ORF307 - Optimization

9. Geometry and polyhedra

Bartolomeo Stellato— Spring 2022



Ed Forum

* Questions

* Given that we have now seen the 1-norm (Manhattan norm), the 2-norm (Euclidian norm), and
the infinity-norm (max norm), | was wondering if there were other norms commonly used
(perhaps not as common as the previous three) in optimization and linear regression. Would
they be used for more niche cases or are they just rarely used?

e Midterm
 Next Thursday, Mar 3, lecture time. In class.

 Past midterm exercises available
(this year’s one will be shorter, only3 exercises)

* On Colab: To export as pdf run the following commands:

 Homeworks

lapt-get install texlive texlive-xetex texlive-latex-extra pandoc cm-super dvipng
Ipip install pypandoc

* Always try to export with latex L
\ fr(.)ﬁ%‘ google‘.' (‘:olabh {mport . drive
* If you export with colab “File -> Print”, frive.montC /content/arive )

you m USt CheCk the plOtS It IS your Then you can go to the notebook directory on your drive and export it, for example
responsibility to make them visible.

%cd drive/MyDrive/orf307/homeworks/@1_homework/

| jupyter nbconvert --to PDF "ORF307_HW1.1ipynb"




Today'’s lecture
Geometry and polyhedra

¢ Simple example

* Polyhedra

* Corners: extreme points, vertices, basic feasible solutions
* Constructing basic solutions

* Existence and optimality of extreme points



A simple example v

minimize ¢!

subjectto —1/2 < <2

—1/2 < 29 < 2

r1 + x9 < 2

What kind of optimal
solutions do we get?



A simple example

minimize
subject to

C X

—1/2§CI§1§2
—1/2 <19 <2

r1 + xo < 2

Suppose c = (1,1
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A simple example

minimize
subject to

C X

—1/2§CI§1§2
—1/2 <19 <2

r1 + xo < 2

Suppose c = (—1, —

-




Polyhedra and linear algebra



Hyperplanes and halfspaces

Definitions

Hyperplane Halfspace
{x]a" x=0) {z|a" 2z < b}

a*xr =0b

* xp IS a specific point in the hyperplane
- For any z in the hyperplane defined by e’z =0, z — 29 L a
- The halfspace determined by o’ z < b extends in the direction of —a



Polyhedron

Definition

P={z|a z<b;, i=1,....,m}={z|Ax <b}

* |ntersection of finite number of halfspaces

 Can include equalities

10



Polyhedron

Example

P={z|a z<b,,

minimize
subject to

i=1,...,m} ={z | Ax < b}

CT$

r1 < 2
To < 2
Ty > —1/2
Ty > —1/2
1+ 1o < 2

11



Convex set
Definition
Forany x,y € C and any a € |0, 1]

Convex

P~

Nonconvex

ar+ (1—a)yeC

Examples

. Rn
» Hyperplanes
- Halfspaces

» Polyhedra

12



Convex combinations

Ingredients :

» A collection of points C = {x1,..., %k} .

» A collection of non-negative weights «;

» The weights a; sum to 1 °

The vector v = a1 + - - - + arxi IS @ convex combination of the points.
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Convex hull

The convex hull is the set of all possible

convex combinations of the points.

conv (' =

n
{ZO&@QZ@O@>O, iZl,...,n, ]_TOézl
1=1

14



Corners




Extreme points

Definition:
An extreme point of a set iIs one not on a

straight line between any other points in the set.

More formal definition:

The point = € P is an extreme point of P if

:

y,z€ P(y#x,z#x)and a € |0,1] suchthatxr = ay + (1 — a)z

L4
L4
L4
L4
4
4
L4
24
L4
.' y
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Extreme points

* (General convex sets can have an infinite number of extreme points

 Polyhedra are convex sets with a finite number of extreme points

17



Vertices

The point x € P is a vertex if

c such that x is the unigue optimum of

minimize ¢’y
subjectto y e P

18



Basic feasible solution

Assume we have a polytope P = {z |a; x < b;, i=1,...,m}

Active constraints at =

S|

T(z) = {ie {1,...,m} | aTZ = b;}

Basic feasible solution r € P

{a; |1 € Z(x)} has n linearly independent vectors

19



Degenerate basic feasible solutions

A solution z is degenerate if |Z(Z)| > n

X

True or False?
Basic Feasible Degenerate \\

20



An Equivalence Theorem

Given a nonempty polyhedron P = {z | Ax < b}

S|

r IS a vertex <— x Is an extreme point <— z Is a basic feasible solution

21



Equivalent theorem proof

Vertex —> Extreme point

If x is avertex, 3csuchthatclz < cly, Vye Py #x

Let’'s assume x Is not an extreme point:

dy,z % x suchthat z = Ay + (1 — )z

Since x isavertex, clz < c'yandc'z < ¢!z

Therefore, ¢!z = Aely + (1 - Nl z> Al v+ (1 - Nz =cla

— contradiction B
22



Equivalent theorem proof

Extreme point —> Basic feasible solution (proof by contraposition)

Suppose = € P is not basic feasible solution

{a; | 1 € Z(x)} does not span R”

Jd € R™ perpendicular to all of them: a!d =0, Vi€ Z(x)

{a; |1 € I(x)} .



