ORF307 - Optimization

4. Least squares data fitting
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» Calculating the inverse is slower by a factor of a coefficient, but if youm
given A inverse, couldn’t you also apply it to many b vectors and therefore
also get “many answers for the price of one?”

 On slide 21, it is stated that the Gram matrix is always pos. semidefinite, and
pos. definite iff the columns of A are linearly independent. However, it is
stated on slide 23 that the main assumption of least squares problems is the
A has linearly independent columns. Does this mean that the Gram matrix is
always/must always be positive definite for least squares problems?






Calculus derivation in vector form

f(x) =||Az = b||? = (Ax — b)" (Az — b) = 2' AT Ax — 2(A" b) =+ b" b

Vi(z*) = : = 2A" Ax* —2A" b =2A" (Az" — b) =0

normal equations
XN

square —— (AT A)x*=A"b
linear system



Solving normal equations

(AT A)x* = A" b

Inversion Pseudo-inverse
r* = (AT A) AT — AT = (AT At AT
Factor-solve method Cholesky factorization
A has linearly independent columns
l — AtA=LL"

AT A is symmetric positive-definite



Optimal advertising

m demographic groups vdes is the m-vector

we want to advertise to of desired views/impressions
n advertising channels s IS the n-vector

(web publishers, radio, print, etc.) of purchases

A;; 1s the number of views
—— for group 2 and dollar spent
on channel j (1000/$)

m X n matrix A gives
demographic reach of channels

Views across demographic groups
v = As

Goal
minimize || As — v9%||?



Optimal advertising

Reusing factorization on large example
m = 100, 000 groups, n = 5,000 channels
minimize || As — v9||?

First solve Second solve
desired views v = (10°)1 desired views v9¢% = 5001
1. Form linear system Mx = ¢ 1. Form g = A™b
Pseudoinverse where M = A" A, q = A"b 2. Solve LL Tz = g

2. Factor M = LL1

Time: 263 sec -
3. Solve LL ' x = q

Complexity Complexity
2mn? 2mn

Time: 9 sec Time: 0.37 sec 7



Today'’s lecture

Least squares data fitting

» | east squares model fitting
* Univariate regression
 Multivariate regression

» Validation

 Example



Least squares model fitting



Setup

We Dbelieve a scalar y and a n-vector are related by a model

y ~ f(x)

» x 1S the independent variable or feature vector
* y IS the outcome or response variable
 f:R" > R mapsztoy
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Setup

We Dbelieve a scalar y and a n-vector are related by a model

y ~ f(x)

» x 1S the independent variable or feature vector
* y IS the outcome or response variable
 f:R" > R mapsztoy

We don’t know f and we want to estimate it from data

10



Data

All we have Is data

n-vectors WM ... xW)  andscalars yY,...

also called observations, examples, samples or measurements.

(2D, y() is the ith data pair

x§i) is the jth component of ith data point (%)

(V)

11



Model

Guess a model f : R — R to approximate f

f(ﬂi') =01f1(x) + -+ 0pfp(T)

» f, : R™ — R are feature mappings or basis functions
» 0§, are model parameters to choose
. 3 = f(2() is the model’s prediction for y*

» Goal: 99 ~ y¥) (consistent with observed data)

12



Least squares data fitting
Prediction error (residual) r(1) = ) _ ()

Goal: choose model parameters 6; to minimize
mean squared error (MSE)

(T(l))Q _|_ c o e

+ ()’

N

13



Least squares data fitting

Prediction error (residual) (1) = (1) — 5()

Goal: choose model parameters 6; to minimize
mean squared error (MSE)

(r(DY2 4. g ()2
N

l

This can be formulated
as a least squares problem

13



Least squares data fitting

Prediction error (residual) r() = (&) _ g(0)
Goal: choose model parameters 6; to minimize (riN2 4.4 (r(N))2
mean squared error (MSE) N

l

This can be formulated
as a least squares problem

Note. we sometimes compute the
root mean squared error RMS = vVMSE
because it has the same units as y(¥)

13



Least squares data fitting

Vector form
Express problems with N-vectors
y — (yM), ..., y™)), vector of outcomes
. g4 = (g, ..., g™")), vector of predictions
 rd = (@ r(N)) vector of residuals

