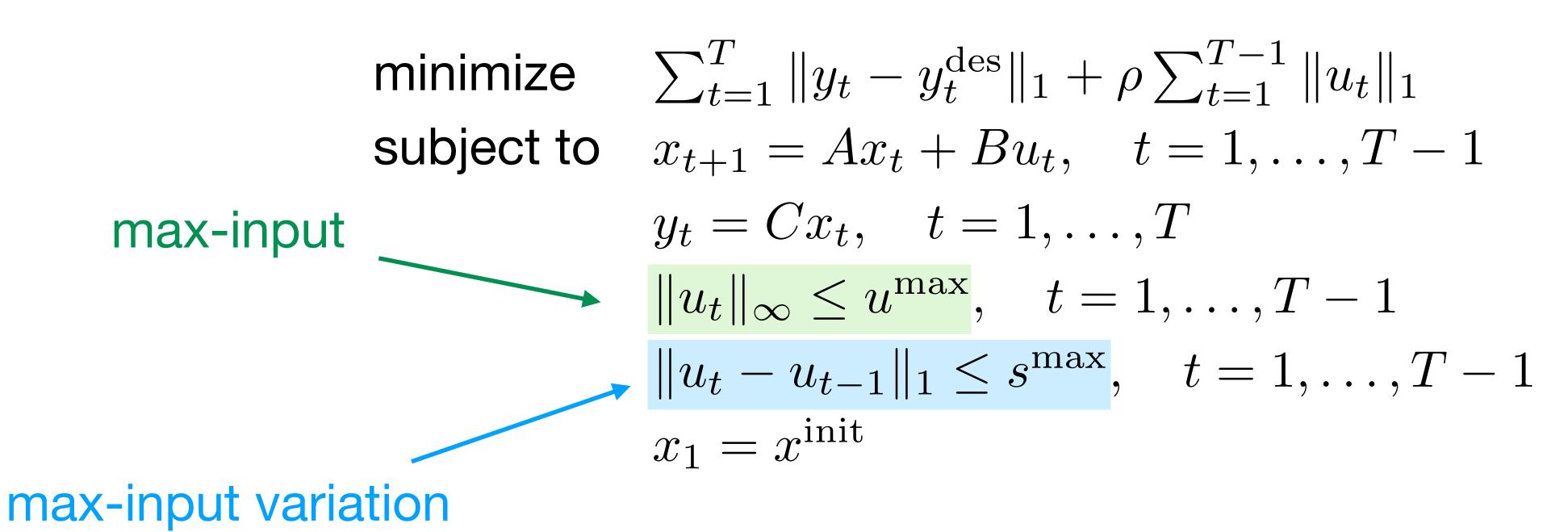
1-norm with constraints

Linear optimization can have more interesting constraints

$$\begin{array}{ll} \text{minimize} & \sum_{t=1}^{T} \|y_t - y_t^{\mathrm{des}}\|_1 + \rho \sum_{t=1}^{T-1} \|u_t\|_1 \\ \text{subject to} & x_{t+1} = Ax_t + Bu_t, \quad t = 1, \dots, T-1 \\ \\ \text{max-input} & y_t = Cx_t, \quad t = 1, \dots, T \\ & \|u_t\|_{\infty} \leq u^{\max}, \quad t = 1, \dots, T-1 \\ & \|u_t - u_{t-1}\|_1 \leq s^{\max}, \quad t = 1, \dots, T-1 \\ & x_1 = x^{\mathrm{init}} \end{array}$$

1-norm with constraints

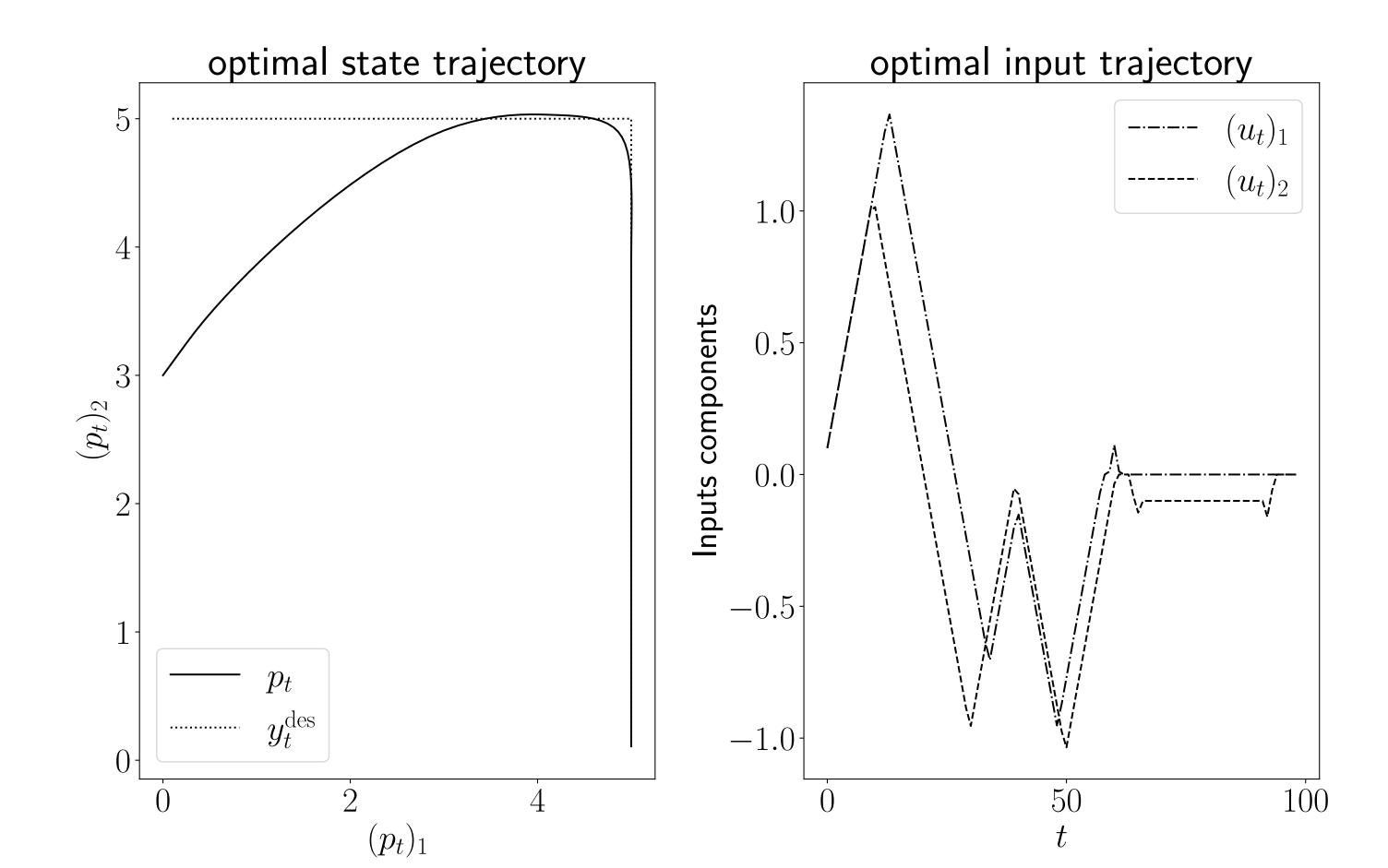
Linear optimization can have more interesting constraints



1-norm with constraints results

Parameters

$$u^{\text{max}} = 10, \quad s^{\text{max}} = 0.1$$

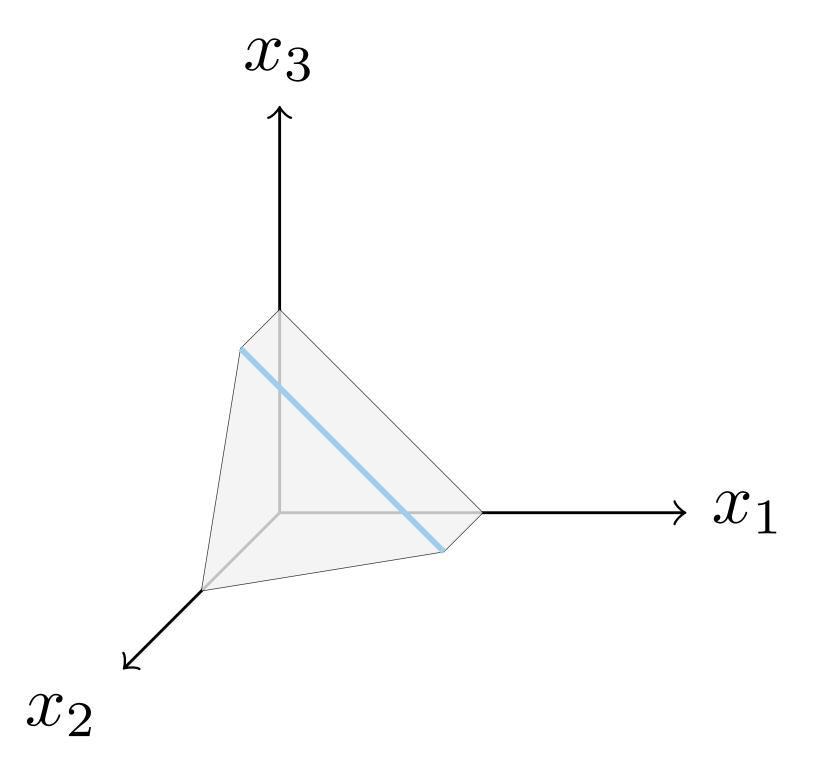


Constructing a basic solution

Two equalities (m=2, n=3)

```
minimize c^Tx subject to x_1+x_3=1 (1/2)x_1+x_2+(1/2)x_3=1 x_1,x_2,x_3\geq 0
```

