ORF307 - Optimization

10. Applications of linear optimization

Bartolomeo Stellato — Spring 2022



Ed Forum

 Midterm March 3
Time: 1:30pm — 2:50pm

Students with ODS approved extensions will start earlier at 12:30pm
Location: Friend 006

Topics: Up to last lecture (excluding equivalence theorem)
Material allowed: Single sheet of paper. Double sided. Hand-written or typed.

e Questions

 What does it mean that n-m inequalities have to be tight? Is it that they cannot be equal to
0? Do they have to intersect?

 When we are picking x(i) values to hold tight, can we just choose them arbitrarily? Would
picking different ones lead to different solutions?






Constructing basic solutions



Constructing a basic solution
Two equalities (m =2,n = 3)
minimize ¢’z
subjectto z; +x3 =1
(1/2)x1 + a2 + (1/2)x3 =1
T1,T2,T3 > (

L2
n —m = 1 Inequalities have to be tight: z; =0
Set 1 = 0 and solve
372 p— — p—
1/2 1 1/2 1 1 1/2| |x3 1
- = _IS_ I — - - — — -

($2,$3) — (05, 1)



Basic solutions
Standard form polyhedra

P={x|Ax=0b, z > 0} with A € R™*"™ has full row rank m < n

x 1S a basic solution if and only if

c Az =0
» There exist indices B(1),..., B(m) such that
— columns Ap(1),...,Apuy) are linearly independent

- x; =0fori £ B(1),..., B(m)

x 1S a basic feasible solution if x is a basic solution and =z > (



Constructing basic solution

1. Choose any m independent columns of A: Ag(1y,..., Apm)
2. Letx;, =0forall i # B(1),..., B(m)
3. Solve Ax = b for the remaining (1), .., TB(m)
Basis Basis columns Basic variables
matrix - i i
| | | TBQ)
AB — AB(l) AB(Q) c e AB(m) ] LB — —— Solve ABCEB =%
. | . ZB(m)_

If t5 > 0, then z Is a basic feasible solution



Existence and optimality of
extreme points



Existence of extreme points

Example

No extreme points Extreme points



Existence of extreme points

Characterization

A polyhedron P contains a line if
x € P and a nonzero vector d such that x + A\d € P,V € R.

Given a polyhedron P = {z | a; x < b;, i=1,...,m}, the following are equivalent

» P does not contain a line
» P has at least one extreme point
» n of the a; vectors are linearly independent

Corollary
Every nonempty bounded polyhedron has

at least one basic feasible solution
10



Optimality of extreme points

minimize ¢!z
subjectto Az <b

If

» P has at least one extreme point
» There exists an optimal solution =*

Then, there exists an optimal solution that is an extreme point of P.

Solution method: restrict search to extreme points.
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How to search among basic feasible solutions?

Idea
List all the basic feasible solutions, compare objective values and pick the best one.

Intractable!

If n = 1000 and m = 100, we have 10'*3 combinations!
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Conceptual algorithm

e Start at corner

* Visit neighboring corner that
Improves the objective
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Today’s agenda

Applications of linear optimization

* Optimal control
e Character recognition

e Portfolio optimization
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Optimal control



Optimal control problems

* The n-vector x; Is the state at time ¢
Linear dynamical system » The m-vector u;, is the input at time ¢
Tii1 = Az, + Buy, t=1,2,... * The p-vector Yt IS the output at ti'me t
» The n x n matrix A is the dynamics matrix
* The n x m matrix B Is the input matrix
» The p x n matrix C'Is the output matrix

yt:C$t, t:1,2,

Simulation
» The sequence x1, x5, ... Is called state trajectory

» The sequence vy, 1y, ... IS called output trajectory

- Goal: Given T1,U1, U2,y ..., find xro,T3,... and Y2, Y3, ... .
- Obtained by recursion. Fort =1,2,..., compute
Ti41 = Aﬁt —+ But and Yt = C%t 16



Optimal control problem

Linear dynamical system

It+1:Aﬂft—|—B’UJt, t:1,2,

:Cl't, t:1,2,

The problem
- The initial state 1 = =™ is given

- Goal. Choose uy,us,...,ur_1 to achieve some goals, e.g.,

-~ Get to desired final state x = x9S

- Minimize the input effort (make ||u.|| small for all t)

— Track desired output ydes (make ||y; —

ydes|| small for all ¢)

17



Least squares optimal control problem

. T -, T—1

minimize >, [lye — yi=1° +p >0 [luel?

