ORF307 – Optimization

3. Least squares

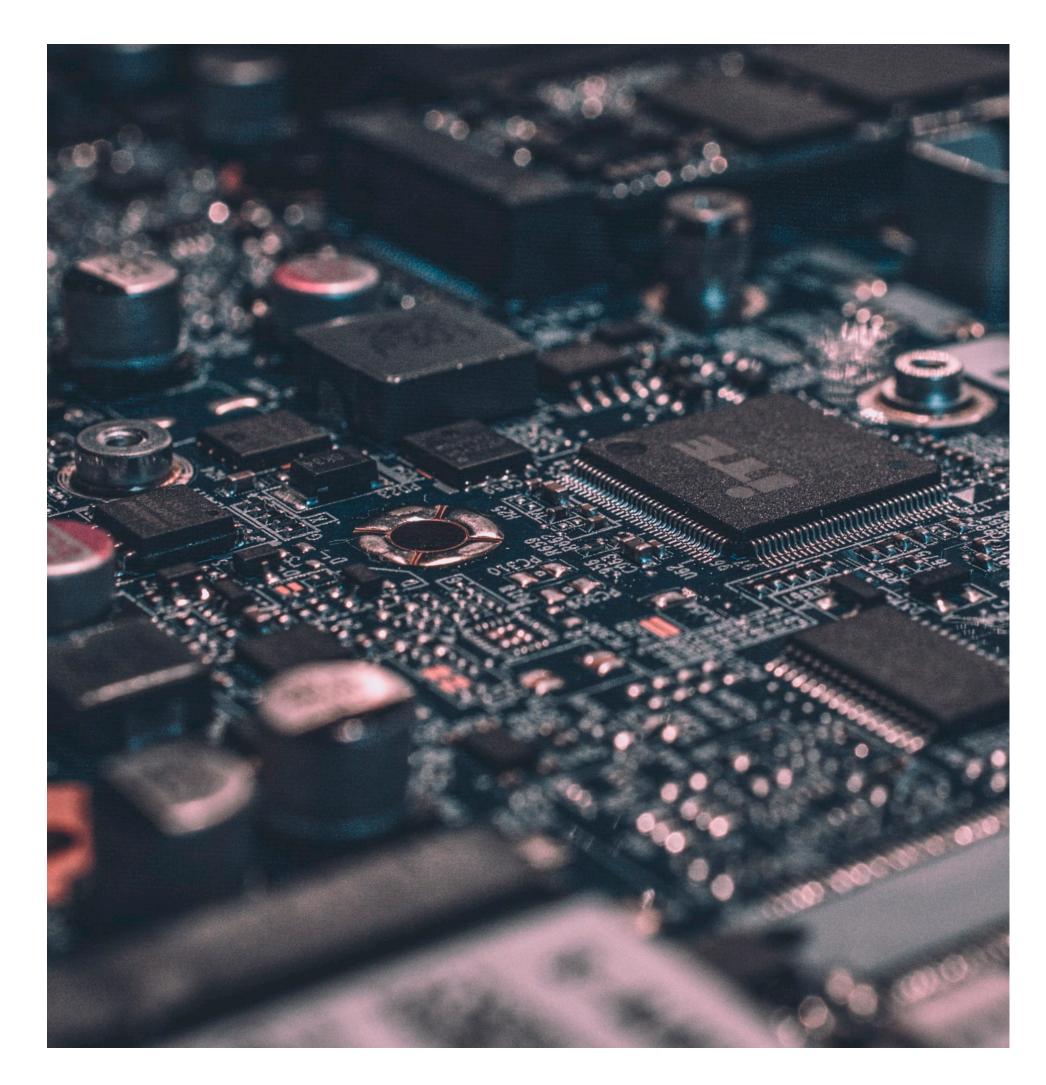
Ed Forum

- Why swapping components of vectors takes significantly less time than performing floating points operations?
- When are sparse matrices actually sparse? How many entries are 0?
- What are "gains" in between "just solve" and "factor-solve"?
- Are we supposed to be able to do the different factorizations (LU, LLT) by hand?

