ORF307 – Optimization

19. Linear optimization review

Ed Forum

- How do mathematicians know when to use "heuristics," or arbitrary measures to make the algorithm work better?
- Why is not being able to warm start a problem if we can start interior point methods with an infeasible solution?

Today's lecture Linear optimization review

- Formulations
- Piecewise linear optimization
- Duality
- Sensitivity analysis
- Simplex method
- Interior point methods

Formulations

Linear optimization

minimize
$$c^T x$$
 subject to $Ax \leq b$

- Minimization
- subject to $Ax \leq b$ Less-than ineq. constraints
 - Dx = f Equality constraints

x is **feasible** if it satisfies the constraints $Ax \leq b$ and Dx = f

The feasible set is the set of all feasible points

 x^{\star} is optimal if it is feasible and $c^T x^{\star} \leq c^T x$ for all feasible x

The optimal value is $p^{\star} = c^T x^{\star}$

Unbounded problem: $c^T x$ is unbounded below on the feasible set $(p^* = -\infty)$ Infeasible problem: feasible set is empty $(p^* = +\infty)$

Feasibility problems

Possible results

- $p^* = 0$ if constraints are feasible (consistent). (Every feasible x is optimal)
- $p^* = \infty$ otherwise

Standard form

Definition

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$

- Minimization
- Equality constraints
- Nonnegative variables

Useful to

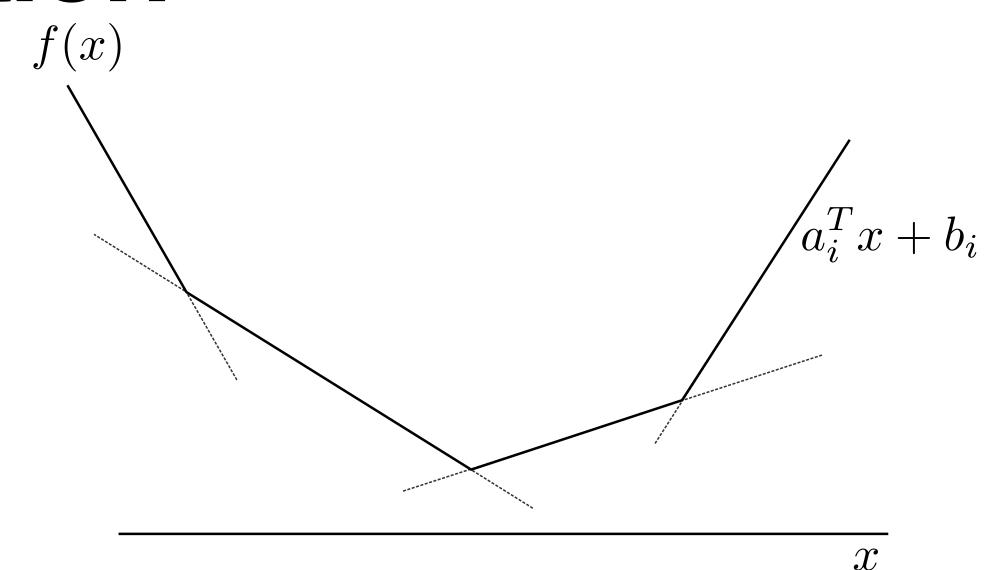
- develop algorithms
- algebraic manipulations

Piecewise linear optimization

Piecewise-linear minimization

minimize
$$f(x) = \max_{i=1,\dots,m} (a_i^T x + b_i)$$

$$\downarrow$$
 minimize
$$t$$
 subject to
$$a_i^T x + b_i \leq t, \quad i=1,\dots,m$$



Matrix notation

 $\begin{array}{ll} \text{minimize} & \tilde{c}^T \tilde{x} \\ \text{subject to} & \tilde{A} \tilde{x} \leq \tilde{b} \end{array}$

$$\tilde{x} = \begin{bmatrix} x \\ t \end{bmatrix}, \quad \tilde{c} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad \tilde{A} = \begin{bmatrix} a_1^T & -1 \\ \vdots & \vdots \\ a_m^T & -1 \end{bmatrix}, \quad \tilde{b} = \begin{bmatrix} -b_1 \\ \vdots \\ -b_m \end{bmatrix}$$

1 and infinity norms reformulations

1-norm minimization:

minimize
$$||Ax - b||_1 = \sum_{i} |(Ax - b)_i|$$

Equivalent to:

 $\begin{array}{ll} \text{minimize} & \mathbf{1}^T u \\ \\ \text{subject to} & -u \leq Ax - b \leq u \end{array}$

Absolute value of every element $(Ax - b)_i$ is bounded by a component of the **vector** u

∞-norm minimization:

minimize
$$||Ax - b||_{\infty} = \max_{i} |(Ax - b_i)_i|$$

Equivalent to:

