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Ed Forum

* |n the adding variable example, we checked whether (x*, 0) was still primal and dual
feasible, from which we concluded that having 0 of the new product was still optimal.

Why did we not need to check whether the duality gap was still O in order to
conclude this?

* |n the case that something is dual feasible but not primal feasible, we can run dual
simplex starting from the feasible dual solution to find the optimal solution. Is this
because if we get to the end of dual simplex and have an optimal solution, then this
solution is also the optimal solution for the primal solution because of strong duality?

* | know that the primal and the dual have a special relationship, where one as basically
the 'flip' of the other. However, | wasn't exactly sure how the feasibility of one
affected the other; | was wondering if you could explain that a bit more.






Primal and dual basic feasible solutions

Primal problem Dual problem
minimize clx maximize —bTy
subjectto Az = subjectto ATy + ¢ >0

r > 0

Given a basis matrix B

_ _ i Reduced costs
Primal feasible: Az =0, t >0 = xp=A502>0 /

Dual feasible: A"y +c¢>0. Sety= Ay,  cp. Dualfeasibleifc =c+ ATy >0
Zero duality gap: ¢!z + by = chB — bTAchB — CpXp — ch];lb =3

T

(by construction)



The primal (dual) simplex method

Primal problem
minimize ¢’z
subjectto Az =0

r > 0

Primal simplex

* Primal feasiblility
e Zero duality gap

Dual feasibility

Dual problem

maximize —bly
subjectto Aly+c¢>0

Dual simplex
(solve dual instead)

» Dual feasibility
e Zero duality gap

Primal feasibility



Adding new variables

minimize ¢’z minimize  c'x + cpp1Tnid
subjectto Arxr=b —> subjectto Ax+ A, 1Tn11 =0
xr > 0 Ly Ln+1 > 0

Solution x*, y*

Is the solution (z*,0), y* optimal for the new problem?



Adding new variables

Optimality conditions

minimize ¢z + cp12n41
subjectto Ax + A, 112,41 =b ——— Solution (z*,0) is still primal feasible
Ly L1 > 0

Is y* still dual feasible?

AZ+1?J* + Cny1 2= 0

Yes Otherwise

(x*,0) still optimal for new problem Primal simplex



Today'’s lecture

Network optimization

e Network flows
 Minimum cost network flow problem
e Network flow solutions

 Examples: maximum flow, shortest path, assignment



Network flows




Networks

* Electrical and power networks
 Road networks

* Airline routes

* Printed circuit boards

e Social networks




Network modelling

A network (or directed graph, or digraph)
IS a set of m nodes and n directed arcs

» Arcs are ordered pairs of nodes (a, b)
(leaves a, enters b)

» Assumption there is at most one arc
from node a to node b

» There are no loops (arcs from a to a)
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Arc-node incidence matrix

m X n matrix A with entries

1 If arc 5 starts at node

Aij — —1
0 otherwise

Note Each column has
one —1 and one 1

If arc j ends at node 1

—1

o O = O O

o = O O

oo O O =




Network flow

flow vector r €¢ R"

z ;. flow (of material, traffic, information, electricity, etc)
through arc j

total flow leaving node ¢

> Aijzy = (Ax);
j=1
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External supply

supply vector b € R™

» b; IS the external supply at node ¢
(if b; < O, it represents demand)
» We must have 1715 = 0

(total supply = total demand)

Balance equations

ZAZJ% — — b;, foralli

7=1 / \

Total leaving Supply
flow

Axr =0

14



Minimum cost network flow
problem



Minimum cost network flow problem

minimize c¢lx
subjectto Ax =0
0<zx<u

* ¢; Is unit cost of flow through arc :
* Flow x; must be nonnegative
* u; 1S the maximum flow capacity of arc ¢

» Many network optimization problems are just special cases
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c=(5,6,8,4,3,9,3,6)

1 1 0 0 0 0 0

Example C 0 1 1 1 0 o
Transportation o 0 0 0 0 1 0
A=10 0 0 0 0 0 1

Goal ship x € R" to satisfy demand 10 -1 0 0 0 0
Supply Demand 0 -1 0 -1 0 -1 -1

0 0 0O 0 -1 0 0

b= (7,11,18,12,—-10,—23, —15)
u=201

Minimum cost network flow

minimize ¢!z

subjectto Az =0
0<x<u

(arc costs shown)
All capacities 20 r* =(7,0,3,0,8,18,5,7) 17

o O = O O O




Example

Airline passenger routing

* United Airlines has 5 flights per day
from BOS to NY
(10am, 12pm, 2pm, 4pm, 6pm)

* Flight capacities
(100, 100, 100, 150, 150)

e Costs: $50/hour of delay

« |Last option: 9pm flight with other
company (additional cost $75)

 [oday’s reservations
(110, 118, 103, 161, 140)




Airline passenger routing

Network

(o

Network flow formulation

minimize
subject to

CT$

Axr =0
0<x<u

Decisions
z ;. passengers flowing on arc j

Costs
c;: cost of moving passenger on arc j

+ Between flights: $50/hour
» To 9pm flight: $75 additional
» To NY: $0 (as scheduled)

Supplies
b; reserved passengers for flight ;

* 9pm flight: ; =0
* NY supply: - total reserved passeng.