n-m=1 inequalities have to be tight: $x_i=0$



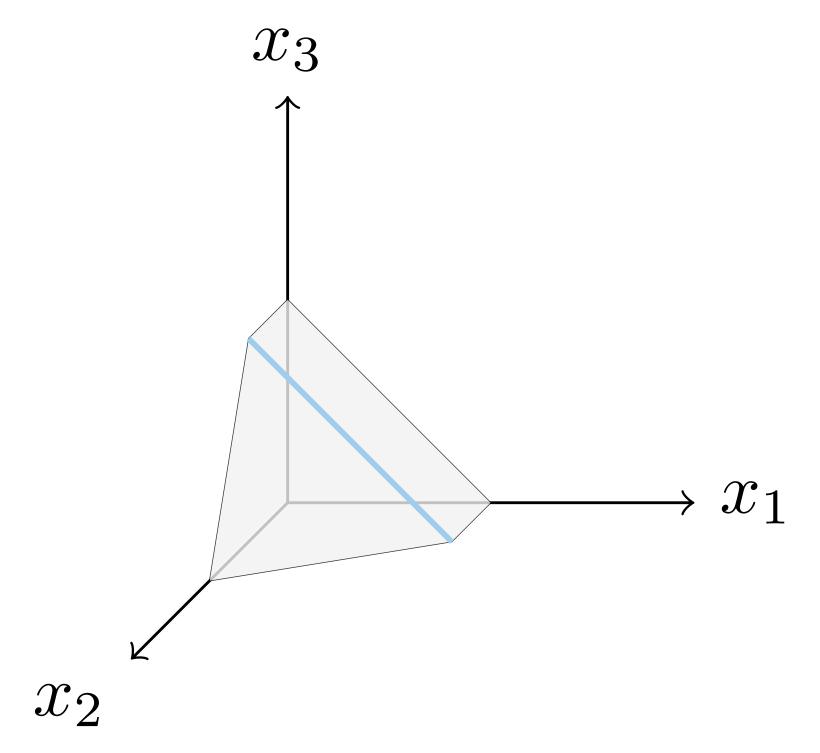
Constructing a basic solution

Two equalities (m=2, n=3)

minimize
$$c^Tx$$
 subject to $x_1+x_3=1$
$$(1/2)x_1+x_2+(1/2)x_3=1$$

$$x_1,x_2,x_3\geq 0$$

n-m=1 inequalities have to be tight: $x_i=0$



Set
$$x_1 = 0$$
 and solve

$$\begin{bmatrix} 1 & 0 & 1 \\ 1/2 & 1 & 1/2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & 1 \\ 1 & 1/2 \end{bmatrix} \begin{bmatrix} x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

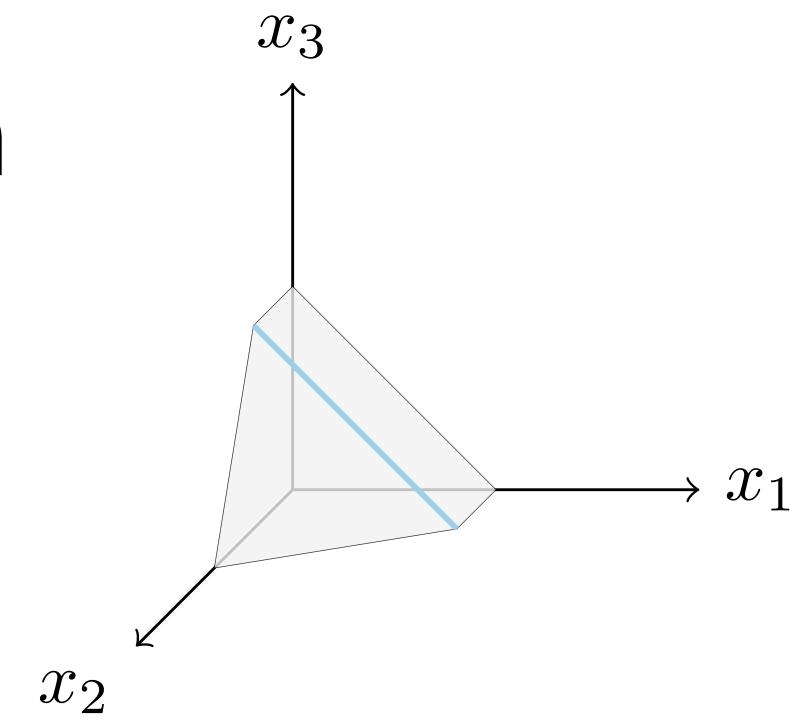
Constructing a basic solution

Two equalities (m=2, n=3)

minimize
$$c^Tx$$
 subject to $x_1+x_3=1$
$$(1/2)x_1+x_2+(1/2)x_3=1$$

$$x_1,x_2,x_3\geq 0$$

n-m=1 inequalities have to be tight: $x_i=0$



Set $x_1 = 0$ and solve

$$\begin{bmatrix} 1 & 0 & 1 \\ 1/2 & 1 & 1/2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & 1 \\ 1 & 1/2 \end{bmatrix} \begin{bmatrix} x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \longrightarrow (x_2, x_3) = (0.5, 1)$$

Standard form polyhedra

Standard form LP

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$

Assumption

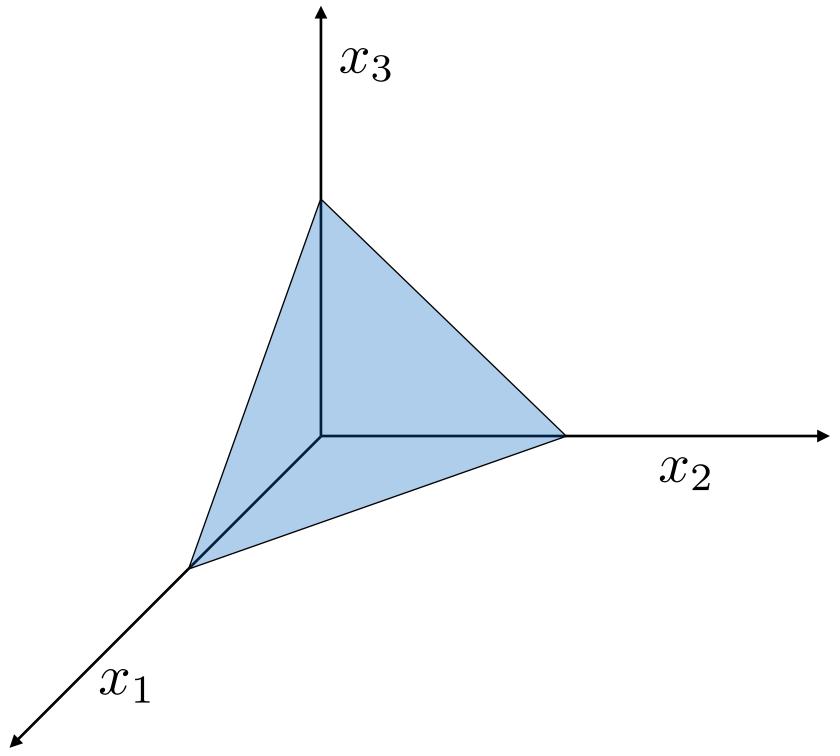
 $A \in \mathbf{R}^{m \times n}$ has full row rank $m \leq n$