Recap

Flop counts

- Computers store real numbers in floatingpoint format
- Basic arithmetic operations (addition, multiplication, etc...) are called floating point operations (flops)
- Algorithm complexity: total number of flops needed as function of dimensions
- Execution time ≈ (flops)/(computer speed)
 [Very grossly approximated]
- Modern computers can go at 1 Gflop/sec $(10^9 \, \text{flops/sec})$



Summary of easy linear systems

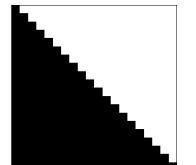
M .	
•	

diagonal

$$A = \mathbf{diag}(a_1, \dots, a_n)$$

$$x_i = b_i/a_i$$

n

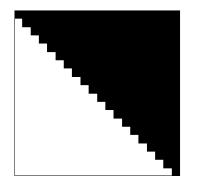


lower triangular

$$A_{ij} = 0 \text{ for } i < j$$

forward substitution

 n^2



upper triangular

$$A_{ij} = 0 \text{ for } i > j$$

backward substitution

 n^2

permutation

$$P_{ij} = 1 \text{ if } j = \pi_i \text{ else } 0$$

inverse permutation

0

The factor-solve method for solving Ax=b

1. Factor A as a product of simple matrices:

$$A = A_1 A_2 \cdots A_k, \longrightarrow A_1 A_2, \ldots A_k x = b$$

(A_i diagonal, upper/lower triangular, permutation, etc)

2. Compute
$$x = A^{-1}b = A_k^{-1} \cdots A_1^{-1}b$$
 by solving k "easy" systems

$$A_1x_1 = b$$

$$A_2x_2 = x_1$$

$$\vdots$$

$$A_kx = x_{k-1}$$

Note: step 2 is much cheaper than step 1

Multiple right-hand sides

You now have factored A and you want to solve d linear systems with different righ-hand side m-vectors b_i

$$Ax = b_1$$
 $Ax = b_2$... $Ax = b_d$

Factorization-caching procedure

- 1. Factor $A = A_1, \ldots, A_k$ only once (expensive)
- 2. Solve all linear systems using the same factorization (cheap)

Solve many "at the price of one"

LL^T (Cholesky) Factorization

Every positive definite matrix A can be factored as

$$A = LL^T$$

L lower triangular

Procedure

- Works only on symmetric with positive definite matrices
- No need to permute as in LU
- ullet One of infinite possible choices of L

Complexity

- $(1/3)n^3$ flops (half of LU decomposition)
- Less if A has special structure (sparse, diagonal, etc)

LL^T (Cholesky) Solution

$$Ax = b, \Rightarrow LL^T x = b$$

Iterations

- 1. Forward substitution: Solve $Lx_1 = b$ (n^2 flops)
- 2. Backward substitution: Solve $L^T x = x$ (n^2 flops)

Complexity

- Factor + solve: $(1/3)n^3 + 2n^2 \approx (1/3)n^3$ (for large *n*)
- Just solve (prefactored): $2n^2$

Today's lecture

Least squares

- Least squares optimization
- Gram matrix
- Solving least squares
- Example

Least squares optimization

Solving overdetermined linear systems

You have an overdetermined $m \times n$ linear system (m > n)

$$Ax = b$$

(with tall A)

example

$$\begin{bmatrix} 2 & 0 \\ -1 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$

Least squares problem

residual vector

$$r = Ax - b$$

Goal: make it as small as possible

minimize
$$||r||$$

Least squares problem

minimize
$$||Ax - b||_2^2$$

- x is the decision variable
- $\|Ax-b\|_2^2$ is the *objective function*

Least squares solution

minimize
$$||Ax - b||_2^2$$

optimality condition

$$x^{\star}$$
 is a solution of least squares problem if

$$||Ax^{\star}-b||^2 \leq ||Ax-b||^2$$
, for any n -vector x

 x^{\star} need not (and usually does not) satisfy $Ax^{\star}=b$

What happens if x^* does satisfy $Ax^* = b$?

Column interpretation

$$A = \begin{bmatrix} a_1, \dots, a_n \end{bmatrix}$$
, a_1, \dots, a_n are columns of A

Goal: find a linear combination of the columns of A that is closest to b

$$||Ax - b||^2 = ||(x_1a_1 + \dots + x_na_n) - b||^2$$

If x^* is a solution of the least squares problem, the m-vector

$$Ax^* = x_1^* a_1 + \dots + x_n^* a_n$$

is the closest to b among all linear combinations of the columns of A

Row interpretation

$$A = \begin{bmatrix} \tilde{a}_1^T \\ \vdots \\ \tilde{a}_m^T \end{bmatrix}, \qquad \tilde{a}_1^T, \dots, \tilde{a}_m^T \text{ are rows of } A$$

