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3. Least squares
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Ed Forum

 Why swapping components of vectors takes significantly less time than
performing floating points operations??

 When are sparse matrices actually sparse”? How many entries are 07?
 What are “gains” in between “just solve” and “factor-solve”?

* Are we supposed to be able to do the different factorizations (LU, LLT) by
hand?






Flop counts

 Computers store real numbers in floating-
point format

e Basic arithmetic operations (addition,
multiplication, etc...) are called floating
point operations (flops)

* Algorithm complexity: total number of
flops needed as function of dimensions

 Execution time =~ (flops)/(computer speed)
[Very grossly approximated]

 Modern computers can go at 1 Gflop/sec
(10° flops/sec)




Summary of easy linear systems

method flops

diagonal
A = diag(aq,...,a,) Ti = bi/a; n
lower triangular forward ,
A;; =0fori <y substitution n
upper triangular backward

. . . . 2
A;; = 0fori > g substitution n
permutation Inverse

P,=1Iifj7=m; else permutation 0



The factor-solve method for solving Ax = b

1. Factor A as a product of simple matrices:
A:A1A2°°°Ak, BE— AlAQ,...AkCIZ:b

(A; diagonal, upper/lower triangular, permutation, etc)

A1$1 =%,

A To = X
2. Compute z = A~ lb=A_"-. . AT'D 242 1
by solving k “easy” systems

At = Tp—1

Note: step 2 Is much cheaper than step 1



Multiple right-hand sides

You now have factored A and you want to solve d linear systems
with different righ-hand side m-vectors b;

A$:b1 AZU:[?Q AQE:bd

Factorization-caching procedure

1. Factor A = A4,..., A, only once (expensive)
2. Solve all linear systems using the same factorization (cheap)

Solve many “at the price of one”



LL" (Cholesky) Factorization

Every positive definite matrix A can be factored as
A=LL"

L lower triangular

Procedure
» Works only on symmetric with positive definite matrices

» No need to permute as in LU
» One of Infinite possible choices of L

Complexity

» (1/3)n° flops (half of LU decomposition)
» Less if A has special structure (sparse, diagonal, etc)



LL' (Cholesky) Solution

Ar=b, = LL'z=1
Iterations

1. Forward substitution: Solve Lx; = b (n* flops)
2. Backward substitution: Solve L'z = x (n? flops)

Complexity

- Factor + solve: (1/3)n’ + 2n? ~ (1/3)n° (for large n)
- Just solve (prefactored): 2n?



Today'’s lecture

Least squares

e | east squares optimization
e Gram matrix
e Solving least squares

 Example
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L east squares optimization



Solving overdetermined linear systems

You have an overdetermined m x n linear system (m > n)

Typically no solution

Axr =0
(with tall A)

9
1
0

example
0l -

XL
1|7 =
XL

2| LT
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Least squares problem

residual vector

r=Ax — b —

Goal: make it as small as possible
minimize ||r|]

Least squares problem

minimize || Az — b||3

* 1 IS the decision variable
» ||Axz — bl|3 is the objective function
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Least squares solution

optimality
condition

minimize || Az — b||3

x™ IS a solution of least squares problem if

|Az* — b||* < ||Az — b||*, for any n-vector z

x* need not (and usually does not) satisfy Ax™ = b

What happens if +* does satisfy Ax™ = b?
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Column interpretation

A= |ay,...,a,|, ai,...,a, are columns of A

Goal: find a linear combination of the columns of A that is closest to b
|Az — b||* = |[(z1a1 + - - - + zpay,) — b]|?

If £* Is a solution of the least squares problem, the m-vector
Ax* =xja1 + -+ x)any

IS the closest to b among all linear combinations of the columns of A
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Row iInterpretation

A= |, al,...,al arerows of A

The residual components are r; = a: = — b;

(

Goal minimize sum of squares of the residuals

Az —b]|" = (a1 = b1)* + -+ + (@ — bin)°

Comparison

» Solving Ax = b forces all residuals to be zero
» Least squares attempts to make them small
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£z
1 1 L —
£z
o 2| U -1
|Az — b||7

Least squares problem
Compute = to minimize

Az — b||* = (221 — 1)° + (—21 + 22)° + (225 + 1)7

Solution z* = (1/3, —1/3) (via calculus)

Interpretations

* ||Az* — b]|* = 2/3 smallest
possible value of ||[Az — bHZ

» Ax* = (2/3,-2/3,—2/3) is the
linear combination of columns

of A closest to b
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Gram matrix