Interpretation

P is an (n-m)-dimensional surface

Standard form polyhedron

$$P = \{x \mid Ax = b, \ x \ge 0\}$$



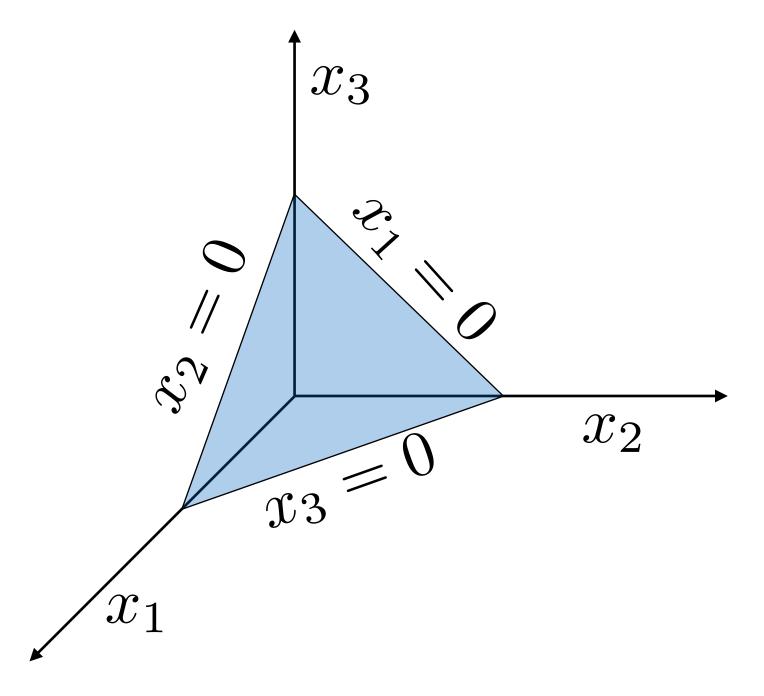
$$n = 3, m = 1$$

Standard form polyhedra

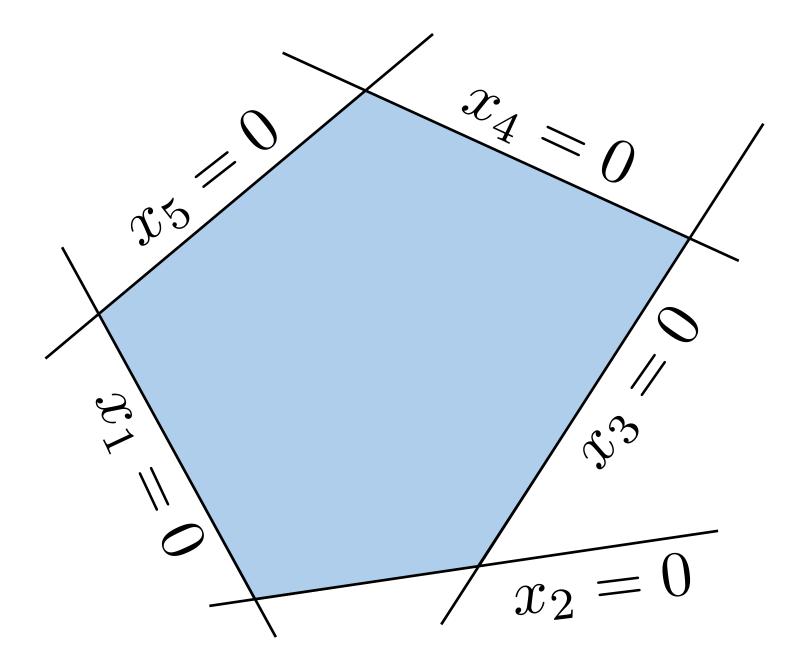
Visualization

$$P = \{x \mid Ax = b, x \ge 0\}, \quad n - m = 2$$

Three dimensions



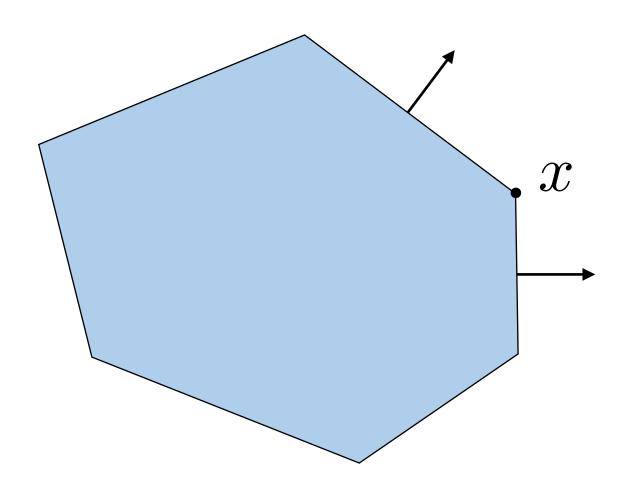
Higher dimensions



Equivalence

Theorem

Given a nonempty polyhedron $P = \{x \mid Ax \leq b\}$



Let $x \in P$

x is a vertex $\iff x$ is an extreme point $\iff x$ is a basic feasible solution

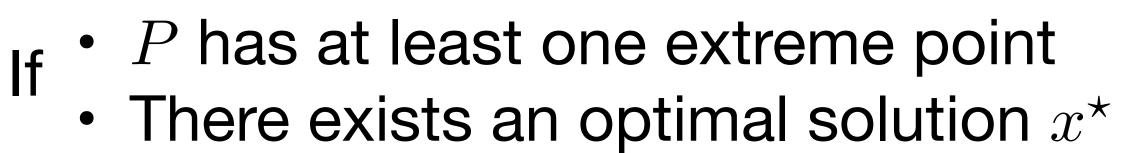
- 1. Choose any m independent columns of A: $A_{B(1)}, \ldots, A_{B(m)}$
- 2. Let $x_i = 0$ for all $i \neq B(1), ..., B(m)$
- 3. Solve Ax = b for the remaining $x_{B(1)}, \ldots, x_{B(m)}$

Basis Basis columns Basic variables
$$A_B = \begin{bmatrix} & & & & & \\ & A_{B(1)} & A_{B(2)} & \dots & A_{B(m)} \\ & & & & & \end{bmatrix}, \quad x_B = \begin{bmatrix} x_{B(1)} \\ \vdots \\ x_{B(m)} \end{bmatrix} \longrightarrow \text{Solve } A_B x_B = b$$

