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Ed Forum

« How do mathematicians know when to use "heuristics,” or arbitrary measures
to make the algorithm work better?

 Why is not being able to warm start a problem if we can start interior point
methods with an infeasible solution?



Today'’s lecture

Linear optimization review

 Formulations

* Plecewise linear optimization
* Duality

e Sensitivity analysis

e Simplex method

* |nterior point methods



Formulations



Linear optimization

minimize clx » Minimization
subjectto Ax <b * | ess-than ineq. constraints
Dx =1f * Equality constraints

z IS feasible if it satisfies the constraints Ax < band Dz = f

The feasible set is the set of all feasible points
r* is optimal if it is feasible and ¢! x* < ¢! x for all feasible z

The optimal value is p* = ¢! z*

Unbounded problem: ¢' = is unbounded below on the feasible set (p* = —o0)
Infeasible problem: feasible set is empty (p* = +00) 5



Feasibility problems

find x minimize 0
subjectto Ax <b —_— subjectto Az <b
Dx = f Dx=f

Possible results

» p* = 0 if constraints are feasible (consistent).
(Every feasible x is optimal)

» p* = oo otherwise



Standard form

Definition

minimize I r e Minimization

subjectto Az =b * Equality constraints
r >0  Nonnegative variables
Useful to

* develop algorithms

» algebraic manipulations



Plecewise linear optimization



n

Plecewise-linear minimizatio
f(x)
minimize f(z) = max (a; x + b;)

minimize t
subjectto ajz+0b; <t, i=1,...,m

Matrix notation
minimize ¢l
subjectto A% < b

S
|

, A= e

=
|
O
|




1 and infinity norms reformulations

1-norm minimization:

minimize  |[Az — b1 = » |(Az —b);|

Equivalent to:
minimize 11 u
subjectto —u< Az —b<u

Absolute value of every element (Ax — b); is

bounded by a component of the vector

oO-norm minimization:

minimize ||Az — b||oc = max |(Az — b;);)

Equivalent to:
minimize t
subjectto —t1 < Axr —0b<t1

Absolute value of every element (Ax — b); is

bounded by the same scalar ¢
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Duality



Inequality form LP

minimize ¢!z
subjectto Ax <b

Relax the constraint Lower bound
g(y) = minimize c'x+y" (Az —b) g(y) < c'a” +y' (Az" —b) <c a”
[ we must have y > 0
Lagrangian

L(z,y) .



Dual of LP with inequalities

Derivation

Dual function
g(y) = minimize (¢ z + y" (Az — b))

— by + miniacnize (c -+ ATy)T X

—bly ife+A'y=0 (andy > 0)
g(y) = |
— 00 otherwise

Dual problem (find the best bound)
maximize ¢(y) maximize —bly
Y , T
subjectto A" y+c=0
y >0
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General forms Inequality form LP

maximize —b'y
subjectto Aly+c=0
y >0

minimize clx
subjectto Az <b

Standard form LP
maximize —bly
subjectto ATy +c¢ >0

minimize c¢lx
subjectto Az =10
r > 0

LP with inequalities and equalities
minimize ¢!z maximize —b'y— 'z
subjectto Ax <b subjectto Aly+Dlz+c=0
Dx=f y > 0



Weak duality

Theorem
If x,y satisty:

» x IS a feasible solution to the primal problem T T
» y IS a feasible solution to the dual problem > 0 y~czx

Proof
We know that Az < b, Ay + ¢ = 0andy > 0. Therefore,

0<y' (b—Ax)=by—y Az =c'z+b'y

Remark
- Any dual feasible y gives a lower bound on the primal optimal value

» Any primal feasible x gives an upper bound on the dual optimal value
- c!'x 4+ bly is the duality gap
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Weak duality

Corollaries

Unboundedness vs feasibility
* Primal unbounded (p* = —o0) = dual infeasible (d* = —o0)
* Dual unbounded (d* = +o00) = primal infeasible (p* = +0o0)

Optimality condition

If x, y satisfy:
» x IS a feasible solution to the primal problem
» y IS a feasible solution to the dual problem
- The duality gap is zero, i.e., ¢!z + bl y =0

Then x and y are optimal solutions to the primal and dual problem respectively .



