ORF307 - Optimization

10. Applications of linear optimization

Bartolomeo Stellato — Spring 2023



Ed Forum

 Midterm March 09
Time: 11:00am — 12:20pm
Location: Same as lecture
Topics: Up to last lecture (excluding equivalence theorem)
Material allowed: Single sheet of paper. Double sided. Hand-written or typed.

e Questions

e \What is a basic feasible solution? how we solve for those?






Constructing a basic solution
Two equalities (m =2,n = 3)
minimize ¢!z
subjectto z; +x3 =1
(1/2)x1 + a2 + (1/2)x3 =1
T1,T2,T3 > (

L2
n —m = 1 Inequalities have to be tight: z; =0
Set 1 = 0 and solve
372 p— — p—
1/2 1 1/2 1 1 1/2| |x3 1
- = _IS_ I — - - — — -

($2,$3) — (05, 1)



Basic solutions
Standard form polyhedra

P={{x|Ax=0b, z > 0} with A € R™*"™ has full row rank m < n

x 1S a basic solution if and only if

« Az =0
» There exist indices B(1),..., B(m) such that
— columns Ap(1),...,Apuy) are linearly independent

- x; =0fori £ B(1),..., B(m)

x 1S a basic feasible solution if x is a basic solution and =z > (



Constructing basic solution

1. Choose any m independent columns of A: Ag(1y,..., Apm)
2. Letx;, =0foralli# B(1),...,B(m)
3. Solve Ax = b for the remaining (1), .., TB(m)
Basis Basis columns Basic variables
matrix - i i
| | | TBQ)
AB — AB(l) AB(Q) c e AB(m) ] LB — —— Solve ABCEB =%
. | . ZB(m)_

If t5 > 0, then z Is a basic feasible solution



Optimality of extreme points

minimize ¢!z
subjectto Az <b

If

» P has at least one extreme point
» There exists an optimal solution =*

Then, there exists an optimal solution that is an extreme point of P.

Solution method: restrict search to extreme points.



How to search among basic feasible solutions?

Idea
List all the basic feasible solutions, compare objective values and pick the best one.

Intractable!

If n = 1000 and m = 100, we have 10'*3 combinations!



Conceptual algorithm

e Start at corner

* Visit neighboring corner that
Improves the objective




Today’s agenda

Applications of linear optimization

* Optimal control
e Character recognition

e Portfolio optimization
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Optimal control



Optimal control problems

* The n-vector x; Is the state at time ¢
Linear dynamical system » The m-vector u, is the input at time ¢
Tyi1 = Az, + Buy, t=1,2,... * The p-vector Yt IS the output at ti.me t
» The n x n matrix A is the dynamics matrix
* The n x m matrix B Is the input matrix
* The p x n matrix C'Is the output matrix

yt:C$t, t:1,2,

Simulation
» The sequence x1, x5, ... Is called state trajectory

» The sequence vy, 1y, ... IS called output trajectory

- Goal: Given T1,U1, U2,y ..., find xro,T3,... and Y2, Y3, .. ..
- Obtained by recursion. For¢t =1,2,..., compute
Ti41 = Aﬁt -+ But and Yt = Cxt 19



Optimal control problem

Linear dynamical system

It_|_1:AQZ't—|—But, t:1,2,

:Cl't, t:1,2,

The problem
- The initial state 1 = =™ is given

- Goal. Choose uy,us,...,ur_1 to achieve some goals, e.g.,

— Get to desired final state x = x9S

- Minimize the input effort (make ||u.|| small for all t)

- Track desired output ydes (make ||y; —

ydes|| small for all ¢)
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Least squares optimal control problem

. T o T—1

minimize >, [lye — yi =17 + p >0 [luel?