If $x_B > 0$, then x is a basic feasible solution

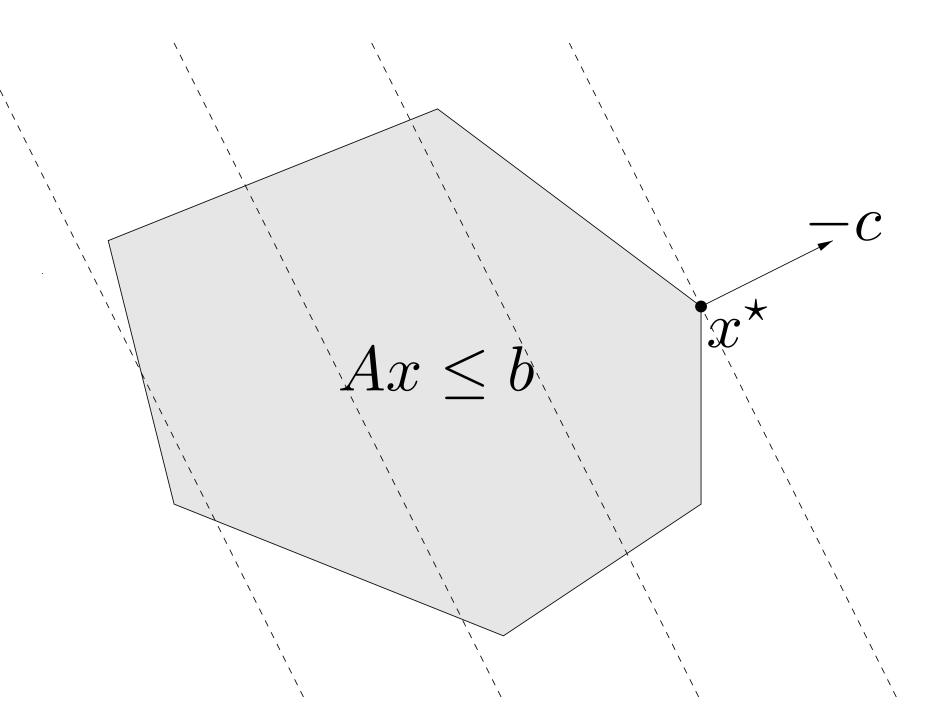
Optimality of extreme points

minimize $c^T x$ subject to $Ax \leq b$



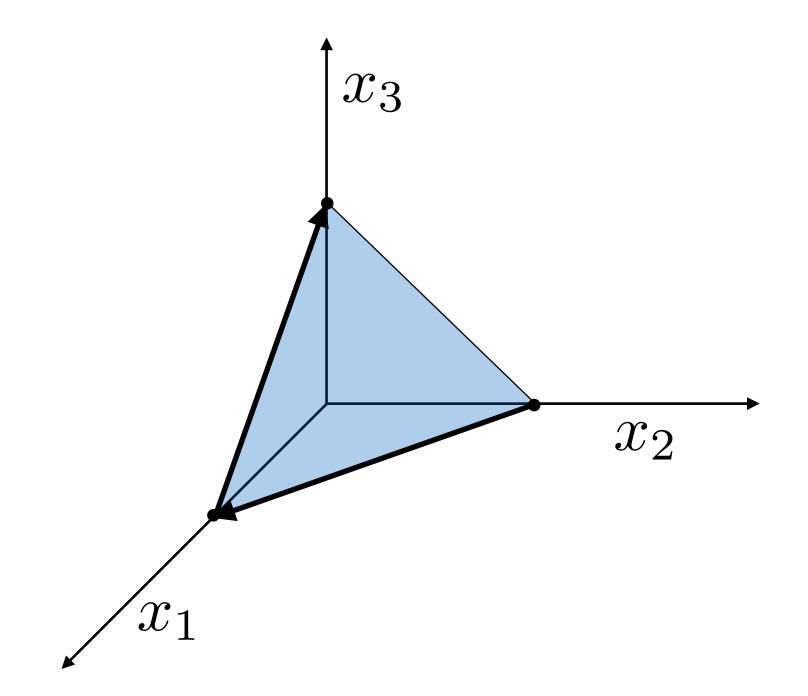
Then, there exists an optimal solution which is an **extreme point** of P

We only need to search between extreme points



Conceptual algorithm

- Start at corner
- Visit neighboring corner that improves the objective



Today's agenda

The simplex method

- Iterate between neighboring basic solutions
- Optimality conditions
- Simplex iterations

The simplex method

Top 10 algorithms of the 20th century

1946: Metropolis algorithm

1947: Simplex method

1950: Krylov subspace method

1951: The decompositional approach to matrix computations

1957: The Fortran optimizing compiler

1959: QR algorithm

1962: Quicksort

1965: Fast Fourier transform

1977: Integer relation detection

1987: Fast multipole method

[SIAM News (2000)]

The simplex method

Top 10 algorithms of the 20th century

1946: Metropolis algorithm

1947: Simplex method

1950: Krylov subspace method

1951: The decompositional approach to matrix computations

1957: The Fortran optimizing compiler

1959: QR algorithm

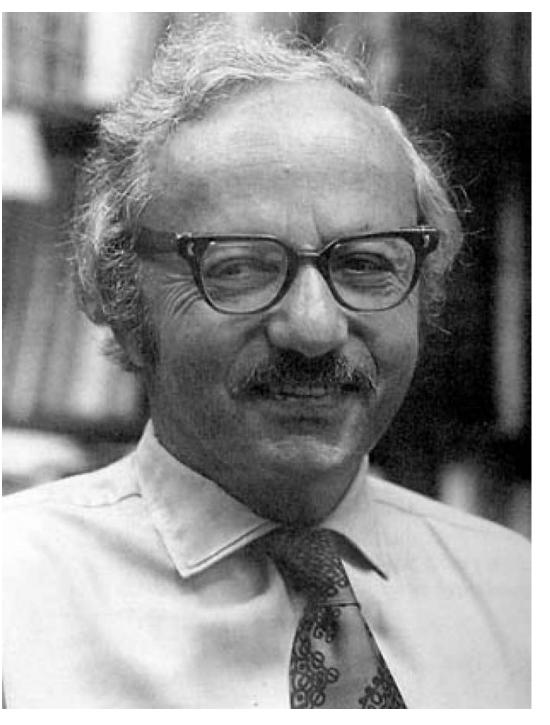
1962: Quicksort

1965: Fast Fourier transform

1977: Integer relation detection

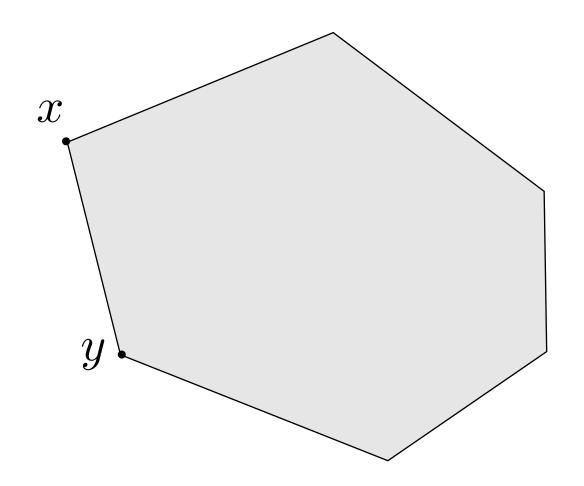
1987: Fast multipole method

George Dantzig

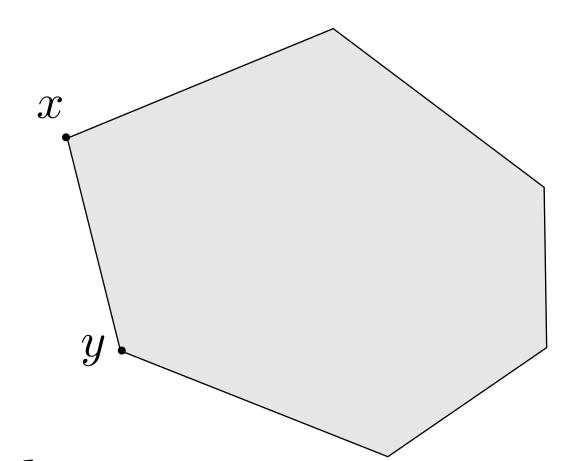


Neighboring basic solutions

Two basic solutions are **neighboring** if their basic indices differ by exactly one variable

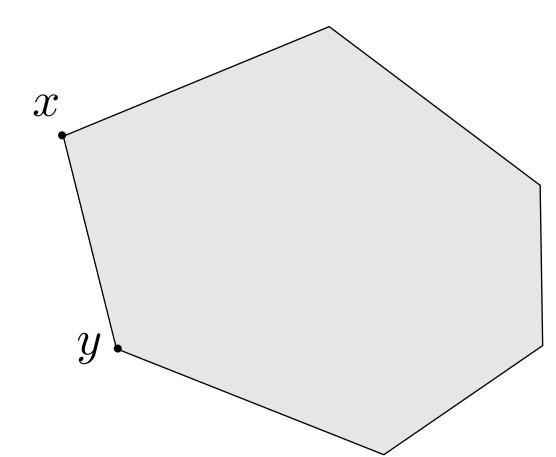


Two basic solutions are **neighboring** if their basic indices differ by exactly one variable



$$\begin{bmatrix} 1 & -1 & 0 & 3 & -2 \\ 2 & 0 & -1 & -1 & 0 \\ 0 & 2 & 4 & -1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -5 \\ -1 \\ 14 \end{bmatrix}$$

Two basic solutions are **neighboring** if their basic indices differ by exactly one variable

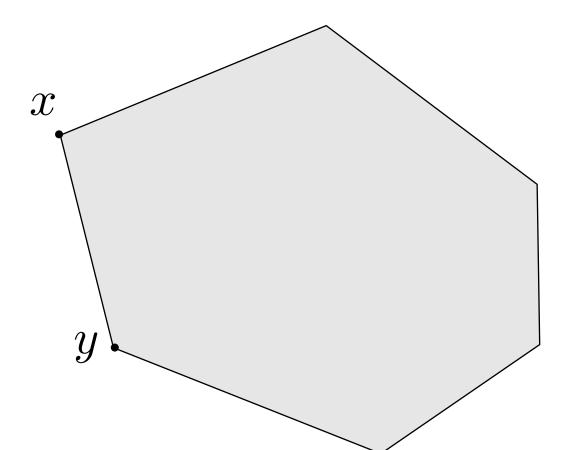


$$\begin{bmatrix} 1 & -1 & 0 & 3 & -2 \\ 2 & 0 & -1 & -1 & 0 \\ 0 & 2 & 4 & -1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -5 \\ -1 \\ 14 \end{bmatrix}$$

$$B = \{1, 3, 5\} \qquad x_2 = x_4 = 0$$

$$A_B x_B = b \longrightarrow x_B = \begin{bmatrix} x_1 \\ x_3 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 2.5 \end{bmatrix}$$

