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Ed forum

* [wO-person games:

* |sn't A a matrix with a single entry at (i, j)? Is that P1's payoff or P2's payoff?

Expected payoff (from P1 P2), if they use mixed-strategies = and v,

2: Z TiY; Aij = v Ay

i=1 j=1

 Weak vs strong duality recap?

 How do you interpret dual variables (multipliers)? (This lecture!)






Optimal objective values

Primal
minimize clx
subjectto Az <b

p* 1S the primal optimal value

Primal infeasible: p* = +oc
Primal unbounded: p* = —o0¢

Dual
maximize —bly

subjectto Aly+c=0

y 20

d* 1s the dual optimal value

Dual infeasible: d* = —o¢

Dual unbounded: d* =

O



Weak duality

Theorem
If x,y satisty:

» x IS a feasible solution to the primal problem

T T
. y is a feasible solution to the dual problem ~— ~ ~bysca

Proof
We know that Az < b, Ay + ¢ = 0andy > 0. Therefore,

0<y' (b—Ax)=by—y Az =c'z+b'y

Remark
- Any dual feasible y gives a lower bound on the primal optimal value

» Any primal feasible x gives an upper bound on the dual optimal value
- c!'x 4+ bly is the duality gap



Optimal objective values

Primal
minimize clx
subjectto Az <b

p* 1S the primal optimal value

Primal infeasible: p* = +oc
Primal unbounded: p* = —o0¢

Dual
maximize —bly

subjectto Aly+c=0

y 20

d* 1s the dual optimal value

Dual infeasible: d* = —o¢

Dual unbounded: d* =

O



Weak duality

Corollaries

Unboundedness vs feasibility
* Primal unbounded (p* = —o0) = dual infeasible (d* = —o0)
* Dual unbounded (d* = +o00) = primal infeasible (p* = +0o0)

Optimality condition

If x, y satisfy:
» x IS a feasible solution to the primal problem
» y IS a feasible solution to the dual problem
- The duality gap is zero, i.e., ¢!z + bl y =0

Then x and y are optimal solutions to the primal and dual problem respectively i



Strong duality

Theorem
If a linear optimization problem has an optimal solution, so does its dual, and
the optimal value of primal and dual are equal

d*:p*



Strong duality

Constructive proof
Given a primal optimal solution x> we will construct a dual optimal solution y*

Apply simplex to problem in standard form

minimize ¢’z - optimal basis B
subjectto Az =b  —— ¢ optimal solution z* with Az =0
>0 » reduced costs ¢ =c — AT AL cg > 0

Define y* such that y* = —AZ;TCB. Therefore, A y* + ¢ > 0 (y* dual feasible).
bl y* = b (A, cg) = ch(AZ'D) = chrly =l 2*

By weak duality theorem corollary, y* is an optimal solution of the dual.

Therefore, d* = p*. m



Today’s lecture

Sensitivity analysis and game theory

* Primal and dual simplex
 Adding variables and constraints
* Global sensitivity

* Local sensitivity
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Primal and dual simplex




Optimality conditions

Primal problem Dual problem
minimize clx maximize —bTy
subjectto Az = subjectto ATy + ¢ >0

r > 0

r and y are primal and dual optimal if and only if

- x Is primal feasible: Ax =band x > 0

- ¢y is dual feasible: A’y +c¢ >0

- The duality gap is zero: ¢!z + bl'y = 0
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Primal and dual basic feasible solutions

Primal problem Dual problem
minimize clx maximize —bTy
subjectto Az = subjectto ATy + ¢ >0

r > 0

Given a basis matrix B
_ _ i Reduced costs
Primal feasible: Az =0, t >0 = xp=A502>0 /
Dual feasible: A"y +c¢>0. Sety= Ay,  cp. Dualfeasibleifc =c+ ATy >0

Zero duality gap: ¢!z + by = chB — bTAchB — CpXp — ch];lb :T 0

(by construction) 1o



The primal (dual) simplex method

Primal problem
minimize ¢’z
subjectto Az =0

r > 0

Primal simplex

* Primal feasiblility
e Zero duality gap

Dual feasibility

Dual problem

maximize —bly
subjectto Aly+c¢>0

Dual simplex
(solve dual instead)

» Dual feasibility
e Zero duality gap

Primal feasibility
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Adding new constraints and
variables



Adding new variables

minimize ¢’z minimize  c'x + cpp1Tnid
subjectto Arxr=b —> subjectto Ax+ A, 1Tn11 =0
xr > 0 Ly Ln+1 > 0

Solution x*, y*

Is the solution (z*,0), y* optimal for the new problem?
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Adding new variables

Optimality conditions

minimize ¢z + cp12n41
subjectto Ax + A, 112,41 =b ——— Solution (z*,0) is still primal feasible
Ly L1 > 0

Is y* still dual feasible?