 $\begin{array}{ll} \text{minimize} & t \\ \text{subject to} & -t\mathbf{1} \leq Ax - b \leq t\mathbf{1} \end{array}$

Absolute value of every element $(Ax-b)_i$ is bounded by the same scalar t

Duality

Inequality form LP

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$$

Relax the constraint

$$g(y) = \min_{x} c^T x + y^T (Ax - b)$$

Lagrangian

L(x,y)

Lower bound

$$g(y) \leq c^T x^\star + y^T (Ax^\star - b) \leq c^T x^\star$$
 we must have $y \geq 0$

Dual of LP with inequalities

Derivation

Dual function

$$g(y) = \underset{x}{\text{minimize}} \left(c^T x + y^T (Ax - b) \right)$$

$$-b^T y + \underset{x}{\text{minimize}} \left(c + A^T y \right)^T x$$

$$g(y) = \begin{cases} -b^T y & \text{if } c + A^T y = 0 \text{ (and } y \ge 0) \\ -\infty & \text{otherwise} \end{cases}$$

Dual problem (find the best bound)

General forms

Inequality form LP

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$$

maximize
$$-b^Ty$$
 subject to $A^Ty+c=0$ $y\geq 0$

Standard form LP

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x > 0 \end{array}$$

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

LP with inequalities and equalities

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \\ & Dx = f \end{array}$$

$$\begin{array}{ll} \text{maximize} & -b^Ty - f^Tz \\ \text{subject to} & A^Ty + D^Tz + c = 0 \\ & y \geq 0 \end{array}$$

Weak duality

Theorem

If x, y satisfy:

- x is a feasible solution to the primal problem
- y is a feasible solution to the dual problem

$-b^T y \le c^T x$

Proof

We know that $Ax \leq b$, $A^Ty + c = 0$ and $y \geq 0$. Therefore,

$$0 \le y^{T}(b - Ax) = b^{T}y - y^{T}Ax = c^{T}x + b^{T}y$$

Remark

- Any dual feasible y gives a **lower bound** on the primal optimal value
- ullet Any primal feasible x gives an **upper bound** on the dual optimal value
- $c^T x + b^T y$ is the duality gap

Weak duality

Corollaries

Unboundedness vs feasibility

- Primal unbounded $(p^* = -\infty) \Rightarrow$ dual infeasible $(d^* = -\infty)$
- Dual unbounded $(d^* = +\infty) \Rightarrow$ primal infeasible $(p^* = +\infty)$

Optimality condition

If x, y satisfy:

- x is a feasible solution to the primal problem
- y is a feasible solution to the dual problem
- The duality gap is zero, *i.e.*, $c^Tx + b^Ty = 0$

Then x and y are **optimal solutions** to the primal and dual problem respectively

Strong duality

Primal

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$

Dual

 $\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$

Theorem

If a linear optimization problem has an optimal solution, then

- so does its dual
- the optimal values of the primal and dual are equal

Relationship between primal and dual

	$p^{\star} = +\infty$	p^{\star} finite	$p^{\star} = -\infty$
$d^{\star} = +\infty$	primal inf. dual unb.		
d^\star finite		optimal values equal	
$d^{\star} = -\infty$	exception		primal unb. dual inf

Complementary slackness

Primal

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$

Dual

maximize $-b^Ty$ subject to $A^Ty+c=0$ $y\geq 0$

Theorem

Primal, dual feasible x, y are optimal if and only if

$$y_i(b_i - a_i^T x) = 0, \quad i = 1, \dots, m$$

i.e., at optimum, b - Ax and y have a complementary sparsity pattern:

$$y_i > 0 \implies a_i^T x = b_i$$

$$a_i^T x < b_i \implies y_i = 0$$

Complementary slackness

Primal

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$

Dual

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c = 0 \\ & y \geq 0 \end{array}$$

Proof

The duality gap at primal feasible x and dual feasible y can be written as

$$c^{T}x + b^{T}y = (-A^{T}y)^{T}x + b^{T}y = (b - Ax)^{T}y = \sum_{i=1}^{T} y_{i}(b_{i} - a_{i}^{T}x) = 0$$

Since all the elements of the sum are nonnegative, they must all be 0

Farkas lemma

Theorem

Given A and b, exactly one of the following statements is true:

- 1. There exists an x with Ax = b, $x \ge 0$
- 2. There exists a y with $A^Ty \ge 0$, $b^Ty < 0$

Farkas lemma

Proof

1 and 2 cannot be both true (easy)

$$x \ge 0$$
, $Ax = b$ and $y^T A \ge 0$ \longrightarrow $y^T b = y^T Ax \ge 0$

$$y^T b = y^T A x \ge 0$$

1 and 2 cannot be both false (duality)