14



Least squares data fitting

Vector form
Express problems with N-vectors
y = (y\V, ..., y™)), vector of outcomes
?J = (gD, ..., 9™)), vector of predictions
e rd = (), ..,r(N>), vector of residuals

Goal
minimize

|

dHQ

14



Least squares data fitting

Vector form
Express problems with N-vectors

y = (y(M, ..., y™)), vector of outcomes
+ 9 = (y(” ...,g)W)), vector of predictions —
e rd = (r( (V) vector of residuals

We can write () = f(2(®) in terms of parameters 6,
) = A;1601 + - - - Aip0,, Aij = fj(l‘(i))

Goal
minimize ||r9||?
— % = A

14



Least squares data fitting

Vector form
Express problems with N-vectors

y = (y(M, ..., y™)), vector of outcomes
+ 9 = (y(” ...,g)W)), vector of predictions —
e rd = (r( (V) vector of residuals

We can write () = f(2(®) in terms of parameters 6,
) = A;1601 + - - - Aip0,, Aij = fj(l‘(i))

Least squares problem
minimize ||r9||* =

ly® —°11* = lly" — A9|° =

Goal
minimize ||r9||?
. = 40
| AG — |3
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Least squares data fitting

Vector form
Express problems with N-vectors

y = (y(M, ..., y™)), vector of outcomes
+ 9 = (y(” ...,g)W)), vector of predictions —
e rd = (r( (V) vector of residuals

We can write () = f(2(®) in terms of parameters 6,
) = A;1601 + - - - Aip0,, Aij = fj(l‘(i))

Least squares problem
minimize ||r9||* =

Solution
(ATA)H* — ATy

ly® —°11* = lly" — A9|° =

Goal
minimize ||r9||?
. = 40
| AG — |3

14



Univariate fitting



Fitting univariate functions

We seek to approximate a function f : R — R (n = 1)

Data points (29, y(9))

45 o

8o
4.0-
3.0

= 3.0
2.5
2.0
1.5 _o° @

0.00 0.25 0.50 0.75 1.00
€T




Straight line fit

Model
]?(f) — (91 -+ (9258

» Parameters: 6 = (64, 6-) (p = 2)
» Features: fi(x) =1, fo(zx) =2

17



Straight line fit

Model
]?(f) — (91 -+ (9258

» Parameters: 6 = (64, 6-) (p = 2)
» Features: fi(x) =1, fo(zx) =2

Least squares data

|_1 (1))
1 (2




Straight line fit

Model
]?(f) — (91 -+ (9258

» Parameters: 6 = (64, 6-) (p = 2)
» Features: fi(x) =1, fo(zx) =2

Least squares data

i (1)
1 =z Goal
1 22 - :
A= | | =1 zd minimize HrdH2 = || A0 — ?JdH2
_1 :L‘N_




Straight line fit

Example
0" = (1.75,3.53)
f(ilf) — (91 -+ (9233

>3

0.00 0.25 0.50 0.75 1.00
€T



Asset o and 5 In finance

mkt ;
whole market returns ri Is the return
d — (pmkt mkt) of the whole market
1

— N & .
: R at time ¢

19



Asset o and 5 In finance

mkt :
whole market returns is the return
d (,r,mkt mkt) of the whole market
1

T R .
L at time ¢

rind s the return
of an /ndividual asset
at time ¢

Individual asset returns
yd = (r", . rRd)



whole market returns
d kt kt
= (7 )

L : s '

Individual asset returns
yd = (r", . rRd)

Asset o and 5 In finance

rixt is the return
of the whole market
at time ¢

Goal
predict individual
asset return
from whole market
return

rind s the return
of an /ndividual asset
at time ¢

19



whole market returns

pd = (P )

Individual asset returns

yd = (r", . rRd)

Linear model
§=(r" + ) + Bz — p™*")

Asset o and 5 In finance

rixt is the return

of the whole market
at time ¢

Goal
predict individual
asset return
from whole market
return

rind s the return

of an /ndividual asset
at time ¢

- 1™kt is the average
market return over period
. r is the risk-free
Interest rate over the period

