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Ed Forum

 What exactly does a closed form solution mean?

 What exactly is the purpose of a slack variable? Is it just so that we can write
equalities instead of inequalities”? When eliminating inequality constraints by
using slack variables, how do we choose or obtain the exact value of the slack
variables?

* |s it only a problem for the question to be unbounded below or is it also an issue
to be unbounded above (given that we are solving a minimization problem)?

 What exactly is the difference between the 1-norm and the 2-norm.
-> This lecture!



Today’s lecture

Piecewise linear optimization

* \ector norms
* Plecewise linear optimization
* Turning vector norm problems as LPs

e Support vector machines



Vector norms




Vector norms

Euclidean norm
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Data-fitting example

Fit a linear function f(z) = a + bz to m data points (z;, f;):

I z1 | ¢ - J1

¢

Approximation problem Ax ~ b where

201 * A b

Recall our regression problem:

—10 _5 0 5 10

minimize Z Az — b|; = ||Ax — b1

1=1

Why is it a linear program?



Simple example revisited

Goal find point as far left as possible,
INn the unit box X,
and restricted to the line L

minimize  x;

subjectto |||l <1

2171—|—332:—1

The (nonlinear) norm function
appears in the constraints

Why is it a linear progam?




Plecewise linear optimization



Linear, affine and convex function
f(x)

.............................................................................................

Linear function: f(a:‘) _ CZTZE

...............

...............

Affine function: f(z) = a’x +b

.............................................................................................
............................................................................................




Linear, affine and convex function
f(x)

.............................................................................................

Convex function: N S

flax+ (1 -a)y) <af(x)+1-a)f(y),

...............

...............
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Convex piecewise-linear functions

f(x) = max (a; =+ b;)
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Convex piecewise-linear minimization
e

minimize  max (a; x + b;)

1=1,..., m

Equivalent linear optimization
minimize ¢
subjectto alz+0b; <t, 1=1,...,m
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Convex piecewise-linear minimization

f ()
Equivalent linear optimization
minimize ¢
subjectto alz+0b; <t, i1=1,...,m
Matrix notation
minimize ¢’ - E -
subjectto A% < b t]’

I

S
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Vector norm problems as
linear optimization




co-norm regression

minimize ||Az — b||

The oco-norm of m-vector y Is

|Ylloc = max [y = max max{yi, —yi}
1=1,..., m 1=1,..., m

Equivalent problem
minimize ¢
subjectto (Ax—b); <t, i=1,...,m
—(Ax—b); <t, i=1,....,m

minimize ¢
— subjectto Ax —b<t1
—(Ax —b) < t1
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co-norm regression

minimize

The oco-norm of m-vector y Is

Equivalent problem

minimize
subject to

[Yllo = max y;| =
t
Ar — b < t1
—(Ax —b) < 11

| Az — b|o

max max{y, —¥i}

1=1,..., m

minimize

subject to

Matrix notation

A

VA
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Sum of piecewise-linear functions

minimize f(xz)+ g(x) = max (aj  + b;) + max (¢} x + d;)
1=1,..., m 1=1,..., D

Equivalent linear optimization
minimize ¢t + to
subjectto ajz+0b; <t;, i=1,...,m
cirv+d; <ty, 1=1,...,p
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1-norm regression

minimize || Ax — b||;

The 1-norm of m-vector y IS

lylli = ) _ vl = ) max{yi, —yi}
i=1 i=1

minimize

subject to

>

(A:z: —b); <
—(Ax — b); <

> Uq,

> Uq,

Equivalent problem

i=1,....m —>

1=1,....m

minimize
subject to

11w
Ar — b < u
—(Ax —b) <
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1-norm regression
minimize

The 1-norm of m-vector y IS

| Az — bl

lylli = ) _ vl = ) max{yi, —yi}
i=1 i=1

Equivalent problem

minimize 11w
subjectto Az —b < wu
—(Ax —b) < u

Matrix notation

minimize

subject to

A

VA
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Summary: 1 and oco-norm regression

ocoO=Norm 1-norm
minimize ||Ax — b/~ minimize ||Ax — b||1
Equivalent to Equivalent to
minimize ¢ minimize 1w
subjectto Ax —b < {1 subjectto Az —b < u
—(Ar —b) < 11 —(Az —b) < u
Absolute value of every element (Ax — b); is Absolute value of every element (Ax — b); is

bounded by the same scalar ¢ bounded by a component of the vector u 50



Example : converting to an LP

minimize Ax — bl o
subjectto ||z]|; <k
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Comparison with least-squares

Histogram of residuals Ax — b with randomly generated A € R?Y9*80

To = argmin HAQ;‘ — bH%, L1 — argmin HAQZ — le

-

~3 _9 1 0 1 2 3
(A£E1 — b)k

1-norm distribution is wider with a high peak at zero
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Modeling software does most of this for you

ooO=Norm I-norm

minimize ||Ax — b||s minimize ||Ax — b||1

tmport numpy as tmport numpy as np
tmport cvxpy as tmport cvxpy as cp

. 2003 n = 8 = 200; n = 80

np.random. randn( 2 3 = np.random.randn( 2
. np.random. randn(2 = np.random. randn(2
- cp.Variable(80) X = cp.Variable(80)

objective = cp.norm(A @ x - b, np.inf) objective = cp.norm(A @ x - b, 1)
problem = cp.Problem(cp.Minimize(objective)) problem = cp.Problem(cp.Minimize(objective))
problem.solve( ) problem.solve( )




Sparse signal recovery



Sparse signal recovery via 1-norm minimization

r € R" Is unknown signal, known to be sparse

We make linear measurements y = Az with A € R™*". m <n

Estimate signal with smallest /;-norm, consistent with measurements

minimize  ||x|
subjectto Ax =y

Equivalent linear optimization
minimize 11w
subjectto —u<z<uwu

Ax =y 2
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Example

Sparse signal recovery via 1-norm minimization

Exact signal & € R
10 nonzero components

Random A € R1V0x1000

200
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300

1000

0.2

The least squares estimate s
cannot recover the sparse signal ~,

200

400 600

300

1000

The 1-norm estimate Is exact -

200

400 600

300

1000
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Support vector machines



Linear classification

Support vector machine (linear separation)

Given a set of points {vq,...,vy} with binary labels s; € {—1,1}
Find hyperplane that strictly separates the tho classes

atv,+b>0 if s, =1
atv,+b<0 if s =—1

Homogeneous in (a, b), hence equivalent to the linear inequalities (in a, b)

s;(a’ v; + b) > 1
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Linear classification

Separable case
Feasibility problem

find a,b
subjectto s;(a’v; +b)>1, ¢=1,...,N

Which can be seen as a special case of LP with
minimize 0
subjectto  s;(a’v; +b)>1, i=1,...,N

p* = 0 Iif problem feasible (points separable)
p* = oo If problem infeasible (points not separable) —— What then?
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Linear classification

Approximate linear separation of nhon-separable points

Each of our constraints is Violation

si(alv; +b) > 1 — max{0,1 — s;(a’ v; + b)}

Goal
Minimize sum of the violations

minimize Zi\il max{0,1 — s;(a’ v; +b)}

Piecewise-linear minimization problem with variables a, b
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Linear classification

Approximate linear separation of nhon-separable points

minimize Zfil max{0,1 — s;(a’ v; + b)}

As a linear optimization problem
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Piecewise-linear optimization

Today, we learned to:
 Understand the differences between vector norms
 Reformulate convex piecewise linear minimization as linear optimization

* Apply these techniques to sparse signal recovery and classification problems
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Next time

e Linear optimization geometry

e Optimality conditions
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