ORF307 – Optimization

10. Applications of linear optimization

Ed Forum

Midterm March 3

Time: 1:30pm — 2:50pm

Students with ODS approved extensions will start earlier at 12:30pm

Location: Friend 006

Topics: Up to last lecture (excluding equivalence theorem)

Material allowed: Single sheet of paper. Double sided. Hand-written or typed.

Questions

- What does it mean that n-m inequalities have to be tight? Is it that they cannot be equal to 0? Do they have to intersect?
- When we are picking x(i) values to hold tight, can we just choose them arbitrarily? Would picking different ones lead to different solutions?

Recap

Constructing basic solutions

Constructing a basic solution

Two equalities (m=2, n=3)

minimize
$$c^Tx$$
 subject to $x_1+x_3=1$
$$(1/2)x_1+x_2+(1/2)x_3=1$$

$$x_1,x_2,x_3\geq 0$$

n-m=1 inequalities have to be tight: $x_i=0$

Set $x_1 = 0$ and solve

$$\begin{bmatrix} 1 & 0 & 1 \\ 1/2 & 1 & 1/2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & 1 \\ 1 & 1/2 \end{bmatrix} \begin{bmatrix} x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \longrightarrow (x_2, x_3) = (0.5, 1)$$

Basic solutions

Standard form polyhedra

$$P = \{x \mid Ax = b, x \ge 0\}$$

with

 $A \in \mathbf{R}^{m \times n}$ has full row rank $m \leq n$

x is a **basic solution** if and only if

- Ax = b
- There exist indices $B(1), \ldots, B(m)$ such that
 - columns $A_{B(1)}, \ldots, A_{B(m)}$ are linearly independent
 - $x_i = 0$ for $i \neq B(1), \dots, B(m)$

x is a basic feasible solution if x is a basic solution and $x \ge 0$

Constructing basic solution

- 1. Choose any m independent columns of A: $A_{B(1)}, \ldots, A_{B(m)}$
- 2. Let $x_i = 0$ for all $i \neq B(1), ..., B(m)$
- 3. Solve Ax = b for the remaining $x_{B(1)}, \ldots, x_{B(m)}$

Basis Basis columns Basic variables matrix
$$A_B = \begin{bmatrix} & & & & \\ & A_{B(1)} & A_{B(2)} & \dots & A_{B(m)} \\ & & & & \end{bmatrix}, \quad x_B = \begin{bmatrix} x_{B(1)} \\ \vdots \\ x_{B(m)} \end{bmatrix} \longrightarrow \text{Solve } A_B x_B = b$$

If $x_B \ge 0$, then x is a basic feasible solution

Existence and optimality of extreme points

Existence of extreme points

Example

Existence of extreme points

Characterization

A polyhedron P contains a line if

 $\exists x \in P \text{ and a nonzero vector } d \text{ such that } x + \lambda d \in P, \forall \lambda \in \mathbf{R}.$

Given a polyhedron $P = \{x \mid a_i^T x \leq b_i, i = 1, ..., m\}$, the following are equivalent

- P does not contain a line
- P has at least one extreme point
- n of the a_i vectors are linearly independent

Corollary
Every nonempty bounded polyhedron has
at least one basic feasible solution

Optimality of extreme points

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$$

lf

- P has at least one extreme point
- There exists an optimal solution x^{\star}

Solution method: restrict search to extreme points.

How to search among basic feasible solutions?

Idea

List all the basic feasible solutions, compare objective values and pick the best one.

Intractable!

If n = 1000 and m = 100, we have 10^{143} combinations!