19



Asset o and 5 In finance

mkt :
whole market returns S the return Goal
d mkt mkt of the whole market ~aoal
x® = (") at time predict individual
B} EEE— asset return
individual asset returns r;"" is the return from whole market
d _ (pind ind) of an individual asset return
b =1 sl at time ¢
Linear model » ™% is the average
- orf  mkt market return over period
g =0+ a)+ Bz —p™) . r™ is the risk-free
/ interest rate over the period
asset o

average asset return

above r't 19



Asset o and 5 In finance

mkt '
whole market returns S the return Goal
d mkt mkt of the whole market ~woal
x® = (") . predict individual
at time ¢
m 1 s th t — asset return
individual asset returns S the return from whole market
q (de de) of an individual asset return
s Lo T at time ¢
Linear model + <" is the average
o  mkt market return over period
g=0"+ a)+Ble—p™) . 't is the risk-free
/ \ interest rate over the period
asset o asset
average asset return relates markgt return
above 7f fluctuations

19
to asset return



Time series trend

y(¥) is the value of quantity at time z(¥) =i

yd = (yM, ..., yNV)) is the time series

20



Time series trend

y(¥) is the value of quantity at time z(¥) =i

yd = (yM, ..., yNV)) is the time series

Model (trend line)
9 = 01 + 04, i =1,...

20



Time series trend

y(¥) is the value of quantity at time z(¥) =i

yd = (yM, ..., yNV)) is the time series

Model (trend line)
9 = 01 + 04, i =1,...

|

trend
coefficient

20



Time series trend

y(¥) is the value of quantity at time z(¥) =i

yd = (yM, ..., yNV)) is the time series

Model (trend line)
:&(Z):el—|—9227 7,217

|

trend
coefficient

y4 — 99 is the de-trended time series

20



Time series trend

Petroleum consumption

Consumption De-trended consumption
90- .
- 85_ -
= 2% 4
£ o 80 £
2 o 2 o
S 1 ST 9
E © E ©
25 o5
D = D= 0 r/\'
e Y |
) \//\/
55 . . . . . . .
1980 1990 2000 2010 1980 1990 2000 2010

Year Year



Polynomial fit

Features

fi(x) =t i=1,....p

J?

Model
() = 01 + Oz + ... 0,2

degree at most
p—1

Notation remark

r' means scalar
to :th power

=) means
1th data point

22



Polynomial fit

Features
fi(x) =gt = l,....,p

) Model
f(x) =0, + 0z +...0,2P"

Least squares data
Vandermonde matrix

1 2z (D)l
1 22 0 (2(®))pd

1 =N (aW))pl

degree at most
p—1

Notation remark

r' means scalar
to :th power

=) means
1th data point

22



Polynomial fit

Features
fi(x) =gt = l,....,p

Notation remark

r' means scalar
to :th power

Model () means

f(x) = 01 + bax + ... prp_l degrepe_atlmost 1th data point

Least squares data
Vandermonde matrix

1 2z (zW)p=l
1 2@ . (2@)p] Goal

minimize ||r¢||* = || 40 — y°||?

1o (M-t .



Degree 6

Polynomial fit

N = 100 data points

—0.6 ) —0.6 .
—1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0
i i
Degree 10 Degree 15

Which model is better?

—1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0



Auto-regressive time series model

21, 22,... IS a time series

24



Auto-regressive time series model

21, 22,... IS a time series

auto-regressive (AR) prediction model
Zip1 =z + -+ O0zi—p1, t=M,M+1,...

(predict z; 1 based on previous M values, where M is the memory)

24



Auto-regressive time series model

21, 22,... IS a time series

auto-regressive (AR) prediction model
Zip1 =z + -+ O0zi—p1, t=M,M+1,...

(predict z; 1 based on previous M values, where M is the memory)

Goal: Chose 6 to minimize sum of squares of prediction errors

(73M+1 — ZM+1)2 + et (73T — ZT)2
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Auto-regressive time series model

21, 22,... IS a time series

auto-regressive (AR) prediction model
Zip1 =z + -+ O0zi—p1, t=M,M+1,...

