ORF307 - Optimization

9. Geometry and polyhedra

Bartolomeo Stellato— Spring 2023
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Today'’s lecture
Geometry and polyhedra

e Simple example

* Polyhedra

* Corners: extreme points, vertices, basic feasible solutions
* Constructing basic solutions

* Existence and optimality of extreme points



A simple example

minimize
subject to

c' T
—1/2 <z <2
1/2< 2y < 2
r1 + X9 < 2
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A simple example v

minimize ¢!

subjectto —1/2<x; <2

—1/2 < 29 < 2

r1 + x9 < 2

What kind of optimal
solutions do we get?



A simple example

minimize ¢ x

subjectto —1/2<x; <2
—1/2 < x5 <2
r1 + 22 < 2

Suppose ¢ — (1.1




A simple example

minimize ¢ x
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A simple example

minimize ¢ x

subjectto —1/2<x; <2
—1/2 < x5 <2
r1 + 22 < 2

Suppose c — (—1, —




Polyhedra and linear algebra



Hyperplanes and halfspaces

Definitions

Hyperplane Halfgpace
{x]a" z=0) {z|a"x < bj




Hyperplanes and halfspaces

Definitions
Hyperplane Halfspace
{x]a" x=0) {z|a" 2z < b}
(/SCJLIW . S&M a

a*xr =0b

* xp IS a specific point in the hyperplane
- For any z in the hyperplane defined by e’z =0, z — 29 L a
- The halfspace determined by o’ z < b extends in the direction of —a



Polyhedron — |

- 0‘1\—
Definition f‘ [ ~ar

P={z|alaz<b;, i=1,....,m}={z| Az <b} bj

e

NN
5

a4

* |ntersection of finite number of halfspaces

e Can include equalities
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Polyhedron

Example

minimize
subject to

IC
% /e/vg\g
P={z|a z<b;, i=1,...,m}={z|Ax <b}
7
B¢
CTQj Vel
a71§2

4!

a’;2§2 3

$12—1/2< =) “Dﬁ\é\/l

T2 > —1/2 - > “’%ué\/ I
ZBl‘l‘ZCQSQ Z
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Convex set
Definition
Forany z,y € C' and any a € |0, 1]

Convex

P~

Nonconvex

/wyrm/o&%

L ¢

P
ar+ (1—a)yeC

@

+

Examples

. Rn
» Hyperplanes
- Halfspaces

» Polyhedra
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Convex combinations

Ingredients :

» A collection of points C = {z1,..., %k} .

» A collection of non-negative weights ¢;

» The weights a; sum to 1 o

The vector v = a1 + - - - + arxi IS @ convex combination of the points.

13



Convex hull

The convex hull is the set of all possible

convex combinations of the points.

conv (' =

n
{ZO&@QZ@O@>O, iZl,...,n, ]_TOézl
1=1
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Corners




Extreme points

Definition:
An extreme point of a set iIs one not on a

straight line between any other points in the set.

More formal definition:

The point = € P is an extreme point of P if

:

y,z€ P(y#x,z#x)and a € |0,1] suchthatxr = ay + (1 — a)z

L4
L4
L4
L4
L4
4
L4
24
L4
.' y
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Extreme points

* (General convex sets can have an infinite number of extreme points

 Polyhedra are convex sets with a finite number of extreme points

17



Vertices

The point € P is a vertex if dc such that x is the unigue optimum of

minimize ¢!y
subjectto y e P




Basic feasible solution

Assume we have a polytope P = {z |a; x < b;, i=1,...,m}

Active constraints at z

() = {ie{l,....m}|alz = b;} Llr)=52

S|

v “eg s

Basic feasible solution r € P

{a; | 1 € Z(x)} has n linearly independent vectors

19



Degenerate basic feasible solutions

A solution z is degenerate if |Z(Z)| > n

True or False?
Basic Feasible Degenerate \\

20



<A€\f€é\5 C)
[ Aoesc—A

An Equivalence Theorem

Given a nonempty polyhedron P = {z | Ax < b}

S|

r IS a vertex <— x Is an extreme point <— xz Is a basic feasible solution

21



Equivalent theorem proof

Vertex —> Extreme point

If x is avertex, 3csuchthatclz < cly, Yy e Py #x

Let’'s assume x Is not an extreme point:

dy,z % x suchthat z = Ay + (1 — )z

Since x isavertex, clz < c'yandc'z < ¢!z

22



Equivalent theorem proof

Vertex —> Extreme point

If x is avertex, 3csuchthatclz < cly, Yy e Py #x

Let’'s assume x Is not an extreme point:

dy,z % x suchthat z = Ay + (1 — )z

Since x isavertex, clxz < c'yandc'z < ¢!z

Therefore, ¢!z = Aely+ (1 - Nl z> Al v+ (1 - Nclz=cla

clx = V¢ Ay (A %)C
—> contradiction B
22



(3> 2) (T Q>ni P

Equivalent theorem proof

Extreme point —> Basic feasible solution (proof by contraposition)

