ORF307 – Optimization

9. Geometry and polyhedra

Ed Forum

-Why do we care about minimizing a maximum of convex functions?

- When transforming the los minimization problem, does to have any practical meaning?

- Clarification between la and li minimitation.

Ed Forum

-Why do we care about minimizing a maximum of convex functions? This is a min more problem Ex: minimize $\|Ax-5\|_{\infty} \iff \min \min = \max \{\{Ax-5\}_i\}_{i=1}^{m}$ (a) minimite tSubject to $(Axc-5) \le t \perp$, $-(Axc-5) \le t \perp$

- When transforming the los minimitation problem, does that have any practical meaning?

YES -> Notice that t = minimite //Ax-5/las So, we don't have to spend time computing the larnown, we can just extract it.

Ed Forum

- Clarification between la and li minimitation. $1114x-511_{1}=\frac{1}{1}(4x-5)$ 11 Ax-6/1 = max { (Ax-6); 3:minimize Du minimize t subject to ADC-65t1 subject to (A)c-5) < u $-(Ax-5) \leq \mathbf{U}$ -(Ax-6) < t1 uerris a vector tell is a single scalar that bounds each That bounds each component component element wise simultaneously

Today's lecture

Geometry and polyhedra

- Simple example
- Polyhedra
- Corners: extreme points, vertices, basic feasible solutions
- Constructing basic solutions
- Existence and optimality of extreme points

minimize c^Tx subject to $-1/2 \le x_1 \le 2$ $-1/2 \le x_2 \le 2$ $x_1 + x_2 \le 2$

minimize
$$c^Tx$$
 subject to $-1/2 \le x_1 \le 2$ $-1/2 \le x_2 \le 2$ $x_1 + x_2 \le 2$

What kind of optimal solutions do we get?

minimize c^Tx subject to $-1/2 \le x_1 \le 2$ $-1/2 \le x_2 \le 2$ $x_1 + x_2 \le 2$

Suppose c = (1, 1)

minimize c^Tx subject to $-1/2 \le x_1 \le 2$ $-1/2 \le x_2 \le 2$ $x_1 + x_2 \le 2$

Suppose c = (1, -1)

minimize c^Tx subject to $-1/2 \le x_1 \le 2$ $-1/2 \le x_2 \le 2$ $x_1 + x_2 \le 2$

Suppose c = (-1, -1)

Polyhedra and linear algebra

Hyperplanes and halfspaces

Definitions

Hyperplane

$$\{x \mid a^T x = b\}$$

Halfspace
$$\{x \mid a^T x \leq b\}$$

Hyperplanes and halfspaces

Definitions

Hyperplane

Halfspace

$$\{x \mid a^T x \le b\}$$

- x_0 is a specific point in the hyperplane
- For any x in the hyperplane defined by $a^Tx=b$, $x-x_0\perp a$
- The halfspace determined by $a^Tx \leq b$ extends in the direction of -a

Polyhedron

Definition

$$a_1$$
 a_2
 a_3

- Intersection of finite number of halfspaces
- Can include equalities

$$\begin{cases} 20.7x = 6 \end{cases} \Rightarrow \begin{cases} 0.7x \leq 6 \end{cases}$$

Polyhedron

Example

$$P = \{x \mid a_i^T x \leq b_i, \quad i = 1, \dots, m\} = \{x \mid Ax \leq b\}$$
 minimize $c^T x$

subject to
$$x_1 \leq 2$$

$$x_2 \leq 2$$

$$x_1 \ge -1/2 \longleftrightarrow -x_1 \le \frac{1}{2}$$

$$x_2 \ge -1/2 \longleftrightarrow -x_2 \le \frac{1}{2}$$

$$x_1 + x_2 \le 2$$

$$x_2 \ge -1/2$$

$$x_1 + x_2 \le 2$$

Convex set

Definition

For any $x, y \in C$ and any $\alpha \in [0, 1]$

Convex

Examples

- \mathbf{R}^n
- Hyperplanes
- Halfspaces
- Polyhedra

Nonconvex

Convex combinations

Ingredients:

- A collection of points $C = \{x_1, \dots, x_k\}$
- A collection of non-negative weights α_i
- The weights α_i sum to 1

The vector $v = \alpha_1 x_1 + \cdots + \alpha_k x_k$ is a convex combination of the points.

Convex hull

The **convex hull** is the set of all possible convex combinations of the points.

$$\operatorname{\mathbf{conv}} C =$$

$$\left\{ \sum_{i=1}^{n} \alpha_{i} x_{i} \mid \alpha_{i} \geq 0, \ i = 1, \dots, n, \ \mathbf{1}^{T} \alpha = 1 \right\}$$

Corners

Extreme points

Definition:

An **extreme point** of a set is one not on a straight line between any other points in the set.

