ORF307 – Optimization

15. Sensitivity analysis

Ed forum

- Two-person games:
 - Isn't A a matrix with a single entry at (i, j)? Is that P1's payoff or P2's payoff?

Expected payoff (from P1 P2), if they use mixed-strategies x and y,

$$\sum_{i=1}^{m} \sum_{j=1}^{n} x_i y_j A_{ij} = x^T A y$$

- Weak vs strong duality recap?
- How do you interpret dual variables (multipliers)? (This lecture!)

Recap

Optimal objective values

Primal

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax < b \end{array}$

 p^{\star} is the primal optimal value

Primal infeasible: $p^* = +\infty$ Primal unbounded: $p^* = -\infty$

Dual

 $\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c = 0 \\ & y \geq 0 \end{array}$

 d^{\star} is the dual optimal value

Dual infeasible: $d^* = -\infty$ Dual unbounded: $d^* = +\infty$

Weak duality

Theorem

If x, y satisfy:

- x is a feasible solution to the primal problem
- y is a feasible solution to the dual problem

$$-b^T y \le c^T x$$

Proof

We know that $Ax \leq b$, $A^Ty + c = 0$ and $y \geq 0$. Therefore,

$$0 \le y^{T}(b - Ax) = b^{T}y - y^{T}Ax = c^{T}x + b^{T}y$$

Remark

- Any dual feasible y gives a lower bound on the primal optimal value
- ullet Any primal feasible x gives an **upper bound** on the dual optimal value
- $c^T x + b^T y$ is the duality gap

Optimal objective values

Primal

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax < b \end{array}$

 p^{\star} is the primal optimal value

Primal infeasible: $p^* = +\infty$ Primal unbounded: $p^* = -\infty$

Dual

 $\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c = 0 \\ & y \geq 0 \end{array}$

 d^{\star} is the dual optimal value

Dual infeasible: $d^* = -\infty$

Dual unbounded: $d^* = +\infty$

Weak duality

Corollaries

Unboundedness vs feasibility

- Primal unbounded $(p^* = -\infty) \Rightarrow$ dual infeasible $(d^* = -\infty)$
- Dual unbounded $(d^* = +\infty) \Rightarrow$ primal infeasible $(p^* = +\infty)$

Optimality condition

If x, y satisfy:

- x is a feasible solution to the primal problem
- y is a feasible solution to the dual problem
- The duality gap is zero, *i.e.*, $c^Tx + b^Ty = 0$

Then x and y are **optimal solutions** to the primal and dual problem respectively

Strong duality

Theorem

If a linear optimization problem has an optimal solution, so does its dual, and the optimal value of primal and dual are equal

$$d^{\star} = p^{\star}$$

Strong duality

Constructive proof

Given a primal optimal solution x^* we will construct a dual optimal solution y^*

Apply simplex to problem in standard form

minimize
$$c^Tx$$
 • optimal basis B subject to $Ax=b$ • optimal solution x^\star with $A_Bx_B^\star=b$ • reduced costs $\bar{c}=c-A^TA_B^{-T}c_B\geq 0$

Define y^* such that $y^* = -A_B^{-T} c_B$. Therefore, $A^T y^* + c \ge 0$ (y^* dual feasible).

$$-b^T y^* = -b^T (-A_B^{-T} c_B) = c_B^T (A_B^{-1} b) = c_B^T x_B^* = c^T x^*$$

By weak duality theorem corollary, y^* is an optimal solution of the dual. Therefore, $d^* = p^*$.

Today's lectureSensitivity analysis and game theory

- Primal and dual simplex
- Adding variables and constraints
- Global sensitivity
- Local sensitivity

Primal and dual simplex

Optimality conditions

Primal problem

Dual problem

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

 \boldsymbol{x} and \boldsymbol{y} are **primal** and **dual** optimal if and only if

- x is primal feasible: Ax = b and $x \ge 0$
- y is dual feasible: $A^Ty + c \ge 0$
- The duality gap is zero: $c^T x + b^T y = 0$

Primal and dual basic feasible solutions

Primal problem

Dual problem

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x > 0 \end{array}$$

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Given a **basis** matrix B

Primal feasible: $Ax = b, x \ge 0 \implies x_B = A_B^{-1}b \ge 0$

$$Ax = b, x \ge 0$$

$$\Rightarrow$$

$$x_B = A_B^{-1}b \ge 0$$

Reduced costs

Dual feasible:
$$A^Ty + c \ge 0$$
. Set $y = -A_B^{-T}c_B$. Dual feasible if $\bar{c} = c + A^Ty \ge 0$