Capacities
w; Maximum passengers over arc j

 Between flights: u; = o

» To NY: u; = flight capacity
19



Network flow solutions




Remove arc capacities

Goal: create equivalent network without arc capacities

minimize ¢’z minimize 6~Ti ~ Standard form
subjectto Ax =10 —_— subjectto Ax =b LP with arc-node
0< 1< u >0 iIncidence matrix

21



$j<uj —

e T X ... =
Network structure lost -
no longer one —1 R R
and one 1 per column T+ 8; = u,

Network structure
recovered

(hew node and new arc)

Remove arc capacities

ldea: slack variables

Nodes/arcs
Interpretation

N
O—0O
b, b,

22



Equivalent uncapacitated network flow

minimize 'z

subjectto Az =0
r > 0

» A still an arc-node incidence matrix
« Can we say something about the extreme points?
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Total unimodularity

A matrix is totally unimodular if all its minors are —1,0 or 1
(minor is the determinant of a square submatrix of A)

example: a node-arc incidence N — o o 1 0 1 0
matrix of a directed graph o 1 0 -1 -1 0

properties

- the entries of A;; (i.e., its minors of order 1) are —1,0, or 1
» The inverse of any nonsingular square submatrix
of A has entries +1, —1, or 0
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Integrality theorem
Given a polyhedron P={zceR"|Az =0, x>0}

where
» A Is totally unimodular all the extreme points of P
* b IS an Integer vector are integer vectors.

Proof

» All extreme points are basic feasible solutions
with xg = Az'band z; =0, i # B
- A" has integer components because of total unimodularity of A
* b has also integer components
» Therefore, also z Is integral B
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Implications for network and combinatorial optimization

Minimum cost network flow
T

minimize c¢'«x _
hiectto Ar — b If b and u are integral
SUbJect 1o Ar = solutions =* are integral
0<x<u
Integer linear programs Very difficult in general

(more on this in a few weeks)

minimize ¢z

subjectto Az =0
0<zx<u
x e "

If A totally unimodular

and b, u Integral, we can

relax integrality and solve

a fast LP instead 26



Examples



Maximum flow problem

Goal maximize flow from node 1 (source)
to node m (sink) through the network

/@\@

subject to A:C — te e=(1,0,...,0,—1)
0<x<u
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Maximum flow as minimum cost flow

oY i

p
\ Artificial arc n + 1

minimize  —t
: i 1 XL
subjectto |A —e¢ T 0
L _u_
)< <




(arc capacities shown)
12
11" (o 15

a 1w o Tm

First flow 1

Maximum flow example

11

11

Third flow

4/11

Second flow

11/12

4/11

Total flow: 19
11 30




Shortest path problem

Goal Find the shortest path between nodes 1 and m

/<> - paths can be represented
\/\ as vectors z € {0,1}"

Formulation . ¢; is the “length” of arc j
minimize ¢!z » ¢e=(1,0,...,0,—1)
subjectto Az = e - Variables are binary

r € {0,1}" (include or not arc in path)
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Shortest path as minimum cost flow

Relaxation
minimize c¢lx minimize c¢lx
subjectto Az =ce¢ — subjectto Ax =ce¢

r e {0,1}" 0<z<1

Extreme points
satisfy x; € {0,1}

Example (arc costs shown)

c=(11,8,10,12,4,11,7,15,4)
z* =(0,1,0,0,0,1,0,0,1)

=924
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Assignment problem

Goal match N persons to N tasks

» Each person assigned to one task, each task to one person

- (;; Cost of matching person ¢ to task

LP formulation

N
minimize Z Cii Xij

2,=1

N
SUbjeCttO ZXU:L ]:1,,N
1=1

N
> Xij=1, i=1,...,N
j=1

X;; €10,1}

How do you define
the network?
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Task assignment as
minimum cost network flow

Person

(arc costs shown)

c=(5,6,2,8,1,3,4,3,9)

1 1 0 0 0 0
0 0 1 1 1 0
0 0 0 0 0 1
0 0O -1 0 0 -1
-1 0 0O -1 0 0

0O -1 0 0O -1 0

b=(1,1,1,—-1,—1,—1)
Minimum cost network flow

minimize ¢!z

subjectto Az =0

Extreme points

satisfy x; € {0,1}

D0<xr<I1

Optimal solution
v* =(0,0,1,0,1,0,0,0,1)
cla* =17

o = O O

34
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Network optimization

Today, we learned to:

Model flows across networks
Formulate minimum cost network flow problems
Analyze network flow problem solutions (integrality theorem)

Formulate maximum-flow, shortest path, and assignment problems as
minimum cost network flows
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Next lecture

* |nterior point algorithms
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