Conceptual algorithm

- Start at corner
- Visit neighboring corner that improves the objective

Today's agenda

Applications of linear optimization

- Optimal control
- Character recognition
- Portfolio optimization

Optimal control

Optimal control problems

Linear dynamical system

$$x_{t+1} = Ax_t + Bu_t, \quad t = 1, 2, \dots$$

 $y_t = Cx_t, \quad t = 1, 2, \dots$

- The n-vector x_t is the state at time t
- The m-vector u_t is the *input* at time t
- The p-vector y_t is the *output* at time t
- The $n \times n$ matrix A is the dynamics matrix
- The $n \times m$ matrix B is the input matrix
- The $p \times n$ matrix C is the output matrix

Simulation

- The sequence x_1, x_2, \ldots is called state trajectory
- The sequence y_1, y_2, \ldots is called *output trajectory*
- Goal: Given x_1, u_1, u_2, \ldots , find x_2, x_3, \ldots and y_2, y_3, \ldots
- Obtained by recursion. For $t=1,2,\ldots$, compute $x_{t+1}=Ax_t+Bu_t$ and $y_t=Cx_t$

Optimal control problem

Linear dynamical system

$$x_{t+1} = Ax_t + Bu_t, \quad t = 1, 2, \dots$$

 $y_t = Cx_t, \quad t = 1, 2, \dots$

The problem

- The *initial state* $x_1 = x^{\text{init}}$ is given
- Goal. Choose $u_1, u_2, \ldots, u_{T-1}$ to achieve some goals, e.g.,
 - Get to desired final state $x_T = x^{\text{des}}$
 - Minimize the input effort (make $||u_t||$ small for all t)
 - Track desired output y_t^{des} (make $\|y_t y_t^{\mathrm{des}}\|$ small for all t)

Least squares optimal control problem

minimize
$$\sum_{t=1}^{T} \|y_t - y_t^{\mathrm{des}}\|^2 + \rho \sum_{t=1}^{T-1} \|u_t\|^2$$
 subject to $x_{t+1} = Ax_t + Bu_t, \quad t = 1, \dots, T-1$ $y_t = Cx_t, \quad t = 1, \dots, T$ $x_1 = x^{\mathrm{init}}$

Remarks

- The variables are $x_2, \ldots, x_T, y_2, \ldots, y_T$, and u_t, \ldots, u_{T-1}
- Parameter $\rho > 0$ controls trade off between control "energy" and tracking error
- It is a multi-objective and constrained least squares problem

1-norm optimal control problem

minimize
$$\sum_{t=1}^{T} \|y_t - y_t^{\text{des}}\|_1 + \rho \sum_{t=1}^{T-1} \|u_t\|_1$$
 subject to $x_{t+1} = Ax_t + Bu_t, \quad t = 1, \dots, T-1$ $y_t = Cx_t, \quad t = 1, \dots, T$ $Dx_t \leq d, \quad t = 1, \dots, T$ $Eu_t \leq e, \quad t = 1, \dots, T-1$ $x_1 = x^{\text{init}}$

Remarks

- $\|\cdot\|_1$ instead of $\|\cdot\|_2^2$
- Linear inequality constraints:

 $Dx_t \leq d$ for states and $Eu_t \leq e$ for inputs

Is a linear optimization problem (with additional variables)

Vehicle example in a plane

Sample position and velocity at times $\tau = 0, h, 2h, \dots$

Vehicle with mass m

- 2-vector p_t is the position at time ht
- 2-vector v_t is the velocity at time ht
- 2-vector u_t is the force applied at time ht
- $-\eta v_t$ is the friction force applied at ht

Small time interval h

$$\frac{p_{t+1} - p_t}{h} \approx v_t$$

$$m \frac{v_{t+1} - v_t}{h} \approx -hv_t + u_t$$

$$p_{t+1} = p_t + hv_t$$

$$v_{t+1} = (1 - h\eta/m)v_t + (h/m)u_t$$

Vehicle example in a plane

State

4-vector $x_t = (p_t, v_t)$

Dynamics

$$x_{t+1} = Ax_t + Bu_t$$
$$y_t = Cx_t$$

Laws of physics

$$p_{t+1} = p_t + hv_t$$

 $v_{t+1} = (1 - h\eta/m)v_t + (h/m)u_t$

output = position
$$y_t = p_t$$

$$A = \begin{bmatrix} 1 & 0 & h & 0 \\ 0 & 1 & 0 & h \\ 0 & 0 & 1 - h\eta/m & 0 \\ 0 & 0 & 0 & 1 - h\eta/m \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 0 & h & 0 \\ 0 & 1 & 0 & h \\ 0 & 0 & 1 - h\eta/m & 0 \\ 0 & 0 & 0 & 1 - h\eta/m \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ h/m & 0 \\ 0 & h/m \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Least squares results