Zero duality gap:
$$c^T x + b^T y = c_B^T x_B - b^T A_B^{-T} c_B = c_B x_B - c_B^T A_B^{-1} b = 0$$

The primal (dual) simplex method

Primal problem

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$

Primal simplex

- Primal feasibility
- Zero duality gap

Dual problem

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Dual simplex

(solve dual instead)

- Dual feasibility
- Zero duality gap

Primal feasibility

Adding new constraints and variables

$$\begin{array}{lll} \text{minimize} & c^Tx & \text{minimize} & c^Tx + c_{n+1}x_{n+1} \\ \text{subject to} & Ax = b & \longrightarrow & \text{subject to} & Ax + A_{n+1}x_{n+1} = b \\ & x \geq 0 & & x, x_{n+1} \geq 0 \end{array}$$

Solution x^*, y^*

Is the solution $(x^*,0),y^*$ optimal for the new problem?

Optimality conditions

Is y^* still dual feasible?

$$A_{n+1}^T y^* + c_{n+1} \ge 0$$

Yes Otherwise

 $(x^{\star},0)$ still **optimal** for new problem

Primal simplex

Example

minimize

$$-60x_1 - 30x_2 - 20x_3$$

subject to
$$8x_1 + 6x_2 + x_3 \le 48$$

$$4x_1 + 2x_2 + 1.5x_3 \le 20$$

$$2x_1 + 1.5x_2 + 0.5x_3 \le 8$$

-profit

material production quality control

$$x \ge 0$$

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x > 0 \end{array}$$

$$c = (-60, -30, -20, 0, 0, 0)$$

$$A = \begin{bmatrix} 8 & 6 & 1 & 1 & 0 & 0 \\ 4 & 2 & 1.5 & 0 & 1 & 0 \\ 2 & 1.5 & 0.5 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (48, 20, 8)$$

$$x^* = (2, 0, 8, 24, 0, 0), \quad y^* = (0, 10, 10), \quad c^T x^* = -280, \quad \text{basis } \{1, 3, 4\}$$

$$y^* = (0, 10, 10)$$

$$c^T x^* = -280,$$

Example: add new product?

minimize
$$c^Tx + c_{n+1}x_{n+1}$$
 subject to
$$Ax + A_{n+1}x_{n+1} = b$$

$$x, x_{n+1} \geq 0$$

$$c = (-60, -30, -20, 0, 0, 0, -15)$$

$$A = egin{bmatrix} 8 & 6 & 1 & 1 & 0 & 0 & 1 \ 4 & 2 & 1.5 & 0 & 1 & 0 & 1 \ 2 & 1.5 & 0.5 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$b = (48, 20, 8)$$

Previous solution

$$x^* = (2, 0, 8, 24, 0, 0), \quad y^* = (0, 10, 10), \quad c^T x^* = -280, \quad \text{basis } \{1, 3, 4\}$$

$(x^{\star},0)$ is still optimal

$$A_{n+1}^T y^* + c_{n+1} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{vmatrix} 0 \\ 10 \\ 10 \end{vmatrix} - 15 = 5 \ge 0$$

Shall we add a new product?

Adding new constraints

Dual

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + a_{m+1} y_{m+1} + c \geq 0 \end{array}$$

Is the solution $x^*, (y^*, 0)$ optimal for the new problem?

Adding new constraints

Optimality conditions

maximize $-b^Ty$ subject to $A^Ty + a_{m+1}y_{m+1} + c \ge 0$ ——— Solution $(y^*, 0)$ is still **dual feasible**

Is x^* still primal feasible?