SUbjeCt to Tt4-1 :Aazt—l—But, t = 1,...,T— 1
yt:CQCt, tzl,,T

T = xinit
Remarks
* The variablesare zo,..., 27, yo,...,yr,and u; ..., upr_1

» Parameter p > 0 controls trade off between
control "energy” and tracking error
» It Is a multi-objective and constrained least squares problem
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1-norm optimal control problem

minimize 7, llye — 4l + p Sy [luelh
subjectto z;41 =Axy +Buy, t=1,...,T —1
yy = Coxy, t=1,....T
Dxy <d, t=1,...,7T
Fu <e, t=1,...,1 —1

T = xinit

Remarks
* || - ||1 instead of || - |3
» Linear inequality constraints:
Dzx; < d for states and Eu; < e for inputs

* |s a linear optimization problem (with additional variables)
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Vehicle example In a plane

Sample position and velocity at times 7 = 0, &, 2h, . ..
Vehicle with mass m

» 2-vector p; Is the position at time ht

» 2-vector v; Is the velocity at time ht

» 2-vector u; I1s the force applied at time At
» —nu; IS the friction force applied at ht

Small time interval &
Pit+1 — Dt

h

mvt PN —hvy + uy vit1 = (1 = hn/m)ve + (h/m)u.

h

%’Ut

20



Vehicle example In a plane

State
4-vector Tt = (pt, Ut)

Laws of physics

Dynamics "
output = position

Ti+1 = Az + Buy U = Dy

yr = Cxy
1 0 h 0 ) 0 0 ]

0 1 0 h 0 0 1 0 0 O

A = ., B = , (O =

0 0 1—hn/m 0 h/m 0 0 1 0 O

0 0 0 1 —hn/m 0  h/m




Vehicle example with output tracking

Least squares results

Parameters
T'=100, h=01, n=01, m=1
optimal state trajectory optimal input trajectory
5- '.: —————— (ut)l
3 """" (u)2
d 1)
5 3 |
3 S ¥
= S ¥
wn ]
2 2 |
< 1 4
A
LY
]_' O |“ | - ’_‘\\ ;j_‘f.'?.'?.'?.‘:‘.':—'*
Dt \\._
............... y?es — 1+
01 , .
0 2 4 0 29 50 75 100
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Vehicle example with output tracking

1-norm results
Parameters

T'=100, h=01, n=01, m=1

optimal state trajectory optimal input trajectory
S [R— ,
: el y
301 | (te)s
T ()2
4 201
hé !E
S 10 ¢
3 S :
o oN %
= § O
0 | if
- = !
2 10 i
1 —201
- Dt
............... y?es —301
O_

0 ) 4 0 25 50 75 100
(pe)1 /



Vehicle example with output tracking

1-norm with constraints

Linear optimization can have more interesting constraints

L T o T—1
minimize Zt:l |y — ?J? 1+ PS:t—l |1
SUbjeCt to Tt4-1 :Axt—l—But, t = ]_,...,T— 1

max-input yp =Cuxy, t=1,...,7T
- | Ut]|oo < U™, t=1,...,T —1

U — Up_1|[r < M, t=1,...,T -1

max-input variation
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Parameters

u™t =10,

optimal state trajectory

st =0.1

1.0-
S 05
-
@)
o
-
S
o 0.0
-
o
<
_0.5-
10

optimal input trajectory

Vehicle example with output tracking

1-norm with constraints results

I_l"'\.\ T (Ut)l
.il \'\. """" (ut)2
By
Vo

100
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Character recognition



Character recognition

MNIST data set of handwritten numerals
» Each character Is 28 x 28 pixels

» 60k example images

» 10k further testing images

» Each sample comes with a label 0 — 9

Goal
Use linear classification to identify handwritten numbers

27



Images representation

Monochrome images

Images represented as an m x n matrix X

Each value X;; represents a pixel’s
intensity (0 = black, and 255 = white)

We can represent an m x n matrix X
by a single vector r € R™"

Xii = T, k=m(j)—1)+1

B

(in MNIST, m = n = 28)

28



Linear classification

Support vector machine (linear separation)

Given a set of points {vq,...,vy} with binary labels s; € {—1,1}
Find hyperplane that strictly separates the tho classes .

T .
i +0>0 1 s;,=1
a v; + 0> 1I S . si(aTvz-—l—b)zl

atv, +b<0 if s, =—1

Minimize sum of the violations + regularization

minimize Zfil max{0,1 — s;(alv; +b)} + A||al|y <«— regularization
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Not 5

Learn to classify S

A e B HH

0.08
0.06-
0.04
0.02-

0.00-

— 'Irain error

............... Test error

BT

30



Multiclass classification

predicted label: 1  predicted label: 9  predicted label: 4

1. Train one classifier per label &
predicted label: predicted label: 1  predicted label: 2

(e.g., k vs anything else), obtaining (ag, bx)
2. Predict all results and take the maximum . . .

