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Ed Forum

» A feasible direction is any direction that "stays in" P, whereas a basic direction
IS one that points in the direction of a neighboring basic solution. Is there a
difference between a feasible direction and a basic direction?

 Why does maximizing the lower bound of the cost make it “better”?






Optimal objective values

Primal
minimize clx
subjectto Az <b

p* 1S the primal optimal value

Primal infeasible: p* = +oc
Primal unbounded: p* = —o0¢

Dual
maximize —bly

subjectto Aly+c=0
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d* 1s the dual optimal value

Dual infeasible: d* = —o¢

Dual unbounded: d* =

O



Relationship between primal and dual

p* = 400 p* finite p* = —00
I — 4 primal inf.
- dual unb.
. timal
I* finite optimal values
equal
Jr — _ . primal unb.
o0 exception dual inf

» Upper-right excluded by weak duality
* (1,1) and (3, 3) proven by weak duality
* (3,1) and (2, 2) proven by strong duality



Today’s agenda

More on duality

* [wO-person zero-sum games
 Farkas lemma
 Complementary slackness

e KKT conditions



Two-person games



Rock paper scissors

Rules
At count to three declare one of: Rock, Paper, or Scissors

Winners

|dentical selection is a draw, otherwise:
 Rock beats (“dulls”) scissors

e Scissors beats (“cuts”) paper
 Paper beats (“covers”) rock

Extremely popular: world RPS society, USA RPS league, etc.



Two-person zero-sum game

» Player 1 (P1) chooses a number i € {1,...,m} (one of m actions)
* Player 2 (P2) chooses a number j € {1,...,n} (one of n actions)

Two players make their choice independently

Rule Rock, Paper, Scissors
R P S ]
Player 1 pays A;; to player 2 R| O 1 -1
A e R™*" is the payoff matrix A=P|-1 0 1
S| 1 -1 0




Mixed (randomized) strategies

Deterministic strategies can be systematically defeated

Randomized strategies
* P1 chooses randomly according to distribution x:

x; = probabllity that P1 selects action 2

» P2 chooses randomly according to distribution y:
y,; = probability that P2 selects action

Expected payoff (from P1 P2), if they use mixed-strategies x and v,

Z Z miyinj — QZ‘TAy

i=1 j=1
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Mixed strategies and probability simplex

Probability simplex in R
P,={peR"[p>0, 17p=1}

Mixed strategy

For a game player, a mixed strategy is a distribution over all possible
deterministic strategies.

The set of all mixed strategies is the probability simplex — x € F,,, vy € P,
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Optimal mixed strategies

P1: optimal strategy =* Is the solution of

minimize  max x" Ay minimize  max (ATz),
ye Py - j=1,....,n
subjectto x € P, subjectto  z € P, "\

Inner problem over
deterministic
strategies (vertices)

P2: optimal strategy y* is the solution of /
maximize xfg]ijﬂ r' Ay maximize min (Ay);
| ™m 1=1,....m

subjectto y € P, subjectto y € P,

Optimal strategies x* and y* can be computed using linear optimization .,



Minmax theorem

Theorem
max min ' Ay = min max z’ Ay
ye P, xeP,, ze P, ye P,
Proof
The optimal =* is the solution of The optimal y* is the solution of
minimize t maximize w
subjectto Alz <t1 subjectto Ay > wl
11 =1 11y =1
x>0 y > 0

The two LPs are duals and by strong duality the equality follows. [l 13



Nash equilibrium

Theorem

max min ' Ay = min max z’ Ay
ye P, xeP,, ze P, ye P,

Consequence

The pair of mixed strategies (z*, y*) attains the Nash equilibrium of the two-
person matrix game, i.e.,

vt Ayt >t Ayt > o Ay, Vz e P, Vye P,
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42 0 =3
A=|-2 —4 -3 3
-2 -3 4 1

Optimal deterministic strategies

minmax A4;; = 3 > —2 = maxmin 4,
1 9 9 ?

Optimal mixed strategies
r* = (0.37,0.33,0.3), y* = (0.4,0,0.13,0.47)

Expected payoff
o Ayt = 0.2



Farkas lemma



Feasibility of polyhedra

P={x|Ax=0b, x>0}

How to show that P is feasible?
Easy: we just need to provide an x € P, I.e., a certificate

How to show that P is infeasible?
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Farkas lemma

Theorem
Given A and b, exactly one of the following statements is true:

1. There existsan x with Ax = b, x > 0

2. There exists a y with ATy > 0, b''y < 0
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Farkas lemma

Geometric interpretation

1. First alternative
There exists an x with Az = b6, x > 0

n
bIZ%ZAZ, CCZ'>O,Z.:1,...,TL
1=1

b IS In the cone generated by the
columns of A

2. Second alternative
There exists a y with A%y > 0, b1y < 0

ylA; >0, i=1,...,m, ylb <0

The hyperplane y! z = 0
separates b from Aq,... A,
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Farkas lemma

There exists x with Az = b, > 0 OR There exists y with A7y >0, bly < 0

Proof

1 and 2 cannot be both true (easy)

r>0,Ar=bandy' A >0 — ylb =yl Az > 0
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Farkas lemma
There exists = with Az =b, = > 0 OR There exists y with ATy >0, b'y < 0