Primal

Dual

minimize 0

maximize $-b^T y$

subject to Ax = b

y=0 always feasible

subject to $A^Ty \geq 0$ $d^\star \neq -\infty, \quad p^\star = d^\star$

Alternative 1: primal feasible $p^* = d^* = 0$

 $b^T y > 0$ for all y such that $A^T y > 0$

x > 0

Alternative 2: primal infeasible $p^* = d^* = +\infty$

There exists y such that $A^Ty > 0$ and $b^Ty < 0$

y is an infeasibility certificate

Sensitivity analysis

Changes in problem data

Goal: extract information from x^*, y^* about their sensitivity with respect to changes in problem data

Modified LP

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b + u \\ & x \geq 0 \end{array}$

Optimal value function

$$p^{\star}(u) = \min\{c^{T}x \mid Ax = b + u, \ x \ge 0\}$$

Assumption: $p^*(0)$ is finite

Properties

- $p^{\star}(u) > -\infty$ everywhere (from global lower bound)
- $p^*(u)$ is piecewise-linear on its domain

Global sensitivity

Dual of modified LP

$$\begin{array}{ll} \text{maximize} & -(b+u)^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Global lower bound

Given y^* a dual optimal solution for u=0, then

$$p^{\star}(u) \ge -(b+u)^T y^{\star}$$
 (from weak duality and $= p^{\star}(0) - u^T y^{\star}$ dual feasibility)

It holds for any \boldsymbol{u}

Local sensitivity

u in neighborhood of the origin

Original LP

minimize $c^T x$

subject to Ax = b

$$x \ge 0$$

Optimal solution

Primal $x_i = 0, \quad i \notin B \\ x_B^\star = A_B^{-1} b$

$$x_B^{\star} = A_B^{-1}b$$

Dual $y^* = -A_B^{-T} c_B$

Modified LP

minimize $c^{T}x$

subject to
$$Ax = b + u$$

$$x \ge 0$$

Modified dual

maximize $-(b+u)^T y$

subject to $A^Ty + c > 0$

Optimal basis does not change

Modified optimal solution

$$x_B^*(u) = A_B^{-1}(b+u) = x_B^* + A_B^{-1}u$$

 $y^*(u) = y^*$

Derivative of the optimal value function

Modified optimal solution

$$x_B^*(u) = A_B^{-1}(b+u) = x_B^* + A_B^{-1}u$$

 $y^*(u) = y^*$

Optimal value function

$$p^{\star}(u) = c^{T}x^{\star}(u)$$

$$= c^{T}x^{\star} + c_{B}^{T}A_{B}^{-1}u$$

$$= p^{\star}(0) - y^{\star T}u \qquad \text{(affine for small } u\text{)}$$

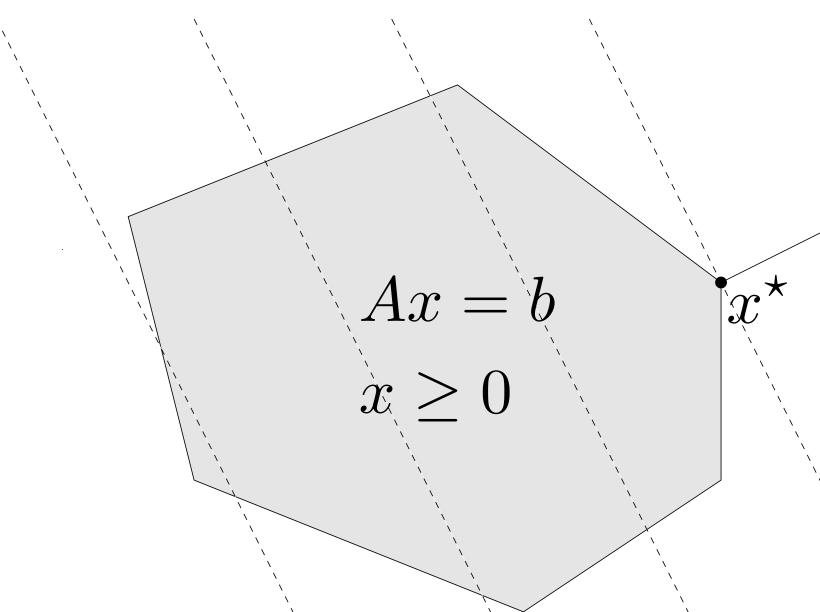
Local derivative

$$\nabla p^{\star}(u) = -y^{\star}$$
 (y* are the shadow prices)