Two basic solutions are **neighboring** if their basic indices differ by exactly one variable



$$\begin{bmatrix} 1 & -1 & 0 & 3 & -2 \\ 2 & 0 & -1 & -1 & 0 \\ 0 & 2 & 4 & -1 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} -5 \\ -1 \\ 14 \end{bmatrix}$$

$$B = \{1, 3, 5\} \qquad x_2 = x_4 = 0$$

$$A_B x_B = b \longrightarrow x_B = \begin{bmatrix} x_1 \\ x_3 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 25 \end{bmatrix}$$

$$B = \{1, 3, 5\} \qquad x_2 = x_4 = 0 \qquad \qquad \bar{B} = \{1, 3, 4\} \qquad y_2 = y_5 = 0$$

$$A_B x_B = b \longrightarrow x_B = \begin{bmatrix} x_1 \\ x_3 \\ x_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 2.5 \end{bmatrix} \qquad A_{\bar{B}} y_{\bar{B}} = b \longrightarrow y_{\bar{B}} = \begin{bmatrix} y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 0.1 \\ 3.0 \\ -1.7 \end{bmatrix}$$
16

Conditions

$$P = \{x \mid Ax = b, x \ge 0\}$$

Given a basis matrix
$$A_B = \begin{bmatrix} A_{B(1)} & \dots & A_{B(m)} \end{bmatrix}$$

we have basic feasible solution x:

- x_B solves $A_B x_B = b$
- $x_i = 0, \ \forall i \neq B(1), \dots, B(m)$

Conditions

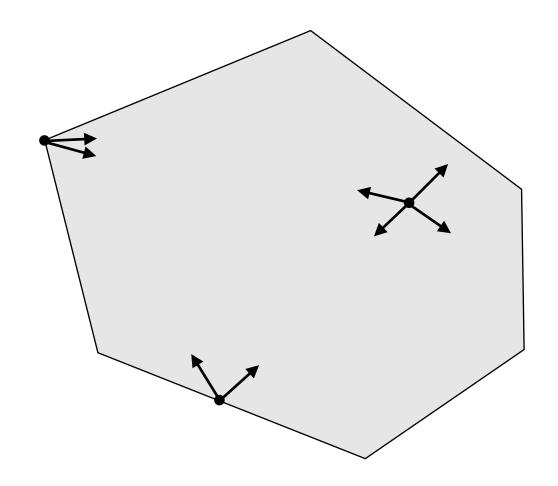
$$P = \{x \mid Ax = b, \ x \ge 0\}$$

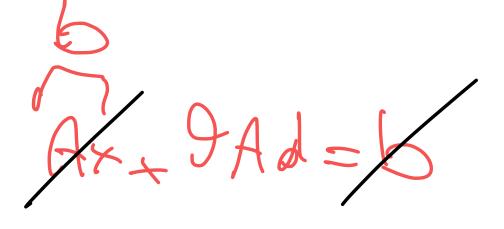
Given a basis matrix $A_B = \begin{vmatrix} A_{B(1)} & \dots & A_{B(m)} \end{vmatrix}$

we have basic feasible solution x:

- x_B solves $A_B x_B = b$
- $x_i = 0, \ \forall i \neq B(1), \dots, B(m)$

Let $x \in P$, a vector d is a feasible direction at x if $\exists \theta > 0$ for which $x + \theta d \in P$





Feasible direction
$$d$$

$$A(x + \theta d) = b \Longrightarrow Ad = 0$$

•
$$x + \theta d \ge 0$$

Computation

Nonbasic indices $(x_i = 0)$

- $d_j = 1$ \longrightarrow Add j to basis B
- $d_k = 0, \ \forall k \notin \{j, B(1), \dots, B(m)\}$

$$P = \{x \mid Ax = b, \ x \ge 0\}$$

•
$$A(x + \theta d) = b \Longrightarrow Ad = 0$$

•
$$x + \theta d \ge 0$$

Computation

Nonbasic indices $(x_i = 0)$

- $d_j = 1$ Add j to basis B
- $d_k = 0, \ \forall k \notin \{j, B(1), \dots, B(m)\}$

Basic indices $(x_B > 0)$

$$Ad=0=\sum_{i=1}^n A_id_i=A_Bd_B+A_j=0\Longrightarrow d_B$$
 solves $A_Bd_B=-A_j$

$$P = \{x \mid Ax = b, \ x \ge 0\}$$

•
$$A(x + \theta d) = b \Longrightarrow Ad = 0$$

•
$$x + \theta d \ge 0$$

Computation

Nonbasic indices $(x_i = 0)$

- $d_j = 1$ Add j to basis B
- $d_k = 0, \ \forall k \notin \{j, B(1), \dots, B(m)\}$

Basic indices $(x_B > 0)$

$$Ad=0=\sum_{i=1}^n A_id_i=A_Bd_B+A_j=0\Longrightarrow d_B$$
 solves $A_Bd_B=-A_j$

Non-negativity (non-degenerate assumption)

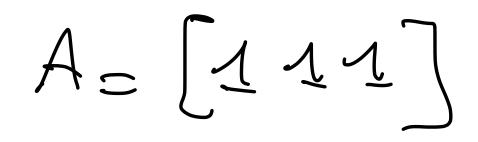
- Non-basic variables: $x_i = 0$. Nonnegative direction $d_i \ge 0$
- Basic variables: $x_B > 0$. Therefore $\exists \theta > 0$ such that $x_B + \theta d_B \ge 0$