Gram matrix

Given an m x n matrix A with columns a4, ..., a,

the Gram matrix of A is

T T T,

- aQT&l &gag o agan
ATA=1 . .
T T T
A, a1 Qa2 Uy Ay _

Very useful in least squares problems
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Gram matrix
Invertibility

A has linearly independent columns if and only if A* A is invertible

Proof
We show that Ax =0 <— A1 Az =0

= If Az = 0 then we can write
At Ax = AT (Az) = AT0 =0
< if AT Ax = 0 then we can write
0=2"'0=za" (A" Az) = 2* A" Az = || Ax||?
which implies that Ax = 0 (definition of norm) B
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Positive (semi)definiteness of Gram matrix

Positive semidefinite (always)

vt AY Ax = (Az)' (Az) = ||Az||? >0,  for any n-vector z

Positive definite
AT A is positive definite if and only if A has linearly independent columns

Proof

If the columns of A are linearly independent, then
Ax # 0 forany x # 0

Therefore, ' A* Az = || Az||* > 0 (definition of norm) [
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Solving least squares problems



Main assumption

Least squares problem

minimize ||Az — b||5

A has linearly independent columns

True In most practical examples such as data fitting (next lecture)
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Calculus derivation

2
f(z)= Az —b* = (Z Ajjrj — bi)
i=1 \ j=1

The solution z* satisfies axk — 9 Z (Z Ajjz; — b, ) k)
. 3
g —QZATkZAJJ—b)
fork=1,...,n

(AT(AZE —0))x



Calculus derivation in vector form

f(x) =||Az = b||? = (Ax — b)" (Az — b) = 2' AT Ax — 2(A" b) =+ b" b

Vi(z*) = : = 2A" Ax* —2A" b =2A" (Az" — b) =0

normal equations
XN

square —— (AT A)x*=A"b

linear system
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Optimality

For z* such that A* Axz* = ATb, we have

|Az — b = [|[(Az — Az*) + (Az* — b)||°
= [|A(z — z%)||” + ||Az* — b||* + 2(A(xz — 2*))" (Az* — b)
— || A(x — 2*)||* + [|[Az* — b|]? + 2(x — 2*)" A" (Ax* — b)
= ||A(z — 2%)||? + ||Ax™ — b||? ‘

(AT (Az* — b) = 0)

Therefore, for any =, we have
|Az — b > || Az* — b||°

If equality holds, A(x —2*) =0= 2z =2~
since columns of A are linearly independent



Solving normal equations

(AT A)x* = A" b
Inversion

T (ATA)_lATb —_

Factor-solve method
A has linearly independent columns

'
AT A is symmetric positive-definite

Which method is faster?

Pseudo-inverse

AT = (AT A)71TAT

Cholesky factorization

ATA=LL"
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Solving normal equations with Cholesky

1. Form linear system A! Az = A'b
« Form M = A* A (2mn? flops)
» Form g = A’ b: (2mn flops)

2. Factor M = LL* ((1/3)n° flops)

3. Solve LL' x = q (2n? flops)
(with forward/backward substitution)

Complexity

- Factor + solve: 2mn? + 2mn + (1/3)n’ + 2n° ~ 2mn?
- Solve given a new b (prefactored): 2mn + 2n? ~ 2mn
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Optimal advertising

m demographic groups vdes is the m-vector

we want to advertise to of desired views/impressions
n advertising channels s IS the n-vector

(web publishers, radio, print, etc.) of purchases

A;; 1s the number of views
—— for group 2 and dollar spent
on channel j (1000/$)

m X n matrix A gives
demographic reach of channels

Views across demographic groups
v = As

Goal
minimize || As — v9%||?
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Optimal advertising

Results

m = 10 groups, n = 3 channels

desired views vector v9° = (10°)1

minimize || As — v9%||?

|

optimal spending s* = (62, 100, 1443)

1200

1000

8001

Views

400

2001

6001
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Optimal advertising

Reusing factorization on large example
m = 100, 000 groups, n = 5,000 channels
minimize || As — v9||?

First solve Second solve
desired views v = (10°)1 desired views v9¢% = 5001
1. Form linear system Mx = ¢ 1. Form g = A™b
Pseudoinverse where M = A" A, q = A"b 2. Solve LL Tz = g

2. Factor M = LL1

Time: 263 sec -
3. Solve LL ' x = q

Complexity Complexity
2mn? 2mn

Time: 9 sec Time: 0.37 sec 3o



Least squares

Today, we learned to:
 Define and recognize least squares problems
e Solve least squares problems using Cholesky factorization

 Understand the benefits of reusing factorizations
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Next lecture

* | east squares and data fitting
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