Simplex method

Optimality of extreme points

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$



- - P has at least one extreme point There exists an optimal solution x^\star

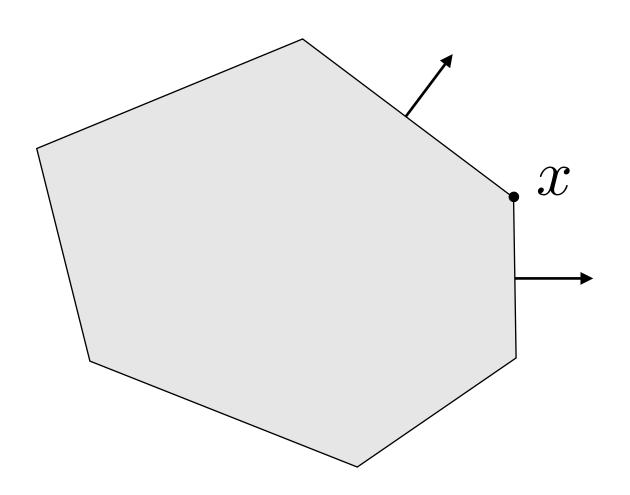
Then, there exists an optimal solution which is an **extreme point** of P

We only need to search between extreme points

Equivalence

Theorem

Given a nonempty polyhedron $P = \{x \mid Ax = b, x \geq 0\}$



Let $x \in P$

x is a vertex $\iff x$ is an extreme point $\iff x$ is a basic feasible solution

Constructing basic solution

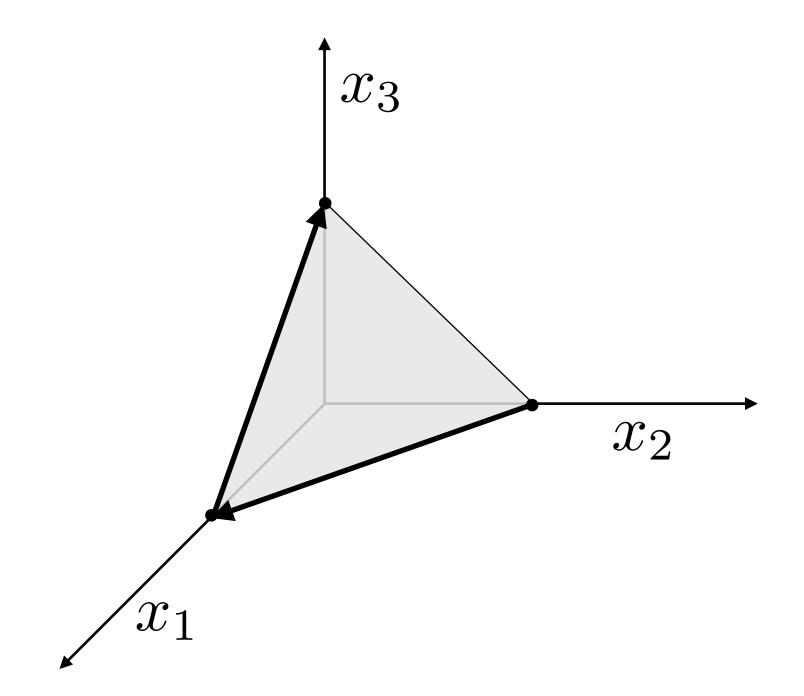
- 1. Choose any m independent columns of A: $A_{B(1)}, \ldots, A_{B(m)}$
- 2. Let $x_i = 0$ for all $i \neq B(1), ..., B(m)$
- 3. Solve Ax = b for the remaining $x_{B(1)}, \ldots, x_{B(m)}$

Basis Basis columns Basic variables
$$A_B = \begin{bmatrix} & & & & & \\ & A_{B(1)} & A_{B(2)} & \dots & A_{B(m)} \\ & & & & \end{bmatrix}, \quad x_B = \begin{bmatrix} x_{B(1)} \\ \vdots \\ x_{B(m)} \end{bmatrix} \longrightarrow \text{Solve } A_B x_B = b$$

If $x_B \ge 0$, then x is a basic feasible solution

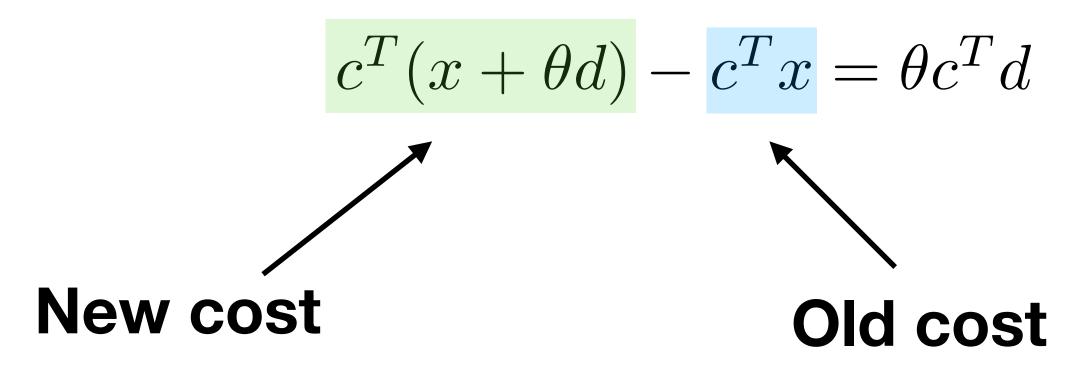
Conceptual algorithm

- Start at corner
- Visit neighboring corner that improves the objective



How does the cost change?