Equivalent theorem proof

Extreme point —> Basic feasible solution (proof by contraposition)

Suppose = € P is not basic feasible solution

{a; | 1 € Z(x)} does not span R”

Jd € R™ perpendicular to all of them: a!d =0, Vi€ Z(x)

Lete >0and definey =x+edand z =z — ed
Fori € Z(x) we have a; y = b; and a; z = b;
Fori ¢ Z(r) we havea; z <b; = a](rx+ed) <b;anda; (x—ed) <b;

Hence, y,z € Pand x = Ay + (1 — A\)z with A = 0.5.
—> x is not an extreme point -



Equivalent theorem proof

Extreme point —> Basic feasible solution (proof by contraposition)

Suppose = € P is not basic feasible solution

d
ai |1 €1(x)}

Hence, y,z € Pand x = Ay + (1 — A\)z with A = 0.5.
—> x is not an extreme point B o5



Equivalence theorem proof

Basic feasible solution —> Vertex

| eft as exercise

Hint

Define c = ) ;7. @i

20



Constructing basic solutions



3D example
One equality (m =1,n = 3)

minimize ¢z

SUbjeCt to x1+x9o+x3=1

L1,L2,L3 Z O

Basic feasible solution x has n T
linearly independent active constraints.

|

n — m = 2 Inequalities have to be tight: z; =0

> L1

28



3D example

Two equalities (m =2,n = 3) 0
minimize ¢!z
subjectto z; +x3 =1

L1, L2,L3 Z O

Basic feasible solution x has n
linearly independent active constraints. Lo

|

n — m = 1 inequalities have to be tight: z; =0

29



3D example

Three equalities (m = 3,n = 3)

minimize ¢’z

subjectto x1 +z3=1
(1/2)x1 + 22 + (1/2)x3 =1
201 = 1

L1,L2,L3 Z 0

Basic feasible solution x has n
linearly independent active constraints.

|

n — m = 0 Inequalities have to be tight: z; =0

30



Standard form polyhedra

Standard form LP Standard form polyhedron
minimize c'x P={x| Az =0, z > 0}
subjectto Az =10

r > 0 3

Assumption
A € R™*"™ has full row rank m <n

Interpretation
P is an (n — m)-dimensional surface



Constructing a basic solution
Two equalities (m =2,n = 3)
minimize ¢’z
subjectto z; +x3 =1
(1/2)x1 + a2 + (1/2)x3 =1
T1,T2,T3 > (

L2
n —m = 1 Inequalities have to be tight: z; =0
Set 1 = 0 and solve
372 p— — p—
1/2 1 1/2 1 1 1/2| |x3 1
- = _IS_ I — - - — — -

($2,$3) — (05, 1)

32



Basic solutions
Standard form polyhedra

P={x|Ax=0b, z > 0} with A € R™*"™ has full row rank m < n

x 1S a basic solution if and only if

c Az =0
» There exist indices B(1),..., B(m) such that
— columns Ap(1),...,Apuy) are linearly independent

- x; =0fori £ B(1),..., B(m)

x 1S a basic feasible solution if x is a basic solution and =z > (

33



Constructing basic solution

1. Choose any m independent columns of A: Ag(1y,..., Apm)
2. Letx;, =0forall i # B(1),..., B(m)
3. Solve Ax = b for the remaining (1), .., TB(m)
Basis Basis columns Basic variables
matrix - i i
| | | TBQ)
AB — AB(l) AB(Q) c e AB(m) ] LB — —— Solve ABCEB =%
. | . ZB(m)_

If t5 > 0, then z Is a basic feasible solution
34



Existence and optimality of
extreme points



Existence of extreme points

Example

No extreme points Extreme points

36



Existence of extreme points

Characterization

A polyhedron P contains a line if
x € P and a nonzero vector d such that x + A\d € P,V € R.

Given a polyhedron P = {z | a; x < b;, i=1,...,m}, the following are equivalent

» P does not contain a line
» P has at least one extreme point
» n of the a; vectors are linearly independent

Corollary
Every nonempty bounded polyhedron has

at least one basic feasible solution
37



Optimality of extreme points

minimize ¢!z
subjectto Az <b

If

» P has at least one extreme point
» There exists an optimal solution =*

Then, there exists an optimal solution that is an extreme point of P.

Solution method: restrict search to extreme points.

38



How to search among basic feasible solutions?

Idea
List all the basic feasible solutions, compare objective values and pick the best one.

Intractable!

If n = 1000 and m = 100, we have 10'*3 combinations!

39



Conceptual algorithm

e Start at corner

* Visit neighboring corner that
Improves the objective

40



Geometry of linear optimization

Today, we learned to:

* Apply geometric and algebraic properties of polyhedra to characterize the
“corners” of the feasible region.

 Construct basic feasible solutions by solving a linear system.

 Recognize existence and optimality of extreme points.

41



References

* Bertsimas and Isitsiklis: Introduction to Linear Programming
 Chapter 2.1—2.6 : geometry of linear programming

42



Next topics

More applications

The simplex method

43