Parameters

$$T = 100, \quad h = 0.1, \quad \eta = 0.1, \quad m = 1$$

1-norm results

Parameters

$$T = 100, \quad h = 0.1, \quad \eta = 0.1, \quad m = 1$$

1-norm with constraints

Linear optimization can have more interesting constraints

1-norm with constraints results

Parameters

$$u^{\text{max}} = 10, \quad s^{\text{max}} = 0.1$$

Character recognition

Character recognition

MNIST data set of handwritten numerals

- Each character is 28 x 28 pixels
- 60k example images
- 10k further testing images
- Each sample comes with a label 0 9

Use linear classification to identify handwritten numbers

Images representation

Monochrome images

Images represented as an $m \times n$ matrix X

Each value X_{ij} represents a pixel's intensity (0 = black, and 255 = white)

We can represent an $m \times n$ matrix X by a single vector $x \in \mathbf{R}^{mn}$

$$X_{ij} = x_k, \qquad k = m(j-1) + i$$

$$x =$$

Linear classification

Support vector machine (linear separation)

Given a set of points $\{v_1, \dots, v_N\}$ with binary labels $s_i \in \{-1, 1\}$ Find hyperplane that strictly separates the tho classes

$$a^T v_i + b > 0$$
 if $s_i = 1$ \longrightarrow $s_i(a^T v_i + b) \ge 1$ $a^T v_i + b < 0$ if $s_i = -1$

Minimize sum of the violations + regularization

minimize
$$\sum_{i=1}^{N} \max\{0, 1 - s_i(a^Tv_i + b)\} + \lambda ||a||_1$$
 regularization

Learn to classify 5

Multiclass classification

- 1. Train one classifier per label k(e.g., k vs anything else), obtaining (a_k, b_k)
- 2. Predict all results and take the maximum

$$\hat{y}^{(i)} = \operatorname{argmax}_k \ a_k^T v^{(i)} + b_k$$

Portfolio optimization

Portfolio allocation weights

We want to invest V dollars in n different assets (stocks, bonds, ...) over periods $t = 1, \ldots, T$

Portfolio allocation weights

n-vector w gives the fraction of our total portfolio held in each asset

Properties

- Vw_j dollar value hold in asset j
- $\mathbf{1}^T w = 1$ (normalized)
- $w_j < 0$ means short positions (you borrow) (must be returned at time T)

Return over a period

Asset returns

 \tilde{r}_t is the (fractional) return of each asset over period t

Portfolio return

$$r_t = \tilde{r}_t^T w$$

It is the (fractional) return for the entire portfolio over period t

example: $\tilde{r}_t = (0.01, -0.023, 0.02)$ (often expressed as percentage)

Total portfolio value after a period

$$V_{t+1} = V_t + V_t \tilde{r}_t^T w = V_t (1 + r_t)$$

Return matrix

Hold constant portfolio with weights \boldsymbol{w} over T periods

Columns interpretation

Column j is time series of asset j returns

Rows interpretation

Row t is \tilde{r}_t is the asset return vector over period t

R is the $T \times n$ matrix of asset returns R_{tj} is the return of asset j in period t

$$R = \begin{bmatrix} 0.00219 & 0.0006 & -0.00113 & 0.00005 \\ 0.00744 & -0.00894 & -0.00019 & 0.00005 \\ 0.01488 & -0.00215 & 0.00433 & 0.00005 \end{bmatrix} \text{ Mar 1, 2016}$$

$$\text{Mar 2, 2016}$$

Note. If nth asset risk-free, the last column of R is $\mu^{\rm rf}$ 1, where $\mu^{\rm rf}$ is the risk-free per-period interest reate