Cost improvement



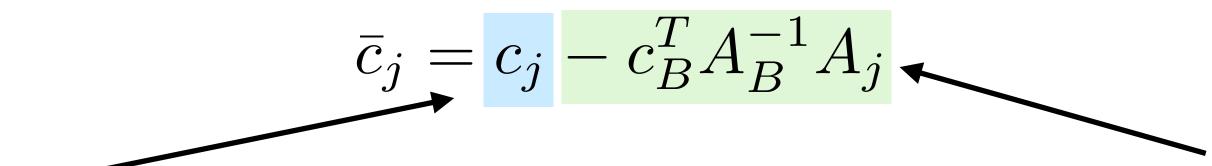
We call \bar{c}_j the **reduced cost** of (introducing) variable x_j in the basis

$$\bar{c}_j = c^T d = \sum_{i=1}^n c_i d_j = c_i + c_B^T d_B = c_i - c_B^T A_B^{-1} A_j$$

Reduced costs

Interpretation

Change in objective/marginal cost of adding x_j to the basis



Cost per-unit increase of variable \boldsymbol{x}_j

Cost to change other variables compensating for x_j to enforce Ax = b

- $\bar{c}_j > 0$: adding x_j will increase the objective (bad)
- $\bar{c}_j < 0$: adding x_j will decrease the objective (good)

Reduced costs for basic variables is 0

$$\bar{c}_{B(i)} = c_{B(i)} - c_B^T A_B^{-1} A_{B(i)} = c_{B(i)} - c_B^T (A_B^{-1} A_B) e_i$$
$$= c_{B(i)} - c_B^T e_i = c_{B(i)} - c_{B(i)} = 0$$

Optimality conditions

Theorem

Let x be a basic feasible solution associated with basis B Let \overline{c} be the vector of reduced costs.

If $\bar{c} \geq 0$, then x is optimal

Remark

This is a stopping criterion for the simplex algorithm.

If the neighboring solutions do not improve the cost, we are done

Single simplex iteration

- 1. Compute the reduced costs \bar{c}
 - Solve $A_B^T p = c_B$
 - $\bar{c} = c A^T p$
- 2. If $\bar{c} \geq 0$, x optimal. break
- 3. Choose j such that $\bar{c}_j < 0$

- 4. Compute search direction d with $d_j = 1$ and $A_B d_B = -A_j$
- 5. If $d_B \ge 0$, the problem is **unbounded** and the optimal value is $-\infty$. **break**
- 6. Compute step length $\theta^* = \min_{\{i \in B | d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$
- 7. Define y such that $y = x + \theta^* d$
- 8. Get new basis \bar{B} (i exits and j enters)

Bottleneck
Two linear systems

Matrix inversion lemma trick
$$\approx n^2$$
 per iteration

 $\approx n^2$ per iteration (very cheap)

Complexity of the simplex method

We do not know any polynomial version of the simplex method, no matter which pivoting rule we pick.

Still open research question!

Worst-case

There are problem instances where the simplex method will run an **exponential number of iterations** in terms of the dimensions, e.g. 2^n

Good news: average-case Practical performance is very good. On average, it stops in n iterations.

Interior point method

Optimality conditions

Primal

$$\begin{array}{ll} \text{minimize} & c^Tx \\ \text{subject to} & Ax+s=b \\ & s>0 \end{array}$$

Dual

maximize
$$-b^Ty$$
 subject to $A^Ty+c=0$ $y\geq 0$

KKT conditions

$$Ax + s - b = 0$$

$$ATy + c = 0$$

$$siyi = 0, \quad i = 1, ..., m$$

$$s, y \ge 0$$

$$S = egin{bmatrix} s_1 & & & & & \\ & s_2 & & & & \\ & & \ddots & & & \\ & & s_m \end{bmatrix} \hspace{1cm} Y = egin{bmatrix} y_1 & & & & \\ & y_2 & & & \\ & & \ddots & & \\ & & y_m \end{bmatrix}$$

$$\implies SY1 = 0$$

Main idea

$$h(x, s, y) = \begin{bmatrix} Ax + s - b \\ A^{T}y + c \\ SY1 \end{bmatrix} = 0$$

$$S = \mathbf{diag}(s)$$

$$Y = \mathbf{diag}(y)$$

$$s, y \ge 0$$

- Apply variants of Newton's method to solve h(x, s, y) = 0
- Enforce s, y > 0 (strictly) at every iteration
- Motivation avoid getting stuck in "corners"

Issue

Pure **Newton's step** does not allow significant progress towards h(x, s, y) = 0 and $x, y \ge 0$.