The point $x \in P$ is an extreme point of P if

Extreme points

- General convex sets can have an infinite number of extreme points
- Polyhedra are convex sets with a finite number of extreme points

Vertices

The point $x \in P$ is a **vertex** if $\exists c$ such that x is the unique optimum of

minimize subject to $y \in P$

Basic feasible solution

Assume we have a polytope $P = \{x \mid a_i^T x \leq b_i, \quad i = 1, ..., m\}$

Active constraints at \bar{x}

$$\mathcal{I}(\bar{x}) = \{i \in \{1, \dots, m\} \mid a_i^T \bar{x} = b_i\}$$

Basic feasible solution $\bar{x} \in P$

 $\{a_i \mid i \in \mathcal{I}(\bar{x})\}$ has n linearly independent vectors

Degenerate basic feasible solutions

A solution \bar{x} is degenerate if $|\mathcal{I}(\bar{x})| > n$

True or False?

	Basic	Feasible	Degenerate
\boldsymbol{x}			
y			
z			

An Equivalence Theorem

Given a nonempty polyhedron $P = \{x \mid Ax \leq b\}$

x is a vertex $\iff x$ is an extreme point $\iff x$ is a basic feasible solution

Vertex —> Extreme point

If x is a vertex, $\exists c$ such that $c^T x < c^T y$, $\forall y \in P, y \neq x$

Let's assume x is not an extreme point:

$$\exists y, z \neq x \text{ such that } x = \lambda y + (1 - \lambda)z$$

Since x is a vertex, $c^Tx < c^Ty$ and $c^Tx < c^Tz$

Vertex —> Extreme point

If x is a vertex, $\exists c$ such that $c^Tx < c^Ty$, $\forall y \in P, y \neq x$

Let's assume x is not an extreme point:

$$\exists y, z \neq x \text{ such that } x = \lambda y + (1 - \lambda)z$$

Since
$$x$$
 is a vertex, $c^Tx < c^Ty$ and $c^Tx < c^Tz$

Therefore, $c^Tx = \lambda c^Ty + (1-\lambda)c^Tz > \lambda c^Tx + (1-\lambda)c^Tx = c^Tx$

$$c^Tx = c^T(\lambda y + (1-\lambda)z)$$

$$c^{T}x = c^{T}(\lambda y + ((-\lambda)z)^{T})$$

(P) (D) (Not D) not P)

Equivalent theorem proof

Extreme point —> Basic feasible solution

(proof by contraposition)

Suppose $x \in P$ is not basic feasible solution

Extreme point —> Basic feasible solution

(proof by contraposition)

there exist free vars

Since Earlie I(x)} does not

span 12h

Suppose $x \in P$ is not basic feasible solution

$$\{a_i \mid i \in \mathcal{I}(x)\}$$
 does not span \mathbf{R}^n

 $\exists d \in \mathbf{R}^n$ perpendicular to all of them: $a_i^T d = 0$, $\forall i \in \mathcal{I}(x)$

Extreme point —> Basic feasible solution

(proof by contraposition)

Suppose $x \in P$ is not basic feasible solution

 $\{a_i \mid i \in \mathcal{I}(x)\}\ \text{does not span }\mathbf{R}^n$

 $\exists d \in \mathbf{R}^n$ perpendicular to all of them: $a_i^T d = 0$, $\forall i \in \mathcal{I}(x)$

Extreme point —> Basic feasible solution

(proof by contraposition)

Suppose $x \in P$ is not basic feasible solution

 $\{a_i \mid i \in \mathcal{I}(x)\}\ \text{does not span }\mathbf{R}^n$

 $\exists d \in \mathbf{R}^n$ perpendicular to all of them: $a_i^T d = 0$, $\forall i \in \mathcal{I}(x)$

Let $\epsilon > 0$ and define $y = x + \epsilon d$ and $z = x - \epsilon d$

For $i \in \mathcal{I}(x)$ we have $a_i^T y = b_i$ and $a_i^T z = b_i$

For $i \notin \mathcal{I}(x)$ we have $a_i^T x < b_i \implies a_i^T (x + \epsilon d) < b_i$ and $a_i^T (x - \epsilon d) < b_i$

Extreme point —> Basic feasible solution

(proof by contraposition)

Suppose $x \in P$ is not basic feasible solution

$$\{a_i \mid i \in \mathcal{I}(x)\}\ \text{does not span }\mathbf{R}^n$$

 $\exists d \in \mathbf{R}^n$ perpendicular to all of them: $a_i^T d = 0$, $\forall i \in \mathcal{I}(x)$

Let $\epsilon > 0$ and define $y = x + \epsilon d$ and $z = x - \epsilon d$

For $i \in \mathcal{I}(x)$ we have $a_i^T y = b_i$ and $a_i^T z = b_i$

For $i \notin \mathcal{I}(x)$ we have $a_i^T x < b_i \implies a_i^T (x + \epsilon d) < b_i$ and $a_i^T (x - \epsilon d) < b_i$

Hence, $y, z \in P$ and $x = \lambda y + (1 - \lambda)z$ with $\lambda = 0.5$.