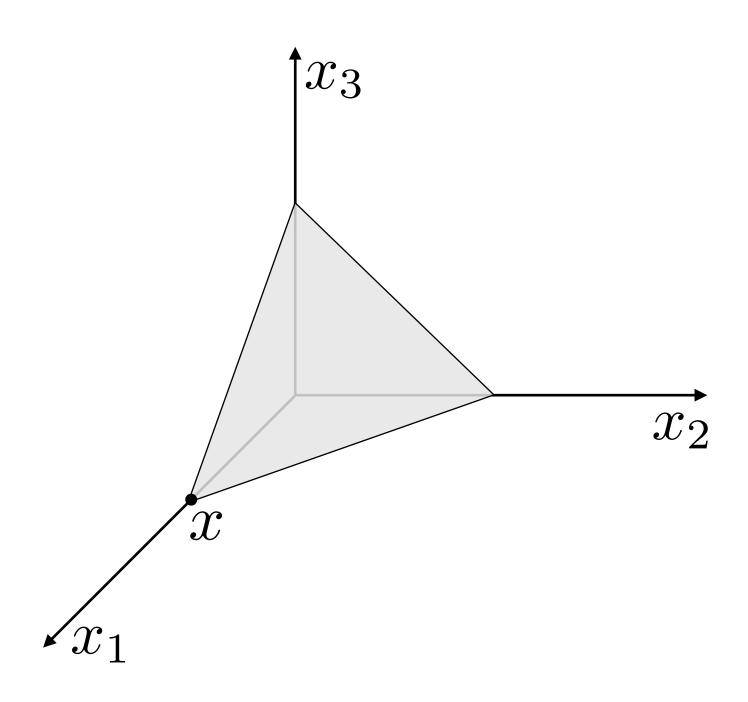
$P = \{x \mid Ax = b, \ x \ge 0\}$

- $A(x + \theta d) = b \Longrightarrow Ad = 0$
- $x + \theta d \ge 0$

$$P = \{x \mid x_1 + x_2 + x_3 = 2, \quad x \ge 0\}$$

$$x = (2, 0, 0)$$
 $B = \{1\}$





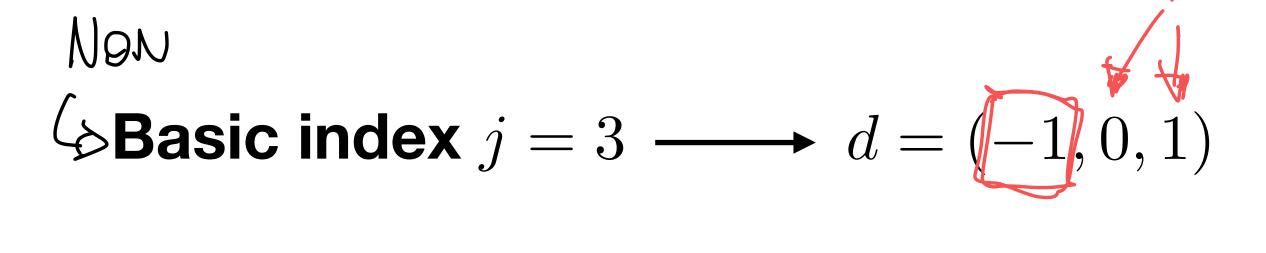
$$A = (111)$$

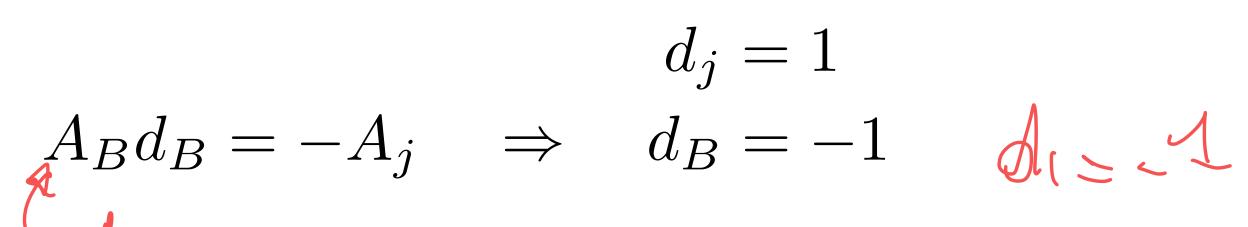
$$AB = [1]$$

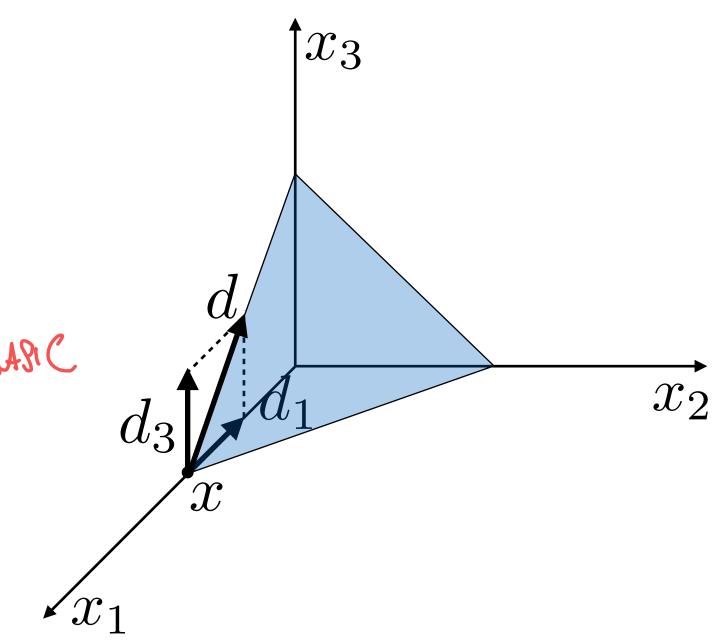
$$P = \{x \mid x_1 + x_2 + x_3 = 2, \quad x \ge 0\}$$

$$x = (2, 0, 0) \qquad B = \{1\}$$

$$\times_{3} = 0$$







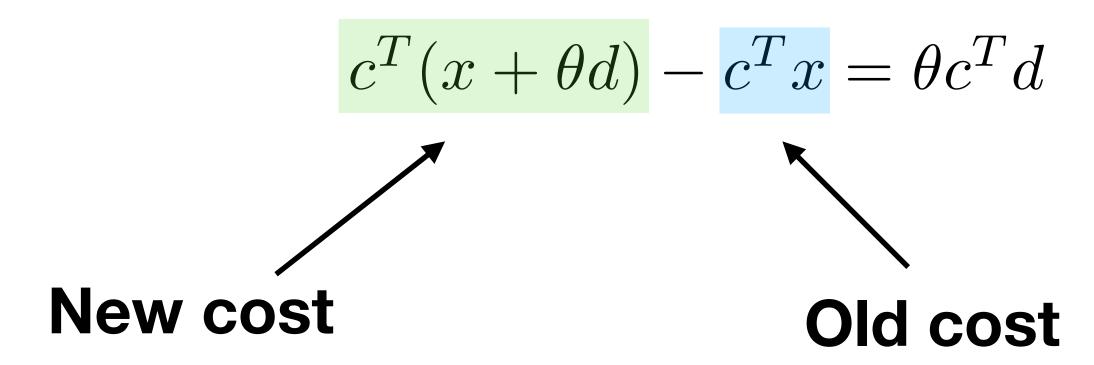
Cost improvement

$$c^T(x + \theta d) - c^T x = \theta c^T d$$

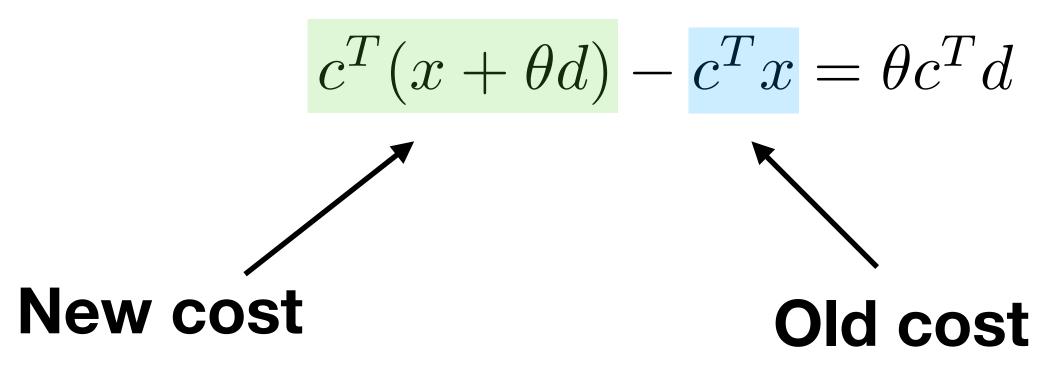
Cost improvement

$$c^T(x+\theta d)-c^Tx=\theta c^Td$$
 New cost

Cost improvement



Cost improvement



ABOB = -ABOB = -ABAR

(-)_\

We call \bar{c}_j the **reduced cost** of (introducing) variable x_j in the basis

$$\bar{c}_j = c^T d = \sum_{j=1}^n c_j d_j = c_j + c_B^T d_B = c_j - c_B^T A_B^{-1} A_j$$

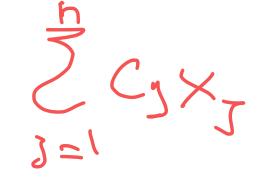
Reduced costs

Interpretation

Change in objective/marginal cost of adding x_j to the basis

$$\bar{c}_j = c_j - c_B^T A_B^{-1} A_j$$

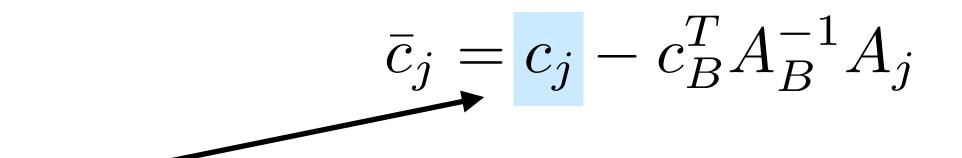
- $\bar{c}_j > 0$: adding x_j will increase the objective (bad)
- $\bar{c}_j < 0$: adding x_j will decrease the objective (good)



Reduced costs

Interpretation

Change in objective/marginal cost of adding x_j to the basis



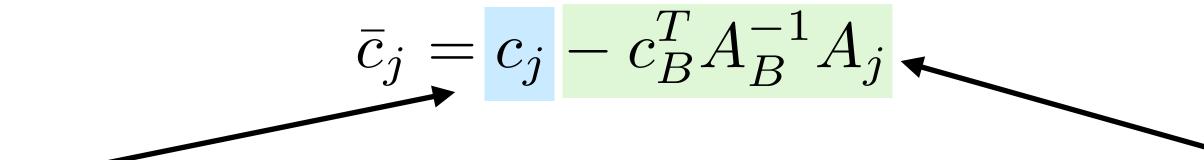
Cost per-unit increase of variable x_j

- $\bar{c}_j > 0$: adding x_j will increase the objective (bad)
- $\bar{c}_j < 0$: adding x_j will decrease the objective (good)

Reduced costs

Interpretation

Change in objective/marginal cost of adding x_j to the basis



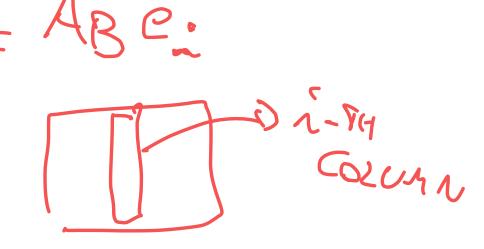
Cost per-unit increase of variable \boldsymbol{x}_j

Cost to change other variables compensating for x_j to enforce Ax = b

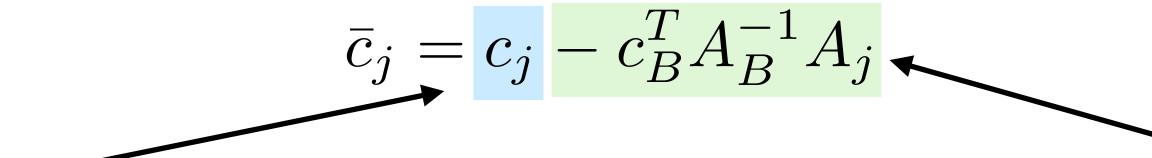
- $\bar{c}_i > 0$: adding x_i will increase the objective (bad)
- $\bar{c}_j < 0$: adding x_j will decrease the objective (good)