Smoothed optimality conditions

Optimality conditions

$$Ax + s - b = 0$$

$$A^{T}y + c = 0$$

$$s_{i}y_{i} = \tau \quad \leftarrow \quad \text{Same } \tau \text{ for every pair }$$

$$s, y \geq 0$$

Same optimality conditions for a "smoothed" version of our problem

Central path

minimize
$$c^Tx - \tau \sum_{i=1}^m \log(s_i)$$
 subject to
$$Ax + s = b$$

Set of points $(x^*(\tau), s^*(\tau), y^*(\tau))$ with $\tau > 0$ such that

$$Ax + s - b = 0$$

$$A^{T}y + c = 0$$

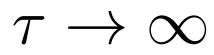
$$s_{i}y_{i} = \tau$$

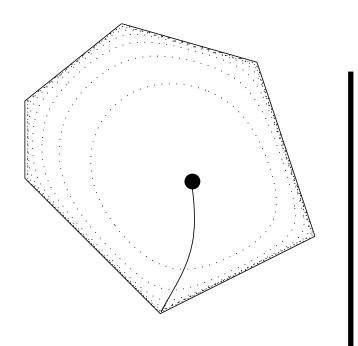
$$s, y \ge 0$$

Main idea

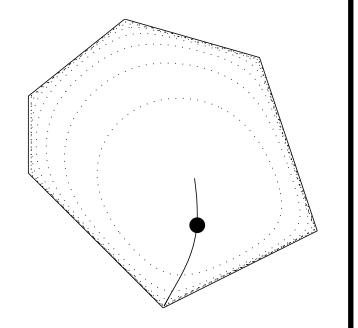
Follow central path as $\tau \to 0$

Analytic Center

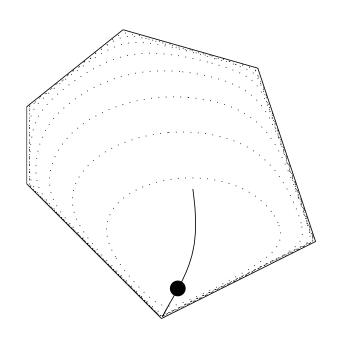




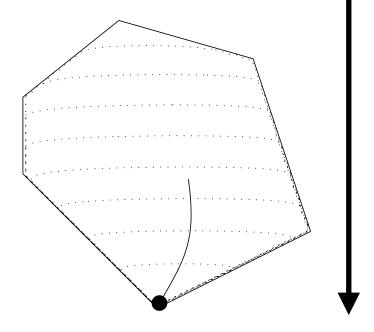
1000



1



1/5



1/100

 \mathcal{T}

42

Newton's method for smoothed optimality conditions

Smoothed optimality conditions

$$h_{ au}(x,s,y) = egin{bmatrix} Ax + s - b \ A^Ty + c \ SY1 - au 1 \end{bmatrix} = 0$$

Linear system

$$egin{bmatrix} 0 & A & I \ A^T & 0 & 0 \ S & 0 & Y \end{bmatrix} egin{bmatrix} \Delta y \ \Delta x \ \Delta s \end{bmatrix} = egin{bmatrix} -r_p \ -r_d \ -SY + au \mathbf{1} \end{bmatrix}$$

Line search to enforce x, s > 0

$$(x, s, y) \leftarrow (x, s, y) + \alpha(\Delta x, \Delta s, \Delta y)$$

Algorithm step

Linear system

$$\begin{bmatrix} 0 & A & I \\ A^T & 0 & 0 \\ S & 0 & Y \end{bmatrix} \begin{bmatrix} \Delta y \\ \Delta x \\ \Delta s \end{bmatrix} = \begin{bmatrix} -r_p \\ -r_d \\ -SY\mathbf{1} + \sigma\mu\mathbf{1} \end{bmatrix} \qquad \text{Duality meas}$$