$$Ax = b$$

$$a_{m+1}^T x = b_{m+1}$$

$$x > 0$$

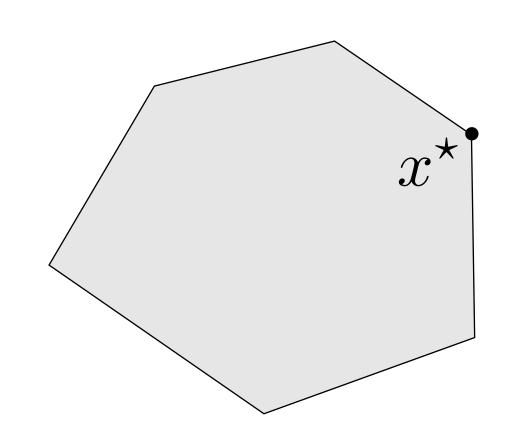
Yes

Otherwise

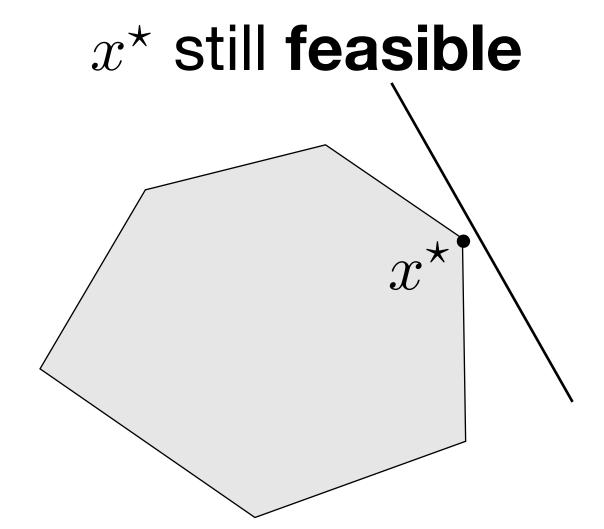
 x^{\star} still **optimal** for new problem

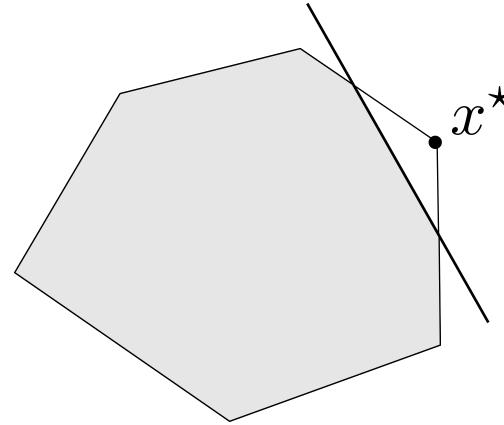
Dual simplex

Adding new constraints Example



Add new constraint





Global sensitivity analysis

Changes in problem data

Goal: extract information from x^*, y^* about their sensitivity with respect to changes in problem data

Modified LP

$$\begin{array}{ll} \text{minimize} & c^Tx \\ \text{subject to} & Ax = b+u \\ & x \geq 0 \end{array}$$

Optimal cost $p^{\star}(u)$

Global sensitivity

Dual of modified LP

$$\begin{array}{ll} \text{maximize} & -(b+u)^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Global lower bound

Given y^* a dual optimal solution for u=0, then

$$p^{\star}(u) \ge -(b+u)^T y^{\star}$$
 (from weak duality and $= p^{\star}(0) - u^T y^{\star}$ dual feasibility)