 $\implies x$ is not an extreme point

Extreme point —> Basic feasible solution

(proof by contraposition)

Suppose $x \in P$ is not basic feasible solution

Hence, $y, z \in P$ and $x = \lambda y + (1 - \lambda)z$ with $\lambda = 0.5$.

 $\implies x$ is not an extreme point

Basic feasible solution —> Vertex

Left as exercise

Hint

Define
$$c = \sum_{i \in \mathcal{I}(x)} a_i$$

- write out cTx and relate it to cty for get - use livear independence of East to show uniqueness

Constructing basic solutions

3D example

One equality (m = 1, n = 3)

minimize
$$c^Tx$$
 subject to $x_1+x_2+x_3=1$ $x_1,x_2,x_3\geq 0$

Basic feasible solution \bar{x} has n linearly independent active constraints.

n-m=2 inequalities have to be tight: $x_i=0$

3D example

Two equalities (m=2, n=3)

minimize
$$c^Tx$$
 subject to $x_1+x_3=1$
$$(1/2)x_1+x_2+(1/2)x_3=1$$

$$x_1,x_2,x_3\geq 0$$

Basic feasible solution \bar{x} has n linearly independent active constraints.

n-m=1 inequalities have to be tight: $x_i=0$

 x_2

3D example

Three equalities (m=3, n=3)

minimize
$$c^Tx$$
 subject to $x_1+x_3=1$
$$(1/2)x_1+x_2+(1/2)x_3=1$$

$$2x_1=1$$

$$x_1,x_2,x_3\geq 0$$

Basic feasible solution \bar{x} has n linearly independent active constraints.

Standard form polyhedra

Standard form LP

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$

Assumption

 $A \in \mathbf{R}^{m \times n}$ has full row rank $m \leq n$

Interpretation

P is an (n-m)-dimensional surface

Standard form polyhedron

$$P = \{x \mid Ax = b, \ x \ge 0\}$$

$$n = 3, m = 1$$

Constructing a basic solution

Two equalities (m=2, n=3)

```
minimize c^Tx subject to x_1+x_3=1 (1/2)x_1+x_2+(1/2)x_3=1 x_1,x_2,x_3\geq 0
```

n-m=1 inequalities have to be tight: $x_i=0$

Constructing a basic solution

Two equalities (m=2, n=3)

minimize
$$c^Tx$$
 subject to $x_1+x_3=1$
$$(1/2)x_1+x_2+(1/2)x_3=1$$

$$x_1,x_2,x_3\geq 0$$

n-m=1 inequalities have to be tight: $x_i=0$

Set
$$x_1 = 0$$
 and solve

$$\begin{bmatrix} 1 & 0 & 1 \\ 1/2 & 1 & 1/2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & 1 \\ 1 & 1/2 \end{bmatrix} \begin{bmatrix} x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Constructing a basic solution

Two equalities (m=2, n=3)

minimize
$$c^Tx$$
 subject to $x_1+x_3=1$
$$(1/2)x_1+x_2+(1/2)x_3=1$$

$$x_1,x_2,x_3\geq 0$$

n-m=1 inequalities have to be tight: $x_i=0$

Set $x_1 = 0$ and solve

$$\begin{bmatrix} 1 & 0 & 1 \\ 1/2 & 1 & 1/2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & 1 \\ 1 & 1/2 \end{bmatrix} \begin{bmatrix} x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \longrightarrow (x_2, x_3) = (0.5, 1)$$

Basic solutions

Standard form polyhedra

$$P = \{x \mid Ax = b, \ x \ge 0\}$$

with

$$A \in \mathbf{R}^{m \times n}$$
 has full row rank $m \leq n$

Basic solutions

Standard form polyhedra

$$P = \{x \mid Ax = b, \ x \ge 0\}$$

with

 $A \in \mathbf{R}^{m \times n}$ has full row rank $m \leq n$

x is a **basic solution** if and only if

- Ax = b
- There exist indices $B(1), \ldots, B(m)$ such that
 - columns $A_{B(1)}, \ldots, A_{B(m)}$ are linearly independent
 - $x_i = 0$ for $i \neq B(1), \dots, B(m)$