Suppose = € P is not basic feasible solution

23



Equivalent theorem proof

Extreme point —> Basic feasible solution (proof by contraposition)
Suppose x € P is not basic feasible solution e 07 @ﬁ;}\f@m B
{a; | i € Z(x)} does not span R" / srce nlie ;ﬁff@“

Jd € R™ perpendicular to all of them: a!d =0, Vi€ Z(x)

{a:] i € I()) i}



Equivalent theorem proof

Extreme point —> Basic feasible solution (proof by contraposition)

Suppose = € P is not basic feasible solution

{a; | 1 € Z(x)} does not span R”

Jd € R™ perpendicular to all of them: a!d =0, Vi€ Z(x)

24



Equivalent theorem proof

Extreme point —> Basic feasible solution (proof by contraposition)

Suppose = € P is not basic feasible solution

{a; | 1 € Z(x)} does not span R”

Jd € R™ perpendicular to all of them: a!d =0, Vi€ Z(x)

Lete >0and definey =x+edand z =z — ed
Fori € Z(x) we have a; y = b; and a; z = b;

Fori ¢ Z(r) we havea; z <b; = a](r+ed) <b;anda; (x—ed) <b;

tﬁ} %/%Q@ 24



Equivalent theorem proof

Extreme point —> Basic feasible solution (proof by contraposition)

Suppose = € P is not basic feasible solution

{a; | 1 € Z(x)} does not span R”

Jd € R™ perpendicular to all of them: a!d =0, Vi€ Z(x)

Lete >0and definey =x+edand z =z — ed
Fori € Z(x) we have a; y = b; and a; z = b;
Fori ¢ Z(r) we havea; z <b; = a](r+ed) <b;anda; (x—ed) <b;

Hence, y,z € Pand x = Ay + (1 — \)z with A = 0.5.
—> x is not an extreme point -



Equivalent theorem proof

Extreme point —> Basic feasible solution (proof by contraposition)

Suppose = € P is not basic feasible solution

d
1a; |1 €1(x)}

Hence, y,z € Pand x = Ay + (1 — \)z with A = 0.5.
—> x is not an extreme point B o5



Equivalence theorem proof

Basic feasible solution —> Vertex

_ et ol T onde bt S o & hie gep

| eft as exercise
— e Linear l@@f@”ﬁ\ﬁ)/\ﬁf/ WE 105 T sha-

M%Mf
Hint

Define c = ) ;7. @i

20



Constructing basic solutions



3D example
One equality (m =1,n = 3)

minimize 'z

SUbjeCt to x1+x9o+x3=1

L1,L2,L3 Z O

> L1

Basic feasible solution x has n T
linearly independent active constraints.
/ —
=

n —m = 2 Inequalities have to be tight: z; = 0 5 oAs = Yo =T



3D example

Two equalities (m =2,n = 3) 0
minimize ¢!z
subjectto z; +x3 =1

L1, L2,L3 Z O

Basic feasible solution x has n
linearly independent active constraints. Lo

|

n — m = 1 Inequalities have to be tight: z; =0

29



3D example

Three equalities (m = 3,n = 3)

minimize ¢’z

subjectto x1 +z3=1
(1/2)x1y + 22 + (1/2)2x3 =1
201 = 1

L1,L2,L3 2 0

Basic feasible solution x has n
linearly independent active constraints.

|

n — m = 0 Inequalities have to be tight: z; =0

30



Standard form polyhedra

Standard form LP Standard form polyhedron
minimize c'x P={x| Az =0, z > 0}
subjectto Az =10

r > 0 3

Assumption
A € R™*"™ has full row rank m <n

Interpretation
P is an (n — m)-dimensional surface



Constructing a basic solution

Two equalities (m =2,n = 3)

minimize ¢!z

subjectto z; +x3 =1
(1/2)xy + 22 + (1/2)2x3 =1
x1,To,xr3 > 0

n —m = 1 Inequalities have to be tight: z; =0

32



Constructing a basic solution
Two equalities (m =2,n = 3)
minimize ¢’z
subjectto z; +x3 =1
(1/2)x1 + a2 + (1/2)x3 =1
T1,T2,T3 > (

L2
n —m = 1 Inequalities have to be tight: z; =0
Set r1 = 0 and solve/”()
10 1|0 [ 0 1] |x|
372 —  — —
1/2 1 1/2 1 1 1/2| |x3 1
- = _IS_ I — — - — — -

@Cﬁﬁﬁ“
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Constructing a basic solution