Proof
1 and 2 cannot be both false (duality)

Primal Dual
minimize 0
subjectto Az =0

xr > 0

maximize —bly
subjectto Aly >0

T Strong duality holds

y = 0 always feasible d* # —oco, p"=d"
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Farkas lemma
There exists = with Az =b, = > 0 OR There exists y with ATy >0, b'y < 0

Proof
1 and 2 cannot be both false (duality)

Primal Dual
minimize 0
subjectto Az =0

r > 0

maximize —b'y
subjectto Aly >0

Alternative 1: primal feasible p* = d* = 0

b1y > 0 for all y such that AYy > 0
22



Farkas lemma
There exists = with Az =b, = > 0 OR There exists y with ATy >0, b'y < 0

Proof
1 and 2 cannot be both false (duality)

Primal Dual
minimize 0

| maximize —bly
subjectto Az =0

subjectto Aly >0

r > 0
Alternative 2: primal infeasible p* = d* = +o¢
y IS an
There exists y such that Ay > 0and b'y < 0 infeasibility

certificate >3



Farkas lemma

Many variations

There exists x with Ax =b, x > 0
OR

There exists y with A7y > 0, b1y < 0

There exists x with Ax < b, x > 0

OR
There exists y with A7y >0, b1y <0, y > 0

There exists  with Ax < b

OR
There exists y with A7y =0, bly <0, y > 0
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Complementary slackness



Optimality conditions

Primal Dual
minimize ¢’z maximize —b"y
subjectto  Ax < b subjectto A’y +c=0
y > 0

r and y are primal and dual optimal if and only if
- x Is primal feasible: Ax < b

- ¢y is dual feasible: A"y +c=0and y > 0

- The duality gap is zero: ¢!z +bly =0

Can we relate x and y (not only the objective)?
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Complementary slackness

Primal Dual
minimize ¢’z maximize —b"y
subjectto  Ax < b subjectto A’y +c=0
y > 0

Theorem
Primal,dual feasible x, y are optimal if and only if

yi(bj —a; ) =0, i=1,...,m
l.e., at optimum, b — Az and y have a complementary sparsity pattern:

Yy, >0 = CLTZE:bZ

(/

CL?ZL‘<bi = y; = 0
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Complementary slackness

Primal Dual
minimize ¢’z maximize —b"y
subjectto  Ax < b subjectto A’y +c=0
y > 0

Proof
The duality gap at primal feasible x and dual feasible y can be written as

crrx+by=(—Ay) ' x+by=(b—-Az)' y = Z yi(b; —a; ) =0
i=1

Since all the elements of the sum are nonnegative, they must all be 0

For feasible x and y complementary slackness = zero duality gap
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Example

minimize

subject to

—4x1 — dxo
—1 0
2 1
0 -1
1 2

Let’s show that feasible x = (1, 1) is optimal

VA
w O W O

Second and fourth constraints are activeat t —— vy = (0, 92,0, y4)

2 1| [

Aly=— =
_1 2_ Ya

4
O

and

yZZov

ys = 0

y = (0, 1,0, 2) satisfies these conditions and proves that z is optimal

Complementary slackness is useful to recover y* from z*



Geometric interpretation

Example in R? @, —c

Two active constraints at optimum: aipaz* = by, agx* = by

Optimal dual solution y satisfies:
ATy_I_C:Ov y > 0, yZ:OfOrZ#{l,Q}

In other words, —c = a1y1 + asys With y1,y2 > 0
30



KKT Conditions



Lagrangian and duality

Primal Dual
minimize ¢’z maximize —b"y
subjectto Az < b subjectto A'y+c¢=0
y > 0
Dual function Lagrangian
g(y) = minimize (¢' = + y' (Az — b)) L(z,y) =c = +vy"' (Az — b)

— —bly+ minimize (c+ ATy)T T

B bty ifet+Aly=0 ———  V,L(z,y)=c+A'y=0
|- otherwise



Karush-Kuhn-Tucker conditions

Optimality conditions for linear optimization

Primal Dual
minimize ¢!z maximize —b'y
subjectto Az < b subjectto Aly+c=0
y >0
Primal feasibility Ax < b
Dual feasibility Vol(z,y) =A'y+c=0 and y >0

Complementary slackness yi(Ar —0); =0, i=1,...,m



Karush-Kuhn-Tucker conditions

Solving linear optimization problems

Primal Dual
minimize ¢!z maximize —b'y
subjectto Az < b subjectto Aly+c=0

y 20

We can solve our optimization problem by solving a system of equations
Vol(z,y) = A"y +c=0
b— Ax > 0
y >0
y' (b— Az) =0

34



Linear optimization duality

Today, we learned to:

* Interpret linear optimization duality using game theory

* Prove Farkas lemma using duality

 Geometrically link primal and dual solutions with complementary slackness

 Derive KKT optimality conditions

35



References

 Bertsimas and Tsitsiklis: Introduction to Linear Optimization
 Chapter 4: Duality theory
 R. Vanderbel: Linear Programming — Foundations and Extensions

o Chapter 11: Game Theory

36



Next lecture

e Sensitivity analysis
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