Reduced costs

Interpretation



Change in objective/marginal cost of adding x_j to the basis



Cost per-unit increase of variable \boldsymbol{x}_j

Cost to change other variables compensating for x_j to enforce Ax = b

- $\bar{c}_j > 0$: adding x_j will increase the objective (bad)
- $\bar{c}_j < 0$: adding x_j will decrease the objective (good)

Reduced costs for basic variables is 0

$$\bar{c}_{B(i)} = c_{B(i)} - c_B^T A_B^{-1} A_{B(i)} = c_{B(i)} - c_B^T (A_B^{-1} A_B) e_i$$
$$= c_{B(i)} - c_B^T e_i = c_{B(i)} - c_{B(i)} = 0$$

Reduced costs

$$\bar{c}_j = c_j - c_B^T A_B^{-1} A_j$$

Full vector in one shot?

$$\bar{c} = (\bar{c}_1, \dots, \bar{c}_n)$$

Reduced costs

$$\bar{c}_j = c_j - c_B^T A_B^{-1} A_j$$

Isolate basis B-related components p (they are the same across j)

$$\bar{c}_j = c_j - A_j^T (A_B^{-1})^T c_B = c_j - A_j^T p$$

Full vector in one shot?

$$\bar{c} = (\bar{c}_1, \dots, \bar{c}_n)$$

Reduced costs

$$\bar{c}_j = c_j - c_B^T A_B^{-1} A_j$$

Isolate basis B-related components p (they are the same across j)

$$\bar{c}_j = c_j - A_j^T (A_B^{-1})^T c_B = c_j - A_j^T p$$

Full vector in one shot?

$$\bar{c} = (\bar{c}_1, \dots, \bar{c}_n)$$

Obtain p by solving linear system

$$p = (A_B^{-1})^T c_B \quad \Rightarrow \quad A_B^T p = c_B$$

Note:
$$(M^{-1})^T = (M^T)^{-1}$$
 for any square invertible M

Reduced costs

$$\bar{c}_j = c_j - c_B^T A_B^{-1} A_j$$

Isolate basis B-related components p (they are the same across j)

$$\bar{c}_j = c_j - A_j^T (A_B^{-1})^T c_B = c_j - A_j^T p$$

Full vector in one shot?

$$\bar{c} = (\bar{c}_1, \dots, \bar{c}_n)$$

Obtain p by solving linear system

$$p = (A_B^{-1})^T c_B \quad \Rightarrow \quad A_B^T p = c_B$$

Note: $(M^{-1})^T = (M^T)^{-1}$ for any square invertible M

Computing reduced cost vector

1. Solve
$$A_B^T p = c_B$$

2.
$$\bar{c} = c - A^T p$$

$$C = (C_{1}, C_{2}, C_{3}, C_{4}, C_{6})$$
 $B = \{1, 2, 5\}$
 $CB = (C_{1}, C_{2}, C_{3})$

Theorem

Let x be a basic feasible solution associated with basis B Let \overline{c} be the vector of reduced costs.

If $\bar{c} \geq 0$, then x is optimal

Theorem

Let x be a basic feasible solution associated with basis B Let \overline{c} be the vector of reduced costs.

If $\bar{c} \geq 0$, then x is optimal

Remark

This is a stopping criterion for the simplex algorithm.

If the neighboring solutions do not improve the cost, we are done

Proof

For a basic feasible solution x with basis B the reduced costs are $\bar{c} \geq 0$.

Proof

For a basic feasible solution x with basis B the reduced costs are $\bar{c} \geq 0$. Consider any feasible solution y and define d = y - x

Proof

For a basic feasible solution x with basis B the reduced costs are $\bar{c} \geq 0$. Consider any feasible solution y and define d = y - x

Since x and y are feasible, then Ax = Ay = b and Ad = 0

$$Ad = A_B d_B + \sum_{i \in N} A_i d_i = 0 \quad \Rightarrow \quad d_B = -\sum_{i \in N} A_B^{-1} A_i d_i$$

N are the nonbasic indices

Proof

For a basic feasible solution x with basis B the reduced costs are $\bar{c} \geq 0$. Consider any feasible solution y and define d = y - x

Since x and y are feasible, then Ax = Ay = b and Ad = 0

$$Ad = A_B d_B + \sum_{i \in N} A_i d_i = 0 \quad \Rightarrow \quad d_B = -\sum_{i \in N} A_B^{-1} A_i d_i$$

N are the nonbasic indices

The change in objective is
$$c^Td=c_B^Td_B+\sum_{i\in N}c_id_i=\sum_{i\in N}(c_i-c_B^TA_B^{-1}A_i)d_i=\sum_{i\in N}\bar{c}_id_i$$

Proof

For a basic feasible solution x with basis B the reduced costs are $\overline{c} \ge 0$. Consider any feasible solution y and define d = y - x

Since x and y are feasible, then Ax = Ay = b and Ad = 0

$$Ad = A_B d_B + \sum_{i \in N} A_i d_i = 0 \quad \Rightarrow \quad d_B = -\sum_{i \in N} A_B^{-1} A_i d_i$$

N are the nonbasic indices

The change in objective is

$$c^{T}d = c_{B}^{T}d_{B} + \sum_{i \in N} c_{i}d_{i} = \sum_{i \in N} (c_{i} - c_{B}^{T}A_{B}^{-1}A_{i})d_{i} = \sum_{i \in N} \bar{c}_{i}d_{i}$$

Since $y \ge 0$ and $x_i = 0$, $i \in N$, then $d_i = y_i - x_i \ge 0$, $i \in N$

$$c^T d = c^T (y - x) \ge 0 \implies c^T y \ge c^T x.$$

Simplex iterations

What happens if some $\bar{c}_j <$ 0? We can decrease the cost by bringing x_j into the basis

What happens if some $\bar{c}_j <$ 0?

We can decrease the cost by bringing x_j into the basis

How far can we go?

$$\theta^* = \max\{\theta \mid \theta \ge 0 \text{ and } x + \theta d \ge 0\}$$

d is the j-th basic direction

What happens if some $\bar{c}_j < 0$?

We can decrease the cost by bringing x_j into the basis

How far can we go?

$$\theta^* = \max\{\theta \mid \theta \ge 0 \text{ and } x + \theta d \ge 0\}$$

d is the j-th basic direction

Unbounded

If $d \geq 0$, then $\theta^* = \infty$. The LP is unbounded.

What happens if some $\bar{c}_j < 0$?

to the boois

We can decrease the cost by bringing x_i into the basis

How far can we go?

$$\theta^* = \max\{\theta \mid \theta \ge 0 \text{ and } x + \theta d \ge 0\}$$

d is the j-th basic direction

Unbounded

If $d \geq 0$, then $\theta^* = \infty$. The LP is unbounded.

Bounded

If
$$d_i < 0$$
 for some i , then

$$\theta^* = \min_{\{i \in B | d_i < 0\}} \left(-\frac{x_i}{d_i} \right) = \min_{\{i \in B | d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$$

(Since
$$d_i \geq 0, i \notin B$$
)

Next feasible solution

$$x + \theta^{\star} d$$

Next feasible solution

$$x + \theta^* d$$

Let
$$B(\ell)\in\{B(1),\dots,B(m)\}$$
 be the index such that $\theta^\star=-\frac{x_{B(\ell)}}{d_{B(\ell)}}.$ Then, $x_{B(\ell)}+\theta^\star d_{B(\ell)}=0$

Next feasible solution

$$x + \theta^* d$$

Let
$$B(\ell)\in\{B(1),\dots,B(m)\}$$
 be the index such that $\theta^\star=-\frac{x_{B(\ell)}}{d_{B(\ell)}}.$ Then, $x_{B(\ell)}+\theta^\star d_{B(\ell)}=0$

New solution

- $x_{B(\ell)}$ becomes 0 (exits)
- x_j becomes θ^* (enters)

Next feasible solution

$$x + \theta^{\star} d$$

Let
$$B(\ell)\in\{B(1),\dots,B(m)\}$$
 be the index such that $\theta^\star=-\frac{x_{B(\ell)}}{d_{B(\ell)}}.$ Then, $x_{B(\ell)}+\theta^\star d_{B(\ell)}=0$

New solution

- $x_{B(\ell)}$ becomes 0 (exits)
- x_i becomes θ^* (enters)

New basis

$$A_{\bar{B}} = \begin{bmatrix} A_{B(1)} & \dots & A_{B(\ell-1)} & A_j & A_{B(\ell+1)} & \dots & A_{B(m)} \end{bmatrix}$$