Strong duality

Primal Dual
minimize ¢!z maximize —bly
subjectto Az =b subjectto Aly4+c¢>0
xr > 0

Theorem

If a linear optimization problem has an optimal solution, then

* SO does Its dual

» the optimal values of the primal and dual are equal

17



Relationship between primal and dual

d* = 400

primal inf.
dual unb.

p* finite

d* finite

optimal values equal

d*

— OO

exception

primal unb.
dual inf
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Complementary slackness

Primal Dual
minimize ¢’z maximize —b"y
subjectto  Ax < b subjectto A’y +c=0
y > 0

Theorem
Primal,dual feasible x, y are optimal if and only if

yi(bj —a; ) =0, i=1,...,m
l.e., at optimum, b — Az and y have a complementary sparsity pattern:

Yy, >0 = CLTZE:bZ

(/

CL?ZL‘<bi = y; = 0
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Complementary slackness

Primal Dual
minimize ¢’z maximize —b"y
subjectto  Ax < b subjectto A’y +c=0
y > 0

Proof
The duality gap at primal feasible x and dual feasible y can be written as

crrx+by=(—Ay) ' x+by=(b—-Az)' y = Z yi(b; —a; ) =0
i=1

Since all the elements of the sum are nonnegative, they must all be 0

For feasible x and y complementary slackness = zero duality gap
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Farkas lemma

Theorem
Given A and b, exactly one of the following statements is true:

1. There existsan x with Ax = b, x > 0

2. There exists a y with ATy > 0, b''y < 0

21



Farkas lemma

Proof
1 and 2 cannot be both true (easy)

r>0,Ar=bandy'A >0 —» yTb:yTAazzO

1 and 2 cannot be both false (duality)

Primal Dual
minimize 0 maximize —b'y y = 0 always feasible
subjectto Az =b  subjectto ATy >0 —  d* #—oco, p*=d*
r >0
Alternative 1: primal feasible p* = d* =0
by > 0 for all y such that ALy > 0
Alternative 2: primal infeasible p* = d* = +o0 y is an
There exists y such that Ay > 0and b’y < 0 infeasibility

certificate



Sensitivity analysis



Changes in problem data

Goal: extract information from x*,y* about their sensitivity with respect to
changes in problem data

Modified LP

minimize ¢ r Optimal value function
subjectto Ar =0+ u p*(vw) =min{c' 2 | Ax = b+ u, = > 0}

r > 0

Assumption: p*(0) is finite
Properties
* p*(u) > —oo everywhere (from global lower bound)
* p*(u) is piecewise-linear on its domain 24



Global sensitivity

Dual of modified LP
maximize —(b+u)'y
subjectto ATy +c¢ >0

Global lower bound

Given y* a dual optimal solution for u = 0, then

p*(u) > —(b+u)"y*
=p*(0) —u'y*

It holds for any u

(from weak duality and
dual feasibility)

25



Local sensitivity

uw In neighborhood of the origin

Original LP Optimal solution
minimize ¢’z Primal ri=0, i¢B
subjectto Arxr=6 —— TR = Aélb

r > 0 Dual y* = —Ag5 cp
Modified LP Modified dual
minimize ¢’z maximize —(b+u)"y
subjectto Az =0+ u subjectto ATy +c >0
x > 0

Modified optimal solution
rp(u) = A (b+u) = a5 + Az'u
y (u) =y

Optimal basis
does not change

20



Derivative of the optimal value function

Modified optimal solution
v (u) = A (b+u) = 2% + Ag'u
y (u) =y

Optimal value function

p*(u) = ¢ z*(u)
=c'a* + cg ALl u

= p*(0) — y*Tu (affine for small u)

Local derivative

Vp*(u) = —y* (y* are the shadow prices) .



Simplex method



Optimality of extreme points

minimize ¢!z
subjectto Ax =10
xr > 0

i P has at least one extreme point
» There exists an optimal solution =*

Then, there exists an optimal solution which is an extreme point of P

We only need to search between extreme points

29



Equivalence

Theorem

Given a nonempty polyhedron P = {z | Ax = b, x > 0}

Letz € P

r 1S a vertex <« x Is an extreme point «<— =z is a basic feasible solution

30



Constructing basic solution

1. Choose any m independent columns of A: Ag(1y,..., Apm)
2. Letx;, =0forall i # B(1),..., B(m)
3. Solve Ax = b for the remaining (1), .., TB(m)

Basis Basis columns Basic variables

matrix r - i i

| | | B()
AB — AB(l) AB(Q) Co AB(m) y LB = — Solve ABCCB = b

- | | ZB(m).