The residual components are $r_i = \tilde{a}_i^T x - b_i$

Goal minimize sum of squares of the residuals

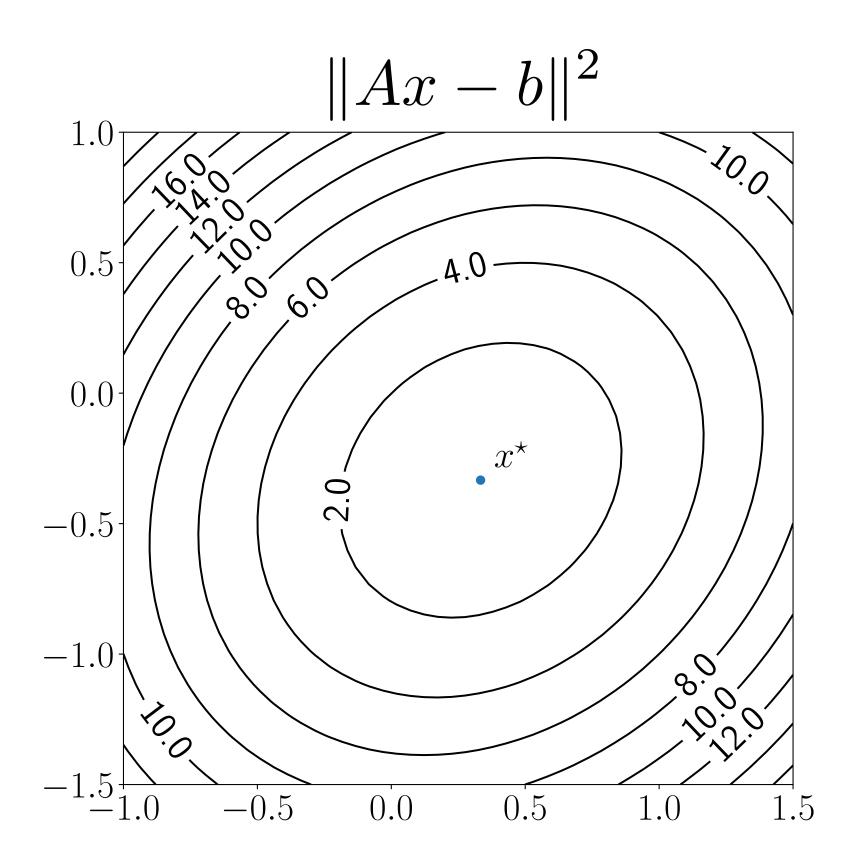
$$||Ax - b||^2 = (\tilde{a}_1^T x - b_1)^2 + \dots + (\tilde{a}_m^T x - b_m)^2$$

Comparison

- Solving Ax = b forces all residuals to be zero
- Least squares attempts to make them small

Example

$$\begin{bmatrix} 2 & 0 \\ -1 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$$



Least squares problem

Compute x to minimize

$$||Ax - b||^2 = (2x_1 - 1)^2 + (-x_1 + x_2)^2 + (2x_2 + 1)^2$$

Solution $x^* = (1/3, -1/3)$ (via calculus)

Interpretations

- $\|Ax^* b\|^2 = 2/3$ smallest possible value of $\|Ax b\|^2$
- $Ax^* = (2/3, -2/3, -2/3)$ is the linear combination of columns of A closest to b

Gram matrix

Gram matrix

Given an $m \times n$ matrix A with columns a_1, \ldots, a_n

the Gram matrix of A is

$$A^{T}A = \begin{bmatrix} a_{1}^{T}a_{1} & a_{1}^{T}a_{2} & \dots & a_{1}^{T}a_{n} \\ a_{2}^{T}a_{1} & a_{2}^{T}a_{2} & \dots & a_{2}^{T}a_{n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n}^{T}a_{1} & a_{n}^{T}a_{2} & \dots & a_{n}^{T}a_{n} \end{bmatrix}$$

Very useful in least squares problems

Gram matrix

Invertibility

 ${\cal A}$ has linearly independent columns if and only if ${\cal A}^T{\cal A}$ is invertible

Proof

We show that $Ax = 0 \iff A^TAx = 0$

 \Rightarrow if Ax = 0 then we can write

$$A^T A x = A^T (A x) = A^T 0 = 0$$

 \Leftarrow if $A^TAx = 0$ then we can write

$$0 = x^T 0 = x^T (A^T A x) = x^T A^T A x = ||Ax||^2$$

which implies that Ax = 0 (definition of norm)

Positive (semi)definiteness of Gram matrix

Positive semidefinite (always)

$$x^{T}A^{T}Ax = (Ax)^{T}(Ax) = ||Ax||^{2} \ge 0,$$
 for any *n*-vector x

Positive definite

 A^TA is positive definite if and only if A has linearly independent columns

Proof

If the columns of A are linearly independent, then $Ax \neq 0$ for any $x \neq 0$