SUbjeCt to Tt4-1 :Aazt—l—But, t = 1,...,T— 1
yt:CQCt, tzl,,T

T = xinit
Remarks
* The variablesare z5,..., 27, yo,...,yr,and u; ..., upr_1

- Parameter p > 0 controls trade off between
control "energy” and tracking error
» It Is a multi-objective and constrained least squares problem
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1-norm optimal control problem

minimize 7, llye — 48l + p Sy [luelh
subjectto z;41 =Axy +Buy, t=1,...,T —1
yy = Coxy, t=1,....T
Dxy <d, t=1,...,T
Fu <e, t=1,...,1 —1

T = xinit

Remarks
* || - ||1 instead of || - ||3
* Linear inequality constraints:
Dzx; < d for states and Eu; < e for inputs

* |s a linear optimization problem (with additional variables)
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Vehicle example In a plane

Sample position and velocity at times 7 = 0, &, 2h, . ..
Vehicle with mass m

» 2-vector p; Is the position at time ht

» 2-vector v; IS the velocity at time ht

» 2-vector u; I1s the force applied at time At
» —nu; IS the friction force applied at ht

Small time interval &
Pit+1 — Dt

h

mvt LIPS —hvy + uy vir1 = (1 = hn/m)ve + (h/m)u.

h

%’Ut
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Vehicle example In a plane

State
4-vector T = (pt, Ut)

Laws of physics

Dynamics "
output = position

Ti+1 = Az + Buy v = Dy

yr = Cxy
1 0 h 0 ) 0 0 ]

0 1 0 h 0 0 1 0 0 O

A = ., B = , (O =

0 0 1—hn/m 0 h/m 0 0 1 0 O

0 0 0 1 —hn/m 0  h/m




Vehicle example with output tracking

Least squares results
Parameters

T'=100, h=01, n=01, m=1

optimal state trajectory optimal input trajectory
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Vehicle example with output tracking

1-norm results
Parameters

T'=100, h=01, n=01, m=1

optimal state trajectory optimal input trajectory
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Vehicle example with output tracking

1-norm with constraints

Linear optimization can have more interesting constraints

L T o T—1
minimize Zt:l |y — ?J? 1+ PS:t—l |1
SUbjeCt to Tt4-1 :Axt—l—But, t = ]_,...,T— 1

max-input yr =Cuxy, t=1,...,7T
- | Ut]|oo < U™, t=1,...,T —1

U — Up_1|[1 < M, t=1,...,T -1

max-input variation
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Vehicle example with output tracking

1-norm with constraints results

Parameters
ut =10, sM** =0.1

optimal state trajectory optimal input trajectory
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Character recognition



Character recognition

MNIST data set of handwritten numerals
» Each character Is 28 x 28 pixels

» 60k example images

» 10k further testing images

» Each sample comes with a label 0 — 9

Goal
Use linear classification to identify handwritten numbers
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Images representation

Monochrome images

Images represented as an m x n matrix X

Each value X;; represents a pixel’s
intensity (0 = black, and 255 = white)

We can represent an m x n matrix X
by a single vector r € R™"

Xii = T, k=m(y)—1) 41

B

(in MNIST, m = n = 28)
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Linear classification

Support vector machine (linear separation)

Given a set of points {vq,...,vy} with binary labels s; € {—1,1}
Find hyperplane that strictly separates the tho classes .

T .
i +0>0 1 s;,=1
a v; +0o> 1I S . si(aTvz-—l—b)zl

atv, +b<0 if s, =—1

Minimize sum of the violations + regularization

minimize Zfil max{0,1 — s;(alv; +b)} + A||al|y <«— regularization
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Not 5

Learn to classify S

A e B HH

0.08-
0.06-
0.04
0.02-

0.00-

— 'Irain error

............... Test error

o
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Multiclass classification

predicted label: 1  predicted label: 9  predicted label: 4

1. Train one classifier per label &
predicted label: 2 predicted label: 1  predicted label: 2

(e.g., k vs anything else), obtaining (ag, bx)
2. Predict all results and take the maximum . . .