(predict z; 1 based on previous M values, where M is the memory)

Goal: Chose 6 to minimize sum of squares of prediction errors

(73M+1 — ZM+1)2 + et (73T — ZT)2

General data fitting form

(1) = (Z)_(ZM_|_Z ey 2i)y, t=1,....,T— M

— ZM+is

24



Auto-regressive time series model

5 days hourly temperature at  * Previous hour: z; 1 = 2z, MSE 1.35

Los Angeles International * 24 hours before: z; 1 = z;_23, MSE = 3.00
Airport (LAX) « AR model with M = &, MSE = 1.02
AR model

70
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Multivariate regression



Linear regression as general data fitting

Standard linear regression model
= flx) =2 B+

27



Linear regression as general data fitting

Standard linear regression model
= flx) =2 B+

Equivalent general data fitting model

flz) =00 f1(x) + -+ 0, f,(2)
with basis functions
fl(x)Zl’ fi(m):aji—la 222,,n—1

27



Linear regression as general data fitting

Standard linear regression model

g =flz)=a"B+v

Equivalent general data fitting model

A

f(x) =01f1(x) + -+ 0, fp(x)
with basis functions
fl(x)Zl’ fi(m):aji—la 222,,n—1

Therefore, we can write the linear regression model as
y—f()—6'1-|-92$1-|- +‘9n+1xn—xT(92n_|_01

with 6 — (92:n—|—17 UV = (91

27



General data fitting as linear regression

General data fitting model
flx)=01f1(x) + -+ 0, fp(x)

28



General data fitting as linear regression

General data fitting model

f(z) =01 fi(z) + -+ Oy fp()

Equivalent linear regression model
j=fla)=3"6+wv

(common assumption)
( )y ..., [p(x)) (transformed features)
and 3 = 0., (linear regression parameters)

fi(z) =
= (f
= 0,

28



General data fitting as linear regression

General data fitting model
flx)=01f1(x) + -+ 0, fp(x)

Equivalent linear regression model
j=flo)=13"8+v

fi(z) = 1 (common assumption)
* T = (fo(x),..., fr(x)) (transformed features)
v = 61 and 8 = 0., (linear regression parameters)

Our general data fitting framework is nothing more than
linear regression on transformed data

28



Validation



Generalization

Main goal
» The goal of model is not to predict outcome for given data
» Instead, it is to predict the outcome on new, unseen data

30



Generalization

Main goal
» The goal of model is not to predict outcome for given data
» Instead, it is to predict the outcome on new, unseen data

|

Seen/Unseen data
» A model that makes reasonable predictions on new, unseen data
has generalization ability or it generalizes

* A model that makes poor predictions on new, unseen data
IS said to suffer from over-fitting

30



Generalization

Main goal
» The goal of model is not to predict outcome for given data
» Instead, it is to predict the outcome on new, unseen data

|

Seen/Unseen data
» A model that makes reasonable predictions on new, unseen data
has generalization ability or it generalizes

* A model that makes poor predictions on new, unseen data
IS said to suffer from over-fitting

(Almost) always true in decision making
The objective function (here, the training error) is just
a “surrogate” of the true goal

30



Overfitting example

31



Validation

Simple and effective method to guess if a model generalize

Data

1. Split data in training and test set (typical 80%/20% or 90%/10%)
2. Build (train) model on training data set (i.e., compute 6*)
3. Check model’s prediction on test data set

32



Validation

Simple and effective method to guess if a model generalize

Data

1. Split data in training and test set (typical 80%/20% or 90%/10%)
2. Build (train) model on training data set (i.e., compute 6*)
3. Check model’s prediction on test data set

Compare the MSE prediction error on test vs train data set

|

If similar, we can guess that the model will generalize

32



Validation
Data

Useful to choose among different candidate models

 Polynomials of different degrees
e Models with different transformed features

33



Validation
Data

Useful to choose among different candidate models

 Polynomials of different degrees
e Models with different transformed features

We choose the one with lowest test error

33



Example

Polynomial fit

Degree 2 Degree 6

0.6 o0 0.6

—0.61 O —0.61
-1.0 =05 0.0 0.5 1.0 -1.0 =05 0.0 0.5 1.0
i i
Degree 10 Degree 15
06 008 06_

—0.61 —0.61

1.0 0.5 0.0 0.5 1.0 1.0 0.5 0.0 0.5 1.0

Relative error

100 points training set,
100 points test set

—e—  Train

=
©

——  Test

=
00

=
=1

=
o

=
U

=
-

=
o

15 20

-
T A
—_
-
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Example

Polynomial fit

Degree 2

0.6
0.4

0.2{ 22~

—0.21
—0.41

—0.61

—1.0 0.5 0.0 0.5 1.0
i

Degree 10

0.6

—0.61

1.0 0.5 0.0 0.5 1.0

Degree 6

—1.0 0.5 0.0 0.5 1.0

1.0 0.5 0.0 0.5 1.0

100 points training set,
100 points test set

ng —e— Train

——  Test

0.8

=
=1

=
o

Relative error

=
&

=
=

0.31

Degree

It suggests degrees 6/7/8 are
reasonable choices
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Cross validation

Check which method provides the better models
(e.g., choice of features, basis functions, etc.)