$$\mu = \frac{s^Ty}{m}$$

Duality measure

$$\mu = \frac{s^T y}{m}$$

Centering parameter

$$\sigma \in [0,1]$$

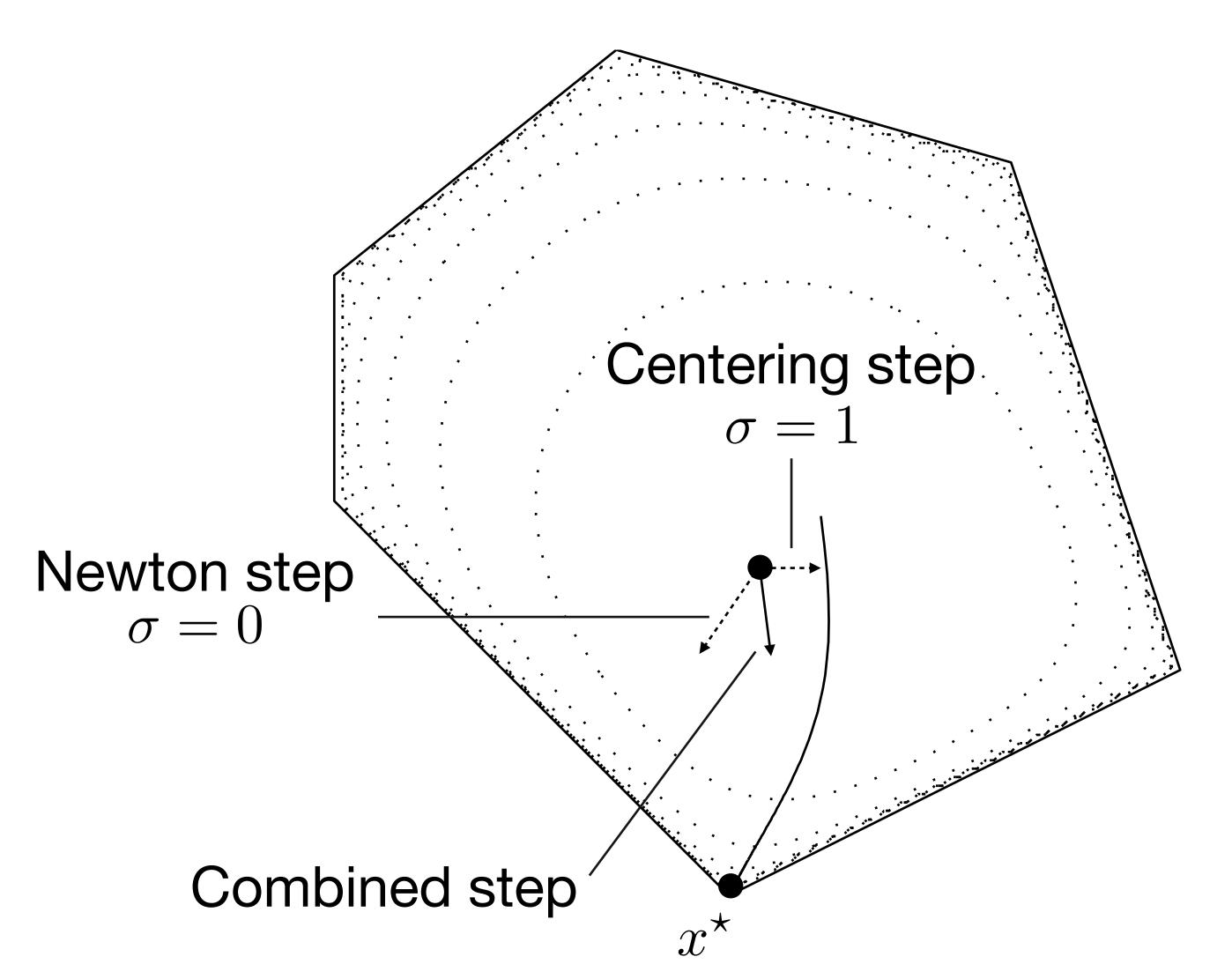
$$\sigma = 0 \Rightarrow \text{Newton step}$$

$$\sigma = 1 \Rightarrow \text{Centering step towards } (x^*(\mu), s^*(\mu), y^*(\mu))$$

Line search to enforce x, s > 0

$$(x, s, y) \leftarrow (x, s, y) + \alpha(\Delta x, \Delta s, \Delta y)$$

Path-following algorithm idea



Centering step

Moves towards the **central path** and is usually biased towards s,y>0. **No progress** on duality measure μ

Newton step

Moves towards the **zero duality** measure μ . Quickly violates s, y > 0.

Combined step

Best of both, with longer steps.

Choosing the centering parameter

Newton direction

$$(\Delta x_a, \Delta s_a, \Delta y_a)$$

- The Newton step might quickly hit nonnegativity.
- The centering step might not reduce complementary condition.

Maximum step-size

$$\alpha_p = \max\{\alpha \in [0, 1] \mid s + \alpha \Delta s_a \ge 0\}$$

$$\alpha_d = \max\{\alpha \in [0, 1] \mid y + \alpha \Delta y_a \ge 0\}$$

Centering parameter heuristic (after a Newton step)

$$\mu_a = \frac{(s + \alpha_p \Delta s_a)^T (y + \alpha_d \Delta y_a)}{m} \qquad \Longrightarrow \qquad \sigma = \left(\frac{\mu_a}{\mu}\right)^3$$

Mehrotra predictor-corrector algorithm

Initialization

Given (x, s, y) such that s, y > 0

1. Termination conditions

$$r_p=Ax+s-b, \quad r_d=A^Ty+c, \quad \mu=(s^Ty)/m$$
 If $\|r_p\|,\|r_d\|,\mu$ are small, break Optimal solution $(x^\star,s^\star,y^\star)$