7\ = argmax,, af vl +

predicted label: 2 predicted label: 5  predicted label: 3



Portfolio optimization



Portfolio allocation weights

We want to invest V' dollars in n different assets (stocks, bonds, ...)
over periodst=1,...,T

Portfolio allocation weights
n-vector w gives the fraction of our total portfolio held in each asset

Properties

* Vw; dollar value hold in asset

+ 17w =1 (normalized)

- w; < 0 means short positions (you borrow)
(must be returned at time 7))

» Example: w = (—0.2,0.0,1.2)

i N

Short position Don’t hold any Hold 1.2V
of 0.2V on asset 1 of asset 2 In asset 3
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Return over a period

Asset returns

7, is the (fractional) return example: 7; = (0.01, —0.023,0.02)
of each asset over period ¢ (often expressed as percentage)

Portfolio return _
T Total portfolio value

re =Ty w after a period

It is the (fractional) return Vigr = Ve + Virs w = V(1 4 1)
for the entire portfolio over period ¢




Portfolio optimization

How shall we choose the portfolio weight vector w?

Goals

High (average) return Low risk

Data

- We know realized asset returns but not future ones
- Optimization. We choose w that would have worked well in the past
* True goal. Hope it will work well in the future (just like data fitting)
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Linear optimization for portfolio objective

Average return

avg(r) = (1/T)1" (Rw) 1 1s the n-vector of
= (1/T)(RT1)Tw = pTw average returns per asset

1-norm risk approximation . No longer std(r) (divide by T instead of v/T)

|Ir — avg(r)1||; /T * Linear optimization representable
» Induces sparser fluctuations |r; — avg(r)]

Risk-return objective
—ptw + A|Rw — (p" w)1l /T

!

(tradeoff parameter) o2



Portfolio optimization

Minimize risk-return tradeoff
Chose n-vector w to solve

minimize  —p’ w + A|Rw — (p' w)1||1/T
subjectto 1'w =1
w > 0

Remarks

» Can have inequality constraints (e.g., long-only)
» Tune A\ to get desired Pareto-optimal point
 Gives the best allocation w™ given the past returns
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Example
20 assets over 2000 days (past)

0.151

« Optimal portfolios on a
straight line

Annualized return

* Line starts at risk-free
portfolio (A = oo)

0.05-

* 1/n much better than

single portfolios 0.00

0.201

0.101

Risk-free

2 3
Annualized risk
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The big assumption

Robinhood #

Future returns will look like past ones

© 2021 Robinhood. All rights reserved.

* You are warned this is false, every time you invest e e sttt st e
o I 't i S Of'te n re aS O n a b I e \ Robinhood Financial, Robinhood Securities, and Robinhood Crypto.

All investments involve risk and loss of capital.

» During crisis, market shifts, other big events not true

If assumption holds (even approximately), a good w on past returns
leads to good future (unknown) returns

Example

* Pick w based on last 2 years of returns

» Use w during next 6 months
35



Total portfolio value

Portfolio value (thousand dollars)

150

100-

-
-

—_
-

Train return

Test return

Train risk  Test risk

Risk-free 0.01 0.01 0.00 0.00
A= 1.0e — 02 0.19 0.30 2.97 2.18
A =4.6e —03 0.19 0.31 3.05 2.21
A=2.2e—03 0.19 0.33 3.45 2.42
A=1.0e — 03 0.19 0.34 3.93 2.73
1/n 0.10 0.21 2.33 1.51
Train Test
—— Risk-free
A= 1.0e — 02 18-
—— A =4.6e — 03
—— A =22e—03 161
— A =1.0e — 03
— 1/n 141 ~ h
W |
12 /ﬁNﬂﬁj\’ \fﬂﬁﬁﬁ“ﬂ
/MM,M»
10-

500 1000
Day

1500

2000

W

100 200 300
Day

400

500
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Build your quantitative hedge fund

Rolling portfolio optimization

For each period t, find weight w; using L past returns
Ft—15-- s Tt—L

Variations
- Update w every K periods (monthly, quarterly, ...)

» Add secondary objective A||w; — w;_1]|1 1O
discourage turnover, reduce transaction cost

- Add logic to detect when the future is likely to
not look like the past

- Add “signals” that predict future return of assets
(Twitter sentiment analysis)
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Applications of linear optimization

Today, we learned to apply linear optimization in
* Optimal control problems with vehicle dynamics
 Machine learning problems for character recognition

* Portfolio optimization for investment strategies
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References

e Github companion notebooks
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Next steps

e Simplex method
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