AZ+1?J* + Cny1 2= 0

Yes Otherwise

(x*,0) still optimal for new problem Primal simplex
17



Adding new variables

Example

minimize  —60x; — 3025 — 20x3 -profit

subjectto 8x; + 6x9 + x3 < 48 material

minimize
subject to

r* = (2,0,8,24,0,0),

dr1 + 229 + 1.523 <20  production
221 + 1.0z + 0.523 < 8  quality control

xr > 0
c = (—60, —30,—-20,0,0,0)
clx 8 6 1 1 0 0
Axr = b A=14 2 15 0 1 0
x > 0 2 15 05 0 0 1T

b = (48, 20, 8)

y* = (0,10,10), c'2z* = —280, basis {1,3,4}
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minimize clz 4+ cp12041
SUbjeCt to Ax + An—l—lxn—l—l =%
Ly L1 > 0

Previous solution

Adding new variables

Example: add new product?

¢ = (—60, —30, —20,0,0,0, —15)

s 6 1 1 0 0 1
A=14 2 15 0 1 0 1

2 15 05 0 0 1 1
b = (48, 20, 8)

r* =(2,0,8,24,0,0), v*=(0,10,10), cla*= —280, basis{1,3,4}

(x*,0) is still optimal

AZ 1y* —|—Cn_|_1 =11 1 1 10
' 110

—10=952>0

Shall we add a
new product?
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Adding new constraints

minimize L minimize C" X

subjectto Az =0 — subjectto Ax =0
r 2> Ay 1T = by
. x > (

Solution z*, y*

Dual
maximize —bly
SUbjeCt to ATy T+ Am+1Ym+1 T C > ()

Is the solution z*, (y*, 0) optimal for the new problem?
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Adding new constraints

Optimality conditions

maximize —bly
subjectto A'y+ ami1yms1 +¢>0 ——» Solution (y*,0) is still dual feasible

Is x* still primal feasible?

Axr =0

T _

r > 0

Yes Otherwise

™ still optimal for new problem Dual simplex
21



Adding new constraints

Example z* still feasible

x Add new constraint

.

™ Infeasible




Global sensitivity analysis



Changes in problem data

Goal: extract information from x*,y* about their sensitivity with respect to
changes in problem data

Modified LP
minimize ¢!z
subjectto Az =0+ u

r >0

Optimal cost p* (u)
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Global sensitivity

Dual of modified LP
maximize —(b+u)'y
subjectto ATy +c¢ >0

Global lower bound

Given y* a dual optimal solution for u = 0, then

p*(u) > —(b+u)"y*
=p*(0) —u'y*

It holds for any u

(from weak duality and
dual feasibility)
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Global sensitivity

Example

Take u = td with d € R™ fixed
minimize iz
subjectto Ax =b+td

r > 0

p*(td) is the optimal value as a function of ¢

Sensitivity information (assuming d* y* > 0)

» ¢t < 0 the optimal value increases
« t > 0 the optimal value decreases (hot so much if ¢ is small)
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Optimal value function
p*(vw) =min{c' z | Az =b+u, x >0}
Assumption: p*(0) is finite

Properties

* p*(u) > —oo everywhere (from global lower bound)

» p*(u) is piecewise-linear on its domain
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Optimal value function is piecewise linear

Proof
Dual feasible set

p*(u) = min{c'z | Az =b+u, x> 0} D={y|A'y+c>0}

Assumption: p*(0) is finite

If p*(u) finite

X0\ _ (b T, _ 0Ty — T
pr(u) =max—(b+u)y= max —ygu-—b y

v1,...,Y, are the extreme points of D
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Local sensitivity analysis



Local sensitivity

uw In neighborhood of the origin

Original LP Optimal solution
minimize ¢’z Primal r; =0, i¢B
subjectto Arxr=6 —— TR = Aélb

r > 0 Dual y* = —Ag5 cp
Modified LP Modified dual
minimize ¢’z maximize —(b+u)"y
subjectto Az =0+ u subjectto ATy +c >0
x > 0

Modified optimal solution

rp(u) = A (b+u) = a5 + Az'u

y (u) =y

Optimal basis
does not change
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Derivative of the optimal value function

Modified optimal solution
v (u) = A (b+u) = 2% + Ag'u
y (u) =y

Optimal value function

p*(u) = ¢ z*(u)
=c'a* + cg ALl u

= p*(0) — y*Tu (affine for small u)

Local derivative

Vp*(u) = —y* (y* are the shadow prices) .



Sensitivity example

—60261 — 30$2 — 20$3
81 + 0619 + x3 < 48
4$1 -+ 22132 —+ 15$3 S 20

minimize
subject to

r* = (2,0,8,24,0,0),

p*(u)

2331

-profit

material
production
quality control

1.52172 05333 S S

xr > 0

P basis {1, 3,4}

y* = (0,10, 10),

What does y; = 10 mean?

Let’s increase the quality control budget by 1, i.e., u = (0,0, 1)
p*(0) — y* u = —280 — 10 = —290

230,



Sensitivity analysis

Today, we learned to:
 Reuse primal and dual solutions when variables or constraints are added
* Analyze value function as problem parameters change

« Compute local sensitivity to parameter perturbations
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Next lecture

 Network optimization
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