Therefore, $x^T A^T A x = ||Ax||^2 > 0$ (definition of norm)

Solving least squares problems

Main assumption

Least squares problem

minimize
$$||Ax - b||_2^2$$

A has linearly independent columns

True in most practical examples such as data fitting (next lecture)

Calculus derivation

$$f(x) = ||Ax - b||^2 = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} A_{ij} x_j - b_i \right)^2$$

The solution x^* satisfies

$$\nabla f(x^{\star})_k = \frac{\partial f}{\partial x_k}(x^{\star}) = 0, \qquad ---$$

for
$$k = 1, \ldots, n$$

$$\frac{\partial f}{\partial x_k}(x) = 2\sum_{i=1}^m \left(\sum_{j=1}^n A_{ij}x_j - b_i\right) (A_{ik})$$
$$= 2\sum_{i=1}^m (A^T)_{ki}(Ax - b)_i$$
$$= 2(A^T(Ax - b))_k$$

Calculus derivation in vector form

$$f(x) = ||Ax - b||^2 = (Ax - b)^T (Ax - b) = x^T A^T Ax - 2(A^T b)^T x + b^T b$$

$$\nabla f(x^*) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(x^*) \\ \vdots \\ \frac{\partial f}{\partial x_n}(x^*) \end{bmatrix} = 2A^T A x^* - 2A^T b = 2A^T (A x^* - b) = 0$$

normal equations

$$(A^T A)x^* = A^T b$$

Optimality

For x^* such that $A^TAx^*=A^Tb$, we have

$$||Ax - b||^{2} = ||(Ax - Ax^{*}) + (Ax^{*} - b)||^{2}$$

$$= ||A(x - x^{*})||^{2} + ||Ax^{*} - b||^{2} + 2(A(x - x^{*}))^{T}(Ax^{*} - b)$$

$$= ||A(x - x^{*})||^{2} + ||Ax^{*} - b||^{2} + 2(x - x^{*})^{T} A^{T}(Ax^{*} - b)$$

$$= ||A(x - x^{*})||^{2} + ||Ax^{*} - b||^{2}$$

$$= ||A(x - x^{*})||^{2} + ||Ax^{*} - b||^{2}$$

$$(A^{T}(Ax^{*} - b) = 0)$$

Therefore, for any x, we have $||Ax - b||^2 \ge ||Ax^* - b||^2$

If equality holds, $A(x - x^*) = 0 \Rightarrow x = x^*$ since columns of A are linearly independent

Solving normal equations

$$(A^T A)x^* = A^T b$$

Inversion

$$x^* = (A^T A)^{-1} A^T b$$

Pseudo-inverse

$$A^{\dagger} = (A^T A)^{-1} A^T$$

Factor-solve method

A has linearly independent columns

 $A^T A$ is symmetric positive-definite

Cholesky factorization

$$A^T A = L L^T$$

Which method is faster?

Solving normal equations with Cholesky

- 1. Form linear system $A^TAx = A^Tb$
 - Form $M = A^T A$ (2mn² flops)
 - Form $q = A^T b$: (2mn flops)
- 2. Factor $M = LL^T$ ((1/3) n^3 flops)
- 3. Solve $LL^Tx = q$ ($2n^2$ flops) (with forward/backward substitution)

Complexity

- Factor + solve: $2mn^2 + 2mn + (1/3)n^3 + 2n^2 \approx 2mn^2$
- Solve given a new b (prefactored): $2mn + 2n^2 \approx 2mn$

Example

Optimal advertising

m demographic groups we want to advertise to

 v^{des} is the m-vector of desired views/impressions

n advertising channels (web publishers, radio, print, etc.) s is the n-vector of purchases

 $m \times n$ matrix A gives demographic reach of channels

 A_{ij} is the number of views for group i and dollar spent on channel j (1000/\$)

Views across demographic groups

$$v = As$$

$$\begin{array}{c} \textbf{Goal} \\ \textbf{minimize} & \|As-v^{\text{des}}\|^2 \end{array}$$