35



Cross validation

Check which method provides the better models
(e.g., choice of features, basis functions, etc.)

Data

afold [ | | [ | [ [ [ [ [ ] =5 o oo fbdetan
| _ model using all folds except :
10 fold I:I:I:I:I:I:I:I:I:I:I 3. Test model on data in fold 2
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Cross validation

Check which method provides the better models
(e.g., choice of features, basis functions, etc.)

Data

afold [ | | [ | [ [ [ [ [ ] =5 o oo fbdetan
| _ model using all folds except :
10 fold I:I:I:I:I:I:I:I:I:I:I 3. Test model on data in fold 2

For each fold, compare the MSE
prediction error on test vs train data

!

If test vs train MSE are similar and consistent,
we can guess the model will generalize 39



Cross validation

Check which method provides the better models
(e.g., choice of features, basis functions, etc.)

Data

afold [ | | [ | [ [ [ [ [ ] =5 o oo fbdetan
| _ model using all folds except :
10 fold I:I:I:I:I:I:I:I:I:I:I 3. Test model on data in fold 2

For each fold, compare the MSE This returFrE:rr?g;\k Models
prediction error on test vs train data y ’
to get a model, we have to afterwards
l train over the whole data set

If test vs train MSE are similar and consistent,
we can guess the model will generalize 39






House price regression

774 house sales in Sacramento area

Base features

+ 1, is the area of the house (in 1000ft?)

* 15 IS the number of bedrooms

» 1318 1 for condo and 0 for house (boolean)
» 14 IS the ZIP code (62 values)

37



House price regression
Model

774 house sales in Sacramento area f(x) =01 f1(x) + -+ O fs(2)

Base features

+ 1, is the area of the house (in 1000ft?)

* 15 IS the number of bedrooms

» 13 1S 1 for condo and 0 for house (boolean)
» 14 IS the ZIP code (62 values)

T ( ), fs(x) are Boolean functions of x4, to encode

4 roups of nearby zip codes (i.e., neighborhood)

37



House price prediction
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House price prediction
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House price regression

Crossvalidation

5 folds of 155 sales each

Fold Train error Test error 04 0o 05 0,4 05 06 0~ O«
1 0.26 0.30 115.60 177.53 —47.05 14.64 —13.90 —112.00 -—122.59 —36.51
2 0.26 0.29 121.59 16548 —30.35 17.74 —20.21 —95.22 —103.67  —7.94
3 0.27 0.25 117.83 181.18 —49.78 19.30 —18.68 —106.50 —112.76 —32.37
4 0.27 0.25 104.00 174.54 —41.96 18.81 —17.13 —85.68 —92.09 —6.9¢
5 0.27 0.27 11940 178.57 —44.82 19.50 —25.98 —103.95 —111.56 —36.8€
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House price regression

Crossvalidation

5 folds of 155 sales each

Fold Train error Test error 04 0o 05 0,4 05 06 0~ O«
1 0.26 0.30 115.60 177.53 —47.05 14.64 —13.90 —112.00 -—122.59 —36.51
2 0.26 0.29 121.59 16548 —30.35 17.74 —20.21 —95.22 —103.67  —7.94
3 0.27 0.25 117.83 181.18 —49.78 19.30 —18.68 —106.50 —112.76 —32.37
4 0.27 0.25 104.00 174.54 —41.96 18.81 —17.13 —85.68 —92.09 —6.9¢
5 0.27 0.27 11940 178.57 —44.82 19.50 —25.98 —103.95 —111.56 —36.8€

Good feature choice

 Models (parameters) reasonably stable across folds
e Similar train and test errors

39



Least squares data fitting

Today, we learned to:
 Formulate many data fitting problems as least squares
* Avoid overfitting by keeping our models simple

 Compare our models using validation

40
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Next lecture

 Multi-objective least squares
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