If t5 > 0, then z Is a basic feasible solution
31



Conceptual algorithm

e Start at corner

* Visit neighboring corner that
Improves the objective

32



How does the cost change?

Cost improvement
cl(x+0d) —c'z = 0c'd

N

New cost Old cost

We call ¢; the reduced cost of
(introducing) variable z; in the basis

n
;i =c d= E cid; =c; +cgdp =cj —cgAg A,
i=1

33



Reduced costs
Interpretation

Change in objective/marginal cost of adding z; to the basis

— 1

/ \

Cost per-unit increase Cost to change other variables

- compensating for x
of variable z; to enF:‘orce Axg = b :

» ¢; > 0: adding z; will increase the objective (bad)
- ¢; < 0: adding z,; will decrease the objective (good)

Reduced costs for basic variables is O

CB(@) — CB(@) — CBA 1AB(@) — CB(@) — CB(A 1AB)

= CB(i) — CRei = CB(i) — ¢B(i) = U 34



Optimality conditions

Theorem

Let £ be a basic feasible solution associated with basis B
Let ¢ be the vector of reduced costs.

If ¢ > 0, then z Is optimal

Remark
This is a stopping criterion for the simplex algorithm.

If the neighboring solutions do not improve the cost, we are done

35



Single simplex iteration

1. Compute the reduced costs ¢

» Solve Agp — CRB
»c=c— Alp

2. If ¢ > 0, x optimal. break

3. Choose j such that ¢c; < 0

Bottleneck

Two linear systems

4.

———

. Compute step length 6 =  min ( xZ)

Compute search direction d with
dj — 1 and ABdB — —Aj

. If dg > 0, the problem is unbounded

and the optimal value Is —oo. break

{1€B|d; <0} dz

. Define y such that y = = + 6*d

. Get new basis B (i exits and j enters)

Matrix inversion lemma trick
~ n° per iteration
(very cheap)

How many iterations do we need? 36



Complexity of the simplex method

We do not know any polynomial | _
version of the simplex method, ———  Still open research question!

no matter which pivoting rule we pick.

Worst-case

There are problem instances where the simplex method will run an exponential
number of iterations in terms of the dimensions, e.g. 2"

Good news: average-case

Practical performance is very good. On average, it stops in n iterations.
37



Interior point method



Optimality conditions

Primal

minimize ¢! x

subjectto Az +s=5b
s >0
KKT conditions
Ar +s—b =0
Aty+c=0
Siyi:O, 221,

s,y >0

Dual

maximize —bly

subjectto A‘y+c=0

y >0
_3/1
S2 Y2
Y =
Sm_ Ym |

— SY1=0

39



Main idea

h(z,s,y)=| Aly+c
SY1

s,y >0

Ar+s—b

S = diag(s)
Y = diag(y)

» Apply variants of Newton’s method to solve h(x, s,y) = 0

» Enforce s,y > 0 (strictly) at every iteration
» Motivation avoid getting stuck in “corners”

Issue

Pure Newton’s step does not allow significant progress towards

h(z,s,y) =0and z,y > 0.

40



Smoothed optimality conditions

Optimality conditions

Ar+s—b=0

Aty+c=0
S;y; =T <+—— Same 7 for every pair

s,y >0

Same optimality conditions for a “smoothed” version of our problem

41



Analytic

Central path Center 1000
T — OO
minimize ¢’z — 7> " log(s;)
subjectto Az +s=050 |
Set of points (z*(7), s*(7),y* (7))
with 7 > 0 such that
Ar+s5s—-0=0 1/5
Aty +c=0
SiYi = T
s,y > 0
Main idea 1/100
T 42

Follow central pathas  — 0



Newton’s method for smoothed optimality conditions

Smoothed optimality conditions

he(z,s,y) =

Linear system

0 A I
AT 0 0
S 0 Y

Axr+s—0b
Aly+c | =0
SY1—71
s,y >0
Ay —T) )
Ax| = —7ry
As —SY + 71

Line search to enforce x,s > 0
(,8,y) < (@, 5,y) + a(Az, As, Ay)

43



Algorithm step

Linear system

0 A I| |Ay —r, Duality measure
A0 0| |Az| = —Tq = sty
S 0 Y| |As —SY1+oul m

Centering parameter =0 = Newton step
o€ 0,1 c=1 = Centering step towards (x* (), s* (1), y* (1))

Line search to enforce x,s > 0
(z,8,y) « (z,5,y) + a(Az, As, Ay) 44



Path-following algorithm idea

Newton step .