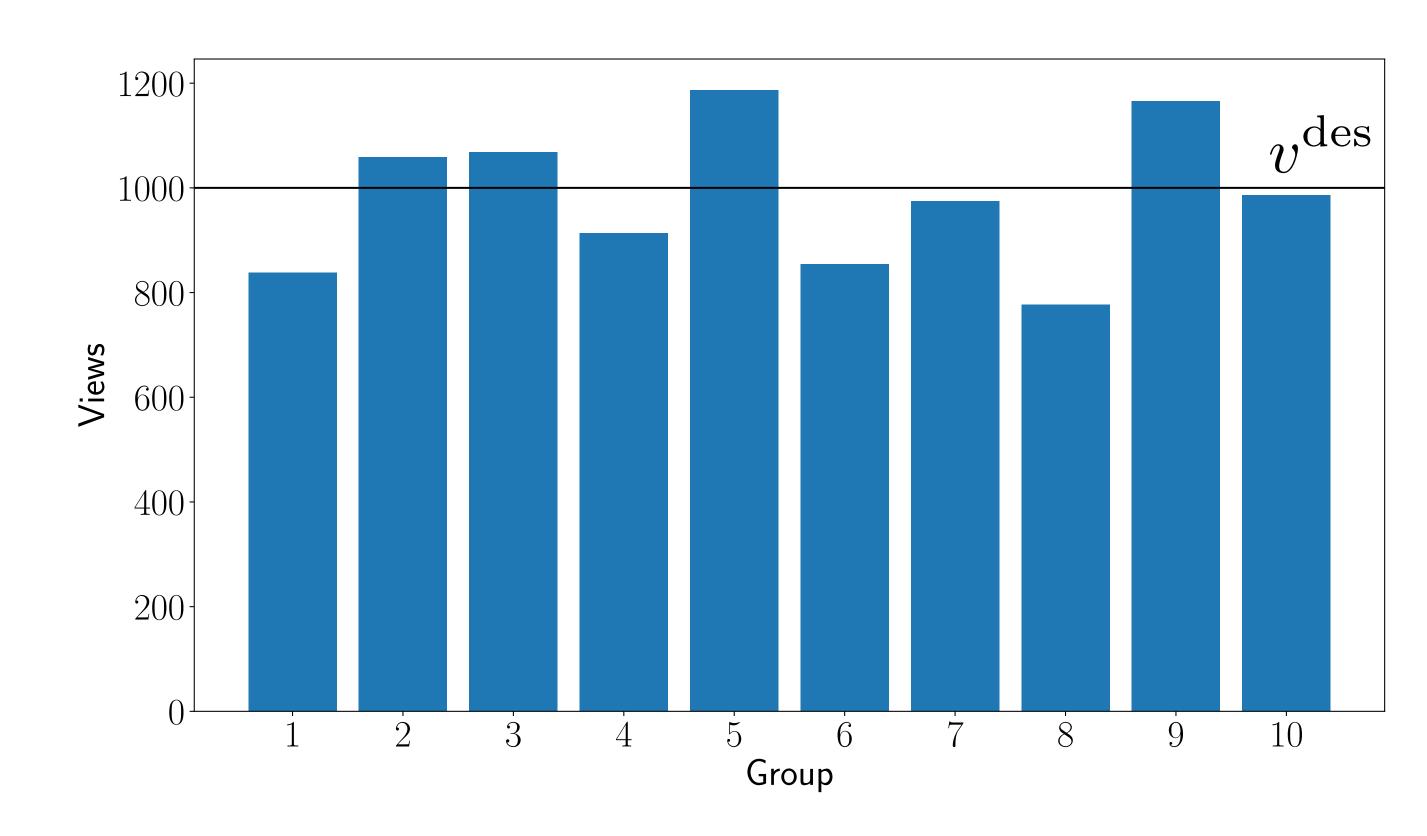
Optimal advertising Results

m=10 groups, n=3 channels

desired views vector $v^{\text{des}} = (10^3)1$

minimize $||As - v^{\text{des}}||^2$

optimal spending $s^* = (62, 100, 1443)$



Optimal advertising

Reusing factorization on large example

$$m=100,000$$
 groups, $n=5,000$ channels minimize $\|As-v^{\mathrm{des}}\|^2$

First solve

desired views $v^{\mathrm{des},1} = (10^3)\mathbf{1}$

- 1. Form linear system Mx=q where $M=A^TA, q=A^Tb$
- 2. Factor $M = LL^T$
- 3. Solve $LL^Tx=q$

Pseudoinverse

Time: 263 sec

Complexity

 $2mn^2$

Time: 9 sec

Second solve

desired views $v^{\mathrm{des,2}} = 5001$

- 1. Form $q = A^T b$
- 2. Solve $LL^Tx = q$

Complexity

2mn

Time: 0.37 sec 32

Least squares

Today, we learned to:

- Define and recognize least squares problems
- Solve least squares problems using Cholesky factorization
- Understand the benefits of reusing factorizations

References

- S. Boyd, L. Vandenberghe: Introduction to Applied Linear Algebra Vectors, Matrices, and Least Squares
 - Chapter 12: least squares

Next lecture

Least squares and data fitting