2. Newton step (affine scaling)

$$egin{bmatrix} 0 & A & I \ A^T & 0 & 0 \ S & 0 & Y \end{bmatrix} egin{bmatrix} \Delta y_a \ \Delta x_a \ \Delta s_a \end{bmatrix} = egin{bmatrix} -r_p \ -r_d \ -SY\mathbf{1} \end{bmatrix}$$

Mehrotra predictor-corrector algorithm

3. Centering parameter

$$\alpha_p = \max\{\alpha \in [0, 1] \mid s + \alpha \Delta s_a \ge 0\}$$

$$\alpha_d = \max\{\alpha \in [0, 1] \mid y + \alpha \Delta y_a \ge 0\}$$

$$\mu_a = \frac{(s + \alpha_p \Delta s_a)^T (y + \alpha_d \Delta y_a)}{m}$$

$$\sigma = \left(\frac{\mu_a}{\mu}\right)^3$$

4. Corrected direction

$$\begin{bmatrix} 0 & A & I \\ A^T & 0 & 0 \\ S & 0 & Y \end{bmatrix} \begin{bmatrix} \Delta y \\ \Delta x \\ \Delta s \end{bmatrix} = \begin{bmatrix} -r_p \\ -r_d \\ -SY\mathbf{1} - \Delta S_a \Delta Y_a \mathbf{1} + \sigma \mu \mathbf{1} \end{bmatrix}$$

Mehrotra predictor-corrector algorithm

5. Update iterates

$$\alpha_p = \max\{\alpha \ge 0 \mid s + \alpha \Delta s \ge 0\}$$

$$\alpha_d = \max\{\alpha \ge 0 \mid y + \alpha \Delta y \ge 0\}$$

$$(x,s) = (x,s) + \min\{1, \eta\alpha_p\}(\Delta x, \Delta s)$$
$$y = y + \min\{1, \eta\alpha_d\}\Delta y$$

Avoid corners

$$\eta = 1 - \epsilon \approx 0.99$$

Solving the search equations

Step 2 (Newton) and 4 (Corrected direction) solve equations of the form

(not symmetric)
$$\longrightarrow \begin{bmatrix} 0 & A & I \\ A^T & 0 & 0 \\ S & 0 & Y \end{bmatrix} \begin{bmatrix} \Delta y \\ \Delta x \\ \Delta s \end{bmatrix} = \begin{bmatrix} b_y \\ b_x \\ b_s \end{bmatrix}$$

Substitute last equation, $\Delta s = Y^{-1}(b_s - S\Delta y)$, into first

$$\begin{bmatrix} -Y^{-1}S & A \\ A^T & 0 \end{bmatrix} \begin{bmatrix} \Delta y \\ \Delta x \end{bmatrix} = \begin{bmatrix} b_y - Y^{-1}b_s \\ b_x \end{bmatrix}$$

Substitute first equation, $\Delta y = S^{-1}Y(A\Delta x - b_y + Y^{-1}b_s)$, into second

$$A^{T}S^{-1}YA\Delta x = b_x + A^{T}S^{-1}Yb_y - A^{T}S^{-1}b_s$$

Reduced linear system

Coefficient matrix

$$B = A^T S^{-1} Y A$$

- B is **positive definite** if A has linearly independent columns
- Sparsity pattern of B is the **pattern** of A^TA (independent of $S^{-1}Y$)

Sparse cholesky factorization

$$B = PLL^T P^T$$

- Reorder only once to get P
- One numerical factorizaton per interior-point iteration $O(n^3)$
- Forward/backward substitution twice per iteration $O(n^2)$

Per-iteration **complexity**• complexity

 $O(n^3)$

Convergence

Mehrotra's algorithm

No convergence theory ———— Examples where it **diverges** (rare!)

Fantastic convergence in practice ——— Fewer than 30 iterations

Theoretical iteration complexity

Alternative versions (slower than Mehrotra) converge in $O(\sqrt{n})$ iterations

Operations

 $O(n^{3.5})$

Average iteration complexity

Average iterations complexity is $O(\log n)$

$$O(n^3 \log n)$$

Interior-point vs simplex

Comparison between interior-point method and simplex

Primal simplex

- Primal feasibility
- Zero duality gap
- Dual feasibility

Dual simplex

- Dual feasibility
- Zero duality gap
- Primal feasibility

Primal-dual interior-point

Interior condition

- Primal feasibility
- Dual feasibility
- Zero duality gap

Exponential worst-case complexity

Requires feasible point

Can be warm-started

Polynomial worst-case complexity

Allows infeasible start

Cannot be warm-started

Which algorithm should I use?

Dual simplex

- Small-to-medium problems
- Repeated solves with varying constraints

Interior-point (barrier)

- Medium-to-large problems
- Sparse structured problems

How do solvers with multiple options decide?

Concurrent Optimization

Why not both? (crossover)

Interior-point — Few simplex steps

Questions

Next lecture

Integer optimization