7\ = argmax,, alv(® +

predicted label: predicted label: 5  predicted label: 3



Portfolio optimization



Portfolio allocation weights

We want to invest V dollars in n different assets (stocks, bonds, ...)
over periodst=1,...,T

Portfolio allocation weights
n-vector w gives the fraction of our total portfolio held in each asset

Properties

* Vw; dollar value hold in asset

+ 17w =1 (normalized)

- w; < 0 means short positions (you borrow)
(must be returned at time T

» Example: w = (—0.2,0.0,1.2)

i N

Short position Don’t hold any Hold 1.2V
of 0.2V on asset 1 of asset 2 In asset 3

33



Return over a period

Asset returns

7, is the (fractional) return example: 7; = (0.01, —0.023,0.02)
of each asset over period ¢ (often expressed as percentage)

Portfolio return _
T Total portfolio value

re =Ty w after a period

It is the (fractional) return Vigr = Ve + Virs w = V(1 4 1)
for the entire portfolio over period ¢




R is the T' x n matrix of asset returns

Return matrix R:; 1s the return of asset j in period ¢

AAPL GOOG MMM Us$
0.00219  0.0006 —0.00113 0.00005| Mar 1, 2016

R = [0.00744 —0.00894 —0.00019 0.00005| Mar2,2016
0.01488 —0.00215  0.00433  0.00005| Mar 3, 2016

Hold constant portfolio
with weights w over 1’ periods

Note. If nth asset risk-free,
the last column of R is u™'1,
where 1™ is the risk-free
per-period interest reate

Columns interpretation

Column 5 is time series
of asset j returns

Rows interpretation
Row t IS 7, IS the asset

return vector over period ¢

Portfolio returns (time series)

r = Rw (I'-vector) "



Returns over multiple periods

r 1S time series T'-vector of portfolio returns

average return risk
(or just return) (deviation from mean return)
avg(r) = 17r/T std(r) = ||r — avg(r)1||/VT

Total portfolio value

VT_|_1 — V1(1—|—7°1)°°°(1—|—TT)
(for |r;| small, e.g., < 0.01

~Vi+Vilri+ -+ 7rr) ignore higher order?erms)
= Vi + Tavg(?”‘)V1

For high portfolio value we need large avg(r) 36



Portfolio optimization

How shall we choose the portfolio weight vector w?

Goals

High (average) return Low risk

Data

- We know realized asset returns but not future ones
« Optimization. We choose w that would have worked well in the past
* True goal. Hope it will work well in the future (just like data fitting)

37



Linear optimization for portfolio objective

Average return

avg(r) = (1/T)1" (Rw) 1 1s the n-vector of
= (1/T)(RT1)Tw = pTw average returns per asset

1-norm risk approximation . No longer std(r) (divide by T instead of v/T)

|Ir — avg(r)1||;/T * Linear optimization representable
» Induces sparser fluctuations |r; — avg(r)]

Risk-return objective
—ptw + A|Rw — (p" w)1l /T

!

(tradeoff parameter) 58



Portfolio optimization

Minimize risk-return tradeoff
Chose n-vector w to solve

minimize  —p’ w + A|Rw — (p' w)1||1/T
subjectto 1w =1
w > 0

Remarks

» Can have inequality constraints (e.g., long-only)
» Tune X\ to get desired Pareto-optimal point
 Gives the best allocation w™ given the past returns
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Example
20 assets over 2000 days (past)

0.151

« Optimal portfolios on a
straight line

Annualized return

* Line starts at risk-free
portfolio (A = oo)

0.05-

* 1/n much better than

single portfolios 0.00

0.201

0.101

Risk-free

2 3
Annualized risk

40



The big assumption

Robinhood #

Future returns will look like past ones

© 2021 Robinhood. All rights reserved.

* You are warned this is false, every time you invest et e st s
o I 't i S Ofte n re aS O n a b I e \ Robinhood Financial, Robinhood Securities, and Robinhood Crypto.

All investments involve risk and loss of capital.

» During crisis, market shifts, other big events not true

If assumption holds (even approximately), a good w on past returns
leads to good future (unknown) returns

Example

* Pick w based on last 2 years of returns

» Use w during next 6 months
41



Total portfolio value

Portfolio value (thousand dollars)

150

100-

-
-

—_
-

Train return

Test return

Train risk  Test risk

Risk-free 0.01 0.01 0.00 0.00
A= 1.0e — 02 0.19 0.30 2.97 2.18
A =4.6e — 03 0.19 0.31 3.05 2.21
A=2.2e—03 0.19 0.33 3.45 2.42
A=1.0e — 03 0.19 0.34 3.93 2.73
1/n 0.10 0.21 2.33 1.51
Train Test
——  Risk-free
A= 1.0e — 02 18
— A =4.6e — 03
—— A =22e—03 161
— A =1.0e — 03
— 1/n 141 N h
W |
12- /$~“Fj\’ ~wa§§“A
/MMW‘W
10-

500 1000
Day

1500

2000

W

100 200 300
Day

400

500
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Build your guantitative hedge fund

Rolling portfolio optimization

For each period t, find weight w; using L past returns
Ft—1y-- s Tt—L

Variations
- Update w every K periods (monthly, quarterly, ...)

» Add secondary objective A||w; — w;_1]|1 tO
discourage turnover, reduce transaction cost

- Add logic to detect when the future is likely to
not look like the past

- Add “signals” that predict future return of assets
(Twitter sentiment analysis)
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Applications of linear optimization

Today, we learned to apply linear optimization in
* Optimal control problems with vehicle dynamics
 Machine learning problems for character recognition

* Portfolio optimization for investment strategies
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References

e Github companion notebooks

45



Next steps

e Simplex method
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