Two equalities (m =2,n = 3)

minimize 'z

subjectto z; +x3 =1
L1,L2,L3 2 0

n —m = 1 Inequalities have to be tight: z; =0

Set 1 = 0 and solve

1 0 1
1/2 1 1/2

0 1

1 1/2




Basic solutions
Standard form polyhedra

P={x|Ax=0b, x > 0}

with

A € R™*™ has full row rank m <n

33



Basic solutions
Standard form polyhedra

P={{x|Ax=0b, z > 0} with A € R™*"™ has full row rank m < n

x 1S a basic solution if and only if

« Az =0
» There exist indices B(1),..., B(m) such that
— columns Ap(1),...,Apuy) are linearly independent

- x; =0fori £ B(1),..., B(m)

33



Basic solutions
Standard form polyhedra

P={{x|Ax=0b, z > 0} with A € R™*"™ has full row rank m < n

x 1S a basic solution if and only if

« Az =0
» There exist indices B(1),..., B(m) such that
— columns Ap(1),...,Apuy) are linearly independent

- x; =0fori £ B(1),..., B(m)

x 1S a basic feasible solution if x is a basic solution and =z > (

33



Constructing basic solution

1. Choose any m independent columns of A: Ag(y), ..

2. Letx;, =0foralli# B(1),...,B(m)
3. Solve Ax = b for the remaining (1), .., TB(m)

= AB(m)

34



Constructing basic solution

1. Choose any m independent columns of A: Ag(1y,..., Apm)
2. Letx;, =0foralli# B(1),...,B(m)
3. Solve Ax = b for the remaining (1), .., TB(m)
Basis Basis columns Basic variables
matrix - i i
| | | TBQ)
AB — AB(l) AB(Q) c e AB(m) ] LB — —— Solve ABCEB =%
. | . ZB(m)_

34



Constructing basic solution

1. Choose any m independent columns of A: Ag(1y,..., Apm)
2. Letx;, =0foralli# B(1),...,B(m)
3. Solve Ax = b for the remaining (1), .., TB(m)
Basis Basis columns Basic variables
matrix - i i
| | | TBQ)
AB — AB(l) AB(Q) c e AB(m) ] LB — —— Solve ABCEB =%
. | . ZB(m)_

If t5 > 0, then z Is a basic feasible solution
34



Existence and optimality of
extreme points



Existence of extreme points

Example

No extreme points Extreme points

36



Existence of extreme points

Characterization

A polyhedron P contains a line if
x € P and a nonzero vector d such that x + A\d € P,V € R.

37



Existence of extreme points

Characterization

A polyhedron P contains a line if
x € P and a nonzero vector d such that x + A\d € P,V € R.

Given a polyhedron P = {z | a; x < b;, i=1,...,m}, the following are equivalent
» P does not contain a line
» P has at least one extreme poir

» n of the a; vectors are linearly independen

é | W\(/@;\\Oﬂ}r e covtte we o ﬁV@Q

&&\r ( ¢ psT™ one D odic jawdé/ e <o Iriton
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Existence of extreme points

Characterization

A polyhedron P contains a line if
x € P and a nonzero vector d such that x + A\d € P,V € R.

Given a polyhedron P = {z | a; x < b;, i=1,...,m}, the following are equivalent

» P does not contain a line
» P has at least one extreme point
» n of the a; vectors are linearly independent

Corollary
Every nonempty bounded polyhedron has

at least one basic feasible solution
37



Optimality of extreme points

minimize ¢!z
subjectto Az <b

v\e (LA S ofj/ Y}\@
I hondLe
» P has at least one extreme point L Sesdble/ b sunded
» There exists an optimal solution z* C o5 eS8

Then, there exists an optimal solution that is an extreme point of P.

38



Optimality of extreme points

minimize ¢!z
subjectto Az <b

If

» P has at least one extreme point
» There exists an optimal solution =*

Then, there exists an optimal solution that is an extreme point of P.

Solution method: restrict search to extreme points.

38



How to search among basic feasible solutions?

39



How to search among basic feasible solutions?

Idea
List all the basic feasible solutions, compare objective values and pick the best one.

39



How to search among basic feasible solutions?

Idea
List all the basic feasible solutions, compare objective values and pick the best one.

Intractable!

If n = 1000 and m = 100, we have 10'*3 combinations!
- -
— Cgmg‘w a &\/Z

WW@(% NS\
L —

QQQ(FC@?E N

39



Conceptual algorithm

e Start at corner

* Visit neighboring corner that
Improves the objective

40



Geometry of linear optimization

Today, we learned to:

* Apply geometric and algebraic properties of polyhedra to characterize the
“corners” of the feasible region.

 Construct basic feasible solutions by solving a linear system.

 Recognize existence and optimality of extreme points.

41



References

* Bertsimas and Isitsiklis: Introduction to Linear Programming
 Chapter 2.1—2.6 : geometry of linear programming
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Next topics

More applications

The simplex method

43