-y

~Centering step. "}

o=1

|

o =0

Combined step

’I

Centering step

Moves towards the central path
and Is usually biased towards s,y > 0.
No progress on duality measure u

Newton step

Moves towards the zero duality
measure .. Quickly violates s,y > 0.

Combined step
Best of both, with longer steps.

45



Choosing the centering parameter

 [The Newton step might

Newton direction C]UICkly hit nonnegativity.
(Azg, Asq, AYq) * [he centering step might not
reduce complementary
condition.

Maximum step-size

a, = max{a € [0,1] | s + aAs, > 0}

ag = max{a € [0,1] | y + aAy, > 0}

Centering parameter heuristic (after a Newton step)
3
g = (S -+ OépASa)T(y -+ OédAya) > g — (@)

T

46



Mehrotra predictor-corrector algorithm

Initialization

Given (z, s,y) such that s,y > 0

1. Termination conditions
r,=Arx+s—b, rq=A'y+c, p=(s'y)/m

If |7,|, [|Tal|, © @are small, break Optimal solution (z*, s*, y*)

2. Newton step (affine scaling)

0 A I [Agy, —T)
AT 0 0 Az,
S 0 Y| |As, —SY1

|
|
=3
Q.




Mehrotra predictor-corrector algorithm

Centering parameter

3.

fa

o, = max{a € [0,1] | s + aAs, > 0}
ag = max{a € |0,1] | y + aAy, > 0}
(s + apAsy)’ (y + agAy,)

m

(%)

0 A I
AT 0 0
S 0 Y

Ay
Az
As

. Corrected direction

—SY1 - AS,AY,1 + oul

/

L inearization correction

N\

Centering heuristic

48



Mehrotra predictor-corrector algorithm

5. Update iterates
a, = max{a > 0| s+ alAs > 0}
ag =max{a >0 |y+ aAy > 0}

Avoid corners

(,5) = (2, s) + min{1, na, } (Az, As)
n=1-—e€e~0.99

y =y + min{1, nag Ay

49



Solving the search equations

Step 2 (Newton) and 4 (Corrected direction) solve equations of the form

0 A I [Ay b,
(not symmetric) — |AY 0 0| |Az| = |b,
S 0 Y| |As b

Substitute last equation, As = Y~ 1(b, — SAy), into first

—y-1s Al [Ay| [b,—Y~lb,
Al 0| | Ax b,

Substitute first equation, Ay = S~'Y(AAx — b, + Y 'b), into second

A*ST'YAAr =b, + AT ST'Ybh, — AT ST b,



Reduced linear system

Coefficient matrix * B Is positive definite

S it A has linearly independent columns
b=A"5"YA - Sparsity pattern of B is the pattern of A A
(independent of S~'Y)

Sparse cholesky factorization

B=PLL" P"
» Reorder only once to get P Per-iteration
— complexity
» One numerical factorizaton per interior-point iteration O(n?) O(n?)

- Forward/backward substitution twice per iteration O(n?)
51



Convergence

Mehrotra’s algorithm

No convergence theory ——— Examples where it diverges (rare!)

Fantastic convergence in practice — Fewer than 30 iterations

Theoretical iteration complexity Operations
Alternative versions (slower than Mehrotra) e
e — O(n”°)

converge in O(4/n) iterations

Average iteration complexity
Average iterations complexity is O(log n) — O(n”logn)

52



Interior-point vs simplex



Comparison between interior-point method and simplex

Primal simplex Dual simplex Primal-dual interior-point

. Primal feasibility ~~ « Dual feasibility * Interior condition

| |

. Primal feasibility

 Zero duality gap » Zero duality gap . Dual feasibility

» Dual feasibility * Primal feasibility . Zero duality gap
Exponential worst-case complexity Polynomial worst-case complexity
Requires feasible point Allows Infeasible start

Can be warm-started Cannot be warm-started 54



Which algorithm should | use?

Dual simplex Interior-point (barrier)

e Small-to-medium problems  Medium-to-large problems
 Repeated solves with varying constraints e Sparse structured problems

How do solvers with multiple options decide?

Concurrent Optimization

Why not both? (crossover)

Interior-point —  Few simplex steps

55


https://www.gurobi.com/documentation/9.0/refman/concurrent_optimizer.html

Questions



Next lecture

* Integer optimization

S7