Portfolio returns (time series)

$$r = Rw$$
 (T-vector)

Returns over multiple periods

r is time series T-vector of portfolio returns

average return

(or just return)

$$\mathbf{avg}(r) = \mathbf{1}^T r / T$$

risk

(deviation from mean return)

$$\operatorname{std}(r) = ||r - \operatorname{avg}(r)\mathbf{1}||/\sqrt{T}$$

Total portfolio value

$$V_{T+1} = V_1(1+r_1)\cdots(1+r_T)$$
 $pprox V_1 + V_1(r_1+\cdots+r_T)$ $pprox V_1 + T\mathbf{avg}(r)V_1$ (for $|r_t|$ small, e.g., ≤ 0.01 ignore higher order terms)

For high portfolio value we need large avg(r)

Portfolio optimization

How shall we choose the portfolio weight vector w?

Goals

High (average) return

Low risk

Data

- We know realized asset returns but not future ones
- Optimization. We choose w that would have worked well in the past
- True goal. Hope it will work well in the future (just like data fitting)

Linear optimization for portfolio objective

Average return

$$\mathbf{avg}(r) = (1/T)\mathbf{1}^{T}(Rw)$$
$$= (1/T)(R^{T}\mathbf{1})^{T}w = \mu^{T}w$$

 μ is the n-vector of average returns per asset

1-norm risk approximation

$$||r - \mathbf{avg}(r)\mathbf{1}||_1/T$$

- No longer $\operatorname{std}(r)$ (divide by T instead of \sqrt{T})
- Linear optimization representable
- Induces sparser fluctuations $|r_i \mathbf{avg}(r)|$

Risk-return objective

$$-\mu^T w + \frac{\lambda}{\|Rw - (\mu^T w)\mathbf{1}\|_1/T}$$
†
(tradeoff parameter)

Portfolio optimization

Minimize risk-return tradeoff

Chose n-vector w to solve

minimize
$$-\mu^T w + \lambda \|Rw - (\mu^T w)\mathbf{1}\|_1/T$$
 subject to
$$\mathbf{1}^T w = 1$$

$$w \geq 0$$

Remarks

- Can have inequality constraints (e.g., long-only)
- Tune λ to get desired Pareto-optimal point
- Gives the best allocation w^* given the past returns

Example

20 assets over 2000 days (past)

- Optimal portfolios on a straight line
- Line starts at risk-free portfolio ($\lambda = \infty$)
- 1/n much better than single portfolios

The big assumption

Future returns will look like past ones

- You are warned this is false, every time you invest
- It is often reasonable
- During crisis, market shifts, other big events not true

If assumption holds (even approximately), a good w on past returns leads to good future (unknown) returns

Example

- Pick w based on last 2 years of returns
- Use w during next 6 months

Total portfolio value

	Train return	Test return	Train risk	Test risk
Risk-free	0.01	0.01	0.00	0.00
$\lambda = 1.0e - 02$	0.19	0.30	2.97	2.18
$\lambda = 4.6e - 03$	0.19	0.31	3.05	2.21
$\lambda = 2.2e - 03$	0.19	0.33	3.45	2.42
$\lambda = 1.0e - 03$	0.19	0.34	3.93	2.73
1/n	0.10	0.21	2.33	1.51

Build your quantitative hedge fund

Rolling portfolio optimization

For each period t, find weight w_t using L past returns r_{t-1}, \dots, r_{t-L}

Variations

- Update w every K periods (monthly, quarterly, ...)
- Add secondary objective $\lambda \| w_t w_{t-1} \|_1$ to discourage turnover, reduce transaction cost
- Add logic to detect when the future is likely to not look like the past
- Add "signals" that predict future return of assets (Twitter sentiment analysis)

Applications of linear optimization

Today, we learned to apply linear optimization in

- Optimal control problems with vehicle dynamics
- Machine learning problems for character recognition
- Portfolio optimization for investment strategies

References

Github companion notebooks

Next steps

Simplex method