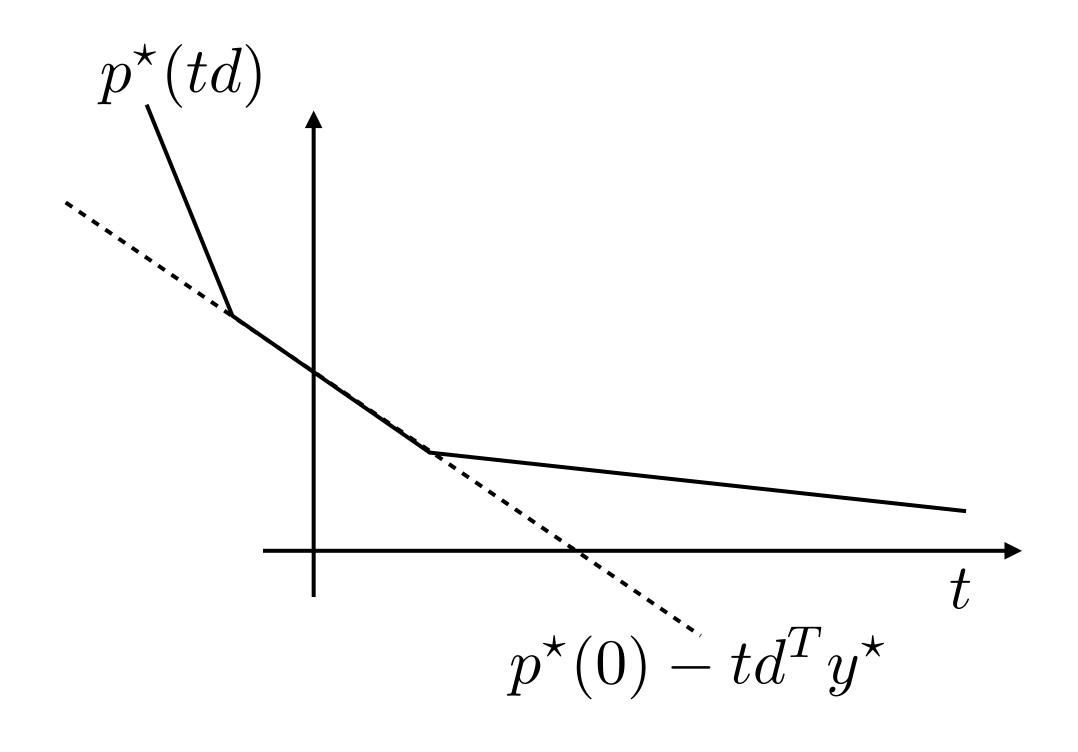
It holds for any \boldsymbol{u}

Global sensitivity

Example

Take u=td with $d\in\mathbf{R}^m$ fixed minimize c^Tx subject to Ax=b+td $x\geq 0$

 $p^{\star}(td)$ is the optimal value as a function of t



Sensitivity information (assuming $d^T y^* \ge 0$)

- t < 0 the optimal value increases
- t>0 the optimal value decreases (not so much if t is small)

Optimal value function

$$p^{\star}(u) = \min\{c^{T}x \mid Ax = b + u, \ x \ge 0\}$$

Assumption: $p^*(0)$ is finite

Properties

- $p^{\star}(u) > -\infty$ everywhere (from global lower bound)
- $p^{\star}(u)$ is piecewise-linear on its domain

Optimal value function is piecewise linear

Proof

$$p^{\star}(u) = \min\{c^T x \mid Ax = b + u, \ x \ge 0\}$$

Dual feasible set

$$D = \{ y \mid A^T y + c \ge 0 \}$$

Assumption: $p^{\star}(0)$ is finite

If
$$p^{\star}(u)$$
 finite
$$p^{\star}(u) = \max_{y \in D} -(b+u)^T y = \max_{k=1,...,r} -y_k^T u - b^T y_k$$

 y_1, \ldots, y_r are the extreme points of D

Local sensitivity analysis

Local sensitivity

u in neighborhood of the origin

Original LP

minimize $c^T x$

subject to Ax = b

$$x \ge 0$$

Optimal solution

Primal $x_i^\star = 0, \quad i \notin B \\ x_B^\star = A_B^{-1} b$

$$x_{D}^{\star} = A_{D}^{-1}b$$

Dual
$$y^* = -A_B^{-T} c_B$$

Modified LP

minimize c^Tx

$$c^T x$$

subject to
$$Ax = b + u$$

$$x \ge 0$$

Modified dual

maximize $-(b+u)^T y$

subject to $A^Ty + c > 0$

Optimal basis does not change

Modified optimal solution

$$x_B^*(u) = A_B^{-1}(b+u) = x_B^* + A_B^{-1}u$$

 $y^*(u) = y^*$

Derivative of the optimal value function

Modified optimal solution

$$x_B^*(u) = A_B^{-1}(b+u) = x_B^* + A_B^{-1}u$$

 $y^*(u) = y^*$

Optimal value function

$$p^{\star}(u) = c^{T}x^{\star}(u)$$

$$= c^{T}x^{\star} + c_{B}^{T}A_{B}^{-1}u$$

$$= p^{\star}(0) - y^{\star T}u \qquad \text{(affine for small } u\text{)}$$

Local derivative

$$\nabla p^{\star}(u) = -y^{\star}$$
 (y* are the shadow prices)

Sensitivity example

minimize
$$-60x_1-30x_2-20x_3 \qquad \text{-profit}$$
 subject to
$$8x_1+6x_2+x_3\leq 48 \qquad \text{material}$$

$$4x_1+2x_2+1.5x_3\leq 20 \qquad \text{production}$$

$$2x_1+1.5x_2+0.5x_3\leq 8 \qquad \text{quality control}$$

$$x\geq 0$$

$$x^* = (2, 0, 8, 24, 0, 0), \quad y^* = (0, 10, 10), \quad c^T x^* = -280, \quad \text{basis } \{1, 3, 4\}$$

What does $y_3^* = 10$ mean?

Let's increase the quality control budget by 1, i.e., u = (0, 0, 1)

$$p^*(u) = p^*(0) - y^{*T}u = -280 - 10 = -290$$

Sensitivity analysis

Today, we learned to:

- Reuse primal and dual solutions when variables or constraints are added
- Analyze value function as problem parameters change
- Compute local sensitivity to parameter perturbations

References

- D. Bertsimas and J. Tsitsiklis: Introduction to Linear Optimization
 - Chapter 5: Sensitivity analysis

- R. Vanderbei: "Linear Programming
 - Chapter 7: Sensitivity and parametric analysis

Next lecture

Network optimization