An iteration of the simplex method First part

We start with

- a basic feasible solution x
- a basis matrix $A_B = \begin{bmatrix} A_{B(1)} & \dots, A_{B(m)} \end{bmatrix}$

- 1. Compute the reduced costs \bar{c}
 - Solve $A_B^T p = c_B$
 - $\bar{c} = c A^T p$
- 2. If $\bar{c} \geq 0$, x optimal. break
- 3. Choose j such that $\bar{c}_j < 0$

An iteration of the simplex method Second part

- 4. Compute search direction d with $d_j = 1$ and $A_B d_B = -A_j$
- 5. If $d_B \ge 0$, the problem is **unbounded** and the optimal value is $-\infty$. **break**

6. Compute step length
$$\theta^\star = \min_{\{i \in B \mid d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$$

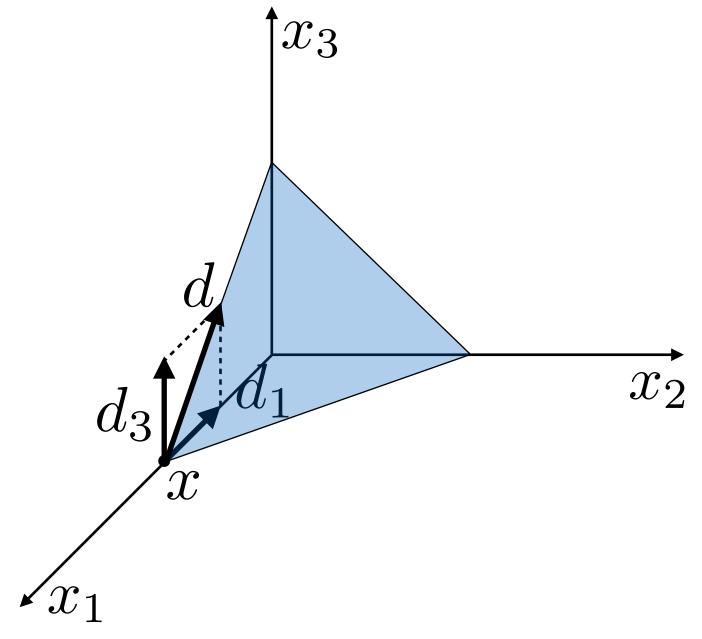
- 7. Define y such that $y = x + \theta^* d$
- 8. Get new basis \bar{B} (i exits and j enters)

Example

$$P = \{x \mid x_1 + x_2 + x_3 = 2, \quad x \ge 0\}$$

$$x = (2, 0, 0)$$
 $B = \{1\}$

Basic index
$$j=3$$
 \longrightarrow $d=(-1,0,1)$ $d_j=1$ $A_Bd_B=-A_j$ \Rightarrow $d_B=-1$



Example

$$P = \{x \mid x_1 + x_2 + x_3 = 2, \quad x \ge 0\}$$

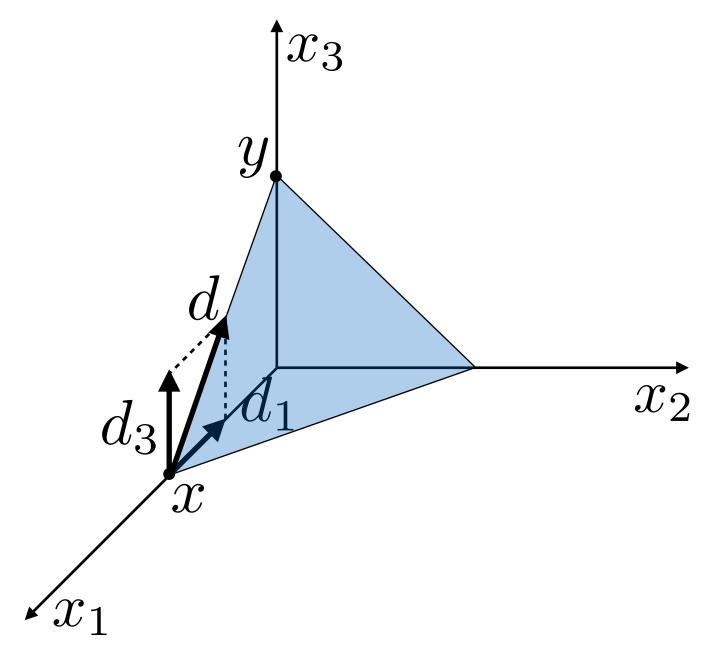
$$x = (2, 0, 0)$$
 $B = \{1\}$

Basic index
$$j=3 \longrightarrow d=(-1,0,1)$$

$$d_j=1$$

$$A_B d_B = -A_j \quad \Rightarrow \quad d_B = -1$$

Stepsize
$$\theta^{\star} = -\frac{x_1}{d_1} = 2$$



Example

$$P = \{x \mid x_1 + x_2 + x_3 = 2, \quad x \ge 0\}$$

$$x = (2, 0, 0)$$
 $B = \{1\}$

$$B = \{1\}$$

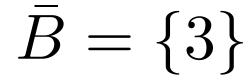
Basic index
$$j = 3 \longrightarrow d = (-1, 0, 1)$$

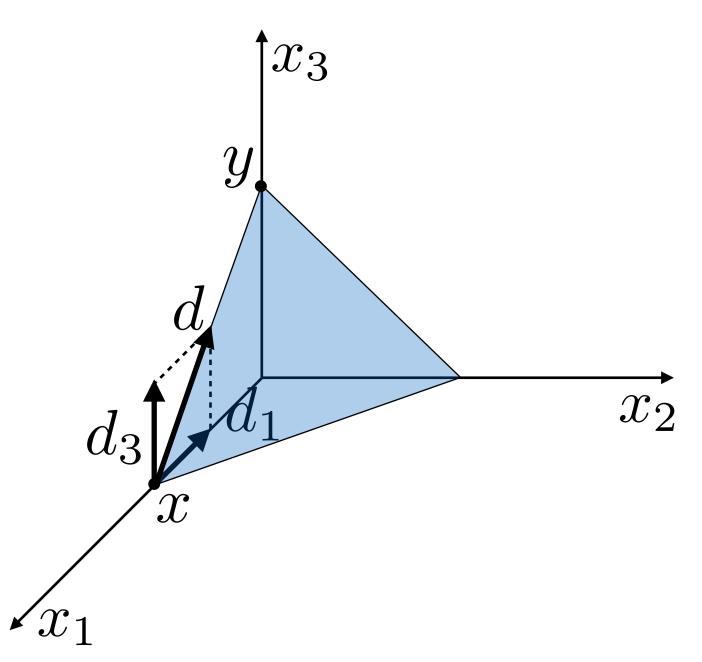
$$d_j = 1$$

$$A_B d_B = -A_j \quad \Rightarrow \quad d_B = -1$$

Stepsize
$$\theta^{\star} = -\frac{x_1}{d_1} = 2$$

New solution
$$y = x + \theta^* d = (0, 0, 2)$$
 $\bar{B} = \{3\}$





Assume that

- $P = \{x \mid Ax = b, x \ge 0\}$ not empty
- Every basic feasible solution non degenerate

Assume that

- $P = \{x \mid Ax = b, x \ge 0\}$ not empty
- Every basic feasible solution non degenerate

Then

- The simplex method terminates after a finite number of iterations
- At termination we either have one of the following
 - an optimal basis \boldsymbol{B}
 - a direction d such that $Ad=0,\ d\geq 0,\ c^Td<0$ and the optimal cost is $-\infty$

Proof sketch

At each iteration the algorithm improves

- by a **positive** amount θ^*
- along the direction d such that $c^T d < 0$

Proof sketch

At each iteration the algorithm improves

- by a **positive** amount θ^*
- along the direction d such that $c^T d < 0$

Therefore

- The cost strictly decreases
- No basic feasible solution can be visited twice

Proof sketch

At each iteration the algorithm improves

- by a **positive** amount θ^*
- along the direction d such that $c^T d < 0$

Therefore

- The cost strictly decreases
- No basic feasible solution can be visited twice

Since there is a **finite number of basic feasible solutions**The algorithm **must eventually terminate**

The simplex method

Today, we learned to:

- Iterate between basic feasible solutions
- Verify optimality and unboundedness conditions
- Apply a single iteration of the simplex method
- Prove finite convergence of the simplex method in the non-degenerate case

References

- Bertsimas and Tsitsiklis: Introduction to Linear Optimization
 - Chapter 3: The simplex method
- R. Vanderbei: Linear Programming Foundations and Extensions
 - Chapter 2: The simplex method
 - Chapter 6: The simplex method in matrix notation

Next lecture

- Finding initial basic feasible solution
- Degeneracy
- Complexity