Basic solutions

Standard form polyhedra

$$P = \{x \mid Ax = b, x \ge 0\}$$

with

 $A \in \mathbf{R}^{m \times n}$ has full row rank $m \leq n$

x is a **basic solution** if and only if

- Ax = b
- There exist indices $B(1), \ldots, B(m)$ such that
 - columns $A_{B(1)}, \ldots, A_{B(m)}$ are linearly independent
 - $x_i = 0$ for $i \neq B(1), \dots, B(m)$

x is a basic feasible solution if x is a basic solution and $x \ge 0$

Constructing basic solution

- 1. Choose any m independent columns of A: $A_{B(1)}, \ldots, A_{B(m)}$
- 2. Let $x_i = 0$ for all $i \neq B(1), ..., B(m)$
- 3. Solve Ax = b for the remaining $x_{B(1)}, \ldots, x_{B(m)}$

Constructing basic solution

- 1. Choose any m independent columns of A: $A_{B(1)}, \ldots, A_{B(m)}$
- 2. Let $x_i = 0$ for all $i \neq B(1), ..., B(m)$
- 3. Solve Ax = b for the remaining $x_{B(1)}, \ldots, x_{B(m)}$

Basis basis columns Basic variables
$$A_B = \begin{bmatrix} & & & & & & \\ & & & & & & \\ & A_{B(1)} & A_{B(2)} & \dots & A_{B(m)} \\ & & & & & \end{bmatrix}, \quad x_B = \begin{bmatrix} x_{B(1)} \\ \vdots \\ x_{B(m)} \end{bmatrix} \longrightarrow \text{Solve } A_B x_B = b$$

$$\text{Tf } (x_B)_{\downarrow} \leftarrow 0 \text{ for some } \lambda, \text{ then } \lambda \text{ then$$

Constructing basic solution

- 1. Choose any m independent columns of A: $A_{B(1)}, \ldots, A_{B(m)}$
- 2. Let $x_i = 0$ for all $i \neq B(1), ..., B(m)$
- 3. Solve Ax = b for the remaining $x_{B(1)}, \ldots, x_{B(m)}$

Basis Basis columns Basic variables matrix
$$A_B = \begin{bmatrix} & & & & \\ & A_{B(1)} & A_{B(2)} & \dots & A_{B(m)} \\ & & & & \end{bmatrix}, \quad x_B = \begin{bmatrix} x_{B(1)} \\ \vdots \\ x_{B(m)} \end{bmatrix} \longrightarrow \text{Solve } A_B x_B = b$$

If $x_B \ge 0$, then x is a basic feasible solution

Existence and optimality of extreme points

Example

Characterization

A polyhedron P contains a line if

 $\exists x \in P$ and a nonzero vector d such that $x + \lambda d \in P, \forall \lambda \in \mathbf{R}$.

Characterization

A polyhedron P contains a line if

 $\exists x \in P$ and a nonzero vector d such that $x + \lambda d \in P, \forall \lambda \in \mathbf{R}$.

Given a polyhedron $P = \{x \mid a_i^T x \leq b_i, i = 1, ..., m\}$, the following are equivalent

- P does not contain a line
- P has at least one extreme point
- n of the a_i vectors are linearly independent

Characterization

A polyhedron P contains a line if

 $\exists x \in P \text{ and a nonzero vector } d \text{ such that } x + \lambda d \in P, \forall \lambda \in \mathbf{R}.$

Given a polyhedron $P = \{x \mid a_i^T x \leq b_i, i = 1, ..., m\}$, the following are equivalent

- P does not contain a line
- P has at least one extreme point
- n of the a_i vectors are linearly independent

Corollary
Every nonempty bounded polyhedron has

at least one basic feasible solution

Optimality of extreme points

```
\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}
```

lf

- P has at least one extreme point
- There exists an optimal solution x^{\star}

necessory to linealle infeasible unbounded couses

Then, there exists an optimal solution that is an **extreme point** of P.

Ax < b

Optimality of extreme points

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$$

If

- P has at least one extreme point
- There exists an optimal solution x^*

Solution method: restrict search to extreme points.

How to search among basic feasible solutions?

How to search among basic feasible solutions?

Idea

List all the basic feasible solutions, compare objective values and pick the best one.

How to search among basic feasible solutions?

Idea

List all the basic feasible solutions, compare objective values and pick the best one.

Intractable!

If n = 1000 and m = 100, we have 10^{143} combinations!

combination

Conceptual algorithm

- Start at corner
- Visit neighboring corner that improves the objective

Geometry of linear optimization

Today, we learned to:

- Apply geometric and algebraic properties of polyhedra to characterize the "corners" of the feasible region.
- Construct basic feasible solutions by solving a linear system.
- Recognize existence and optimality of extreme points.

References

- Bertsimas and Tsitsiklis: Introduction to Linear Programming
 - Chapter 2.1—2.6: geometry of linear programming

Next topics

More applications

The simplex method