ORF522 – Linear and Nonlinear Optimization

22. Robust Optimization

Decision-making under uncertainty

so far we have modeled and solved optimization problems of the form

minimize
$$f(x)$$

subject to $g(x) \leq 0$

what if we do not know f or g exactly?

Today's lecture [RO, Ch 1 and 2] [TARO][ee364b]

Decision-making under uncertainty with Robust Optimization

- Example why uncertain data can be problematic
- Reformulating robust constraints
- Constructing uncertainty sets

Why is uncertain data an issue?

A medical production example

```
x_1 purchase raw material 1 (kg)
x_2 purchase raw material 2 (kg)
x_3 produce drug 1 (1000 packs)
x_4 produce drug 2 (1000 packs)
```

minimize $x_1 + x_2 \le 1000$ storage $90x_3 + 100x_4 \le 2000$ manpower $40x_3 + 50x_4 \le 800$ equipment $100x_1 + 199.9x_2 + 700x_3 + 800x_4 < 800$ budget

$$100x_1 + 199.9x_2 + 700x_3 + 800x_4 \le 800 \longleftarrow \text{budget}$$

$$x > 0$$

optimal objective -8819.66 (8.82% profit)

Uncertainty in the balance of active ingredients constraint

$$-0.01x_1 - 0.02x_2 + 0.5x_3 + 0.6x_4 \le 0$$

active agent content in raw materials

What if the composition is not certain?

 $-0.01(1\pm0.5\%)$ for raw material 1 $-0.02(1\pm2\%)$ for raw material 2

Constraint may become infeasible!

we adjust x_3 (prod. of drug 1) _____ to ensure feasibility

What happens to the objective then?

Large suboptimality

Frequently lose up to more than 20% of profits

Chance constrained programs

Let $u \in \mathbb{R}^p$ be a random variable, we write a chance constrained program as

Remarks

- Can model uncertain objectives through epigraph forms
- Equality constraints do not make sense

Issues

- Typically intractable (nonconvex, except special cases)
- We often do not know the distribution

Robust Optimization

Replace chance constraint with

$$g(u,x) \leq 0, \quad \forall u \in \mathcal{U}$$
 uncertainty set

equivalently

$$\sup_{u \in \mathcal{U}} g(u, x) \le 0$$

Questions

- How to reformulate robust constraints?
 (when are they tractable?)
- How to construct the uncertainty sets?

Reformulating robust constraints

Reformulation of uncertain nonlinear constraints

Let \mathcal{U} be a nonempty, convex, compact set satisfying mild regularity conditions. Then, $x \in \mathbf{R}^n$ satisfies $g(u, x) \leq 0$, $\forall u \in \mathcal{U}$ if and only if $\exists w$:

$$[-g]^*(-w,x) + \sigma_{\mathcal{U}}(w) \le 0$$

$$[-g]^*(-w,x) = \sup_{z \in \mathbf{R}^n} -w^T z + g(z,x)$$

support function

$$\sigma_{\mathcal{U}}(w) = \sup_{u \in \mathcal{U}} w^T u = \mathcal{I}_{\mathcal{U}}^*(w)$$

Proof

$$\sup_{u \in \mathcal{U}} g(u, x) = \sup_{u} g(u, x) - \mathcal{I}_{\mathcal{U}}(u) = -\inf_{u} -g(u, x) + \mathcal{I}_{\mathcal{U}}(u)$$

$$= -\sup_{w} \left(-[-g]^*(-w, x) - \sigma_{\mathcal{U}}(w) \right) = \inf_{w} [-g]^*(-w, x) + \sigma_{\mathcal{U}}(w)$$

Fenchel dual function Lecture 15

Constraint function examples

Bilinear functions: $g(u,x) = u^T P x + q^T u + r^T x + s$

$$[-g]^*(-w,x) = \sup_z -w^Tz + z^TPx + q^Tz + r^Tx + s = \begin{cases} r^Tx + s & w = Px + q \\ \infty & \text{otherwise} \end{cases}$$

Linear functions (
$$P = I, q = 0, r = a, s = -b$$
): $g(u, x) = (a + u)^T x - b$

$$[-g]^*(-w,x) = \begin{cases} a^Tx - b & w = x\\ \infty & \text{otherwise} \end{cases}$$

Uncertainty set examples

Norm ball:
$$\mathcal{U} = \{u \in \mathbf{R}^p \mid ||u|| \le \rho\}$$

$$\sigma_{\mathcal{U}}(w) = \sup_{\|z\| \le \rho} w^T z = \rho \sup_{\|v\| \le 1} w^T v = \rho \|w\|_*$$

$$\|z\| \le \rho$$

$$\text{dual norm}$$

primal/dual norms (Lecture 15)

Norm	Dual norm
2	2
1	∞
∞	1

Polyhedral set:
$$\mathcal{U} = \{u \in \mathbf{R}^p \mid Fu \leq g\}$$

$$\sigma_{\mathcal{U}}(w) = \sup \{ w^T z \mid Fz \le g \} = \inf \{ g^T \lambda \mid F^T \lambda = w, \ \lambda \ge 0 \}$$

strong duality LP

You can mix and match various functions and sets

Requirements

- $g(\cdot,x)$ concave and $[-g]^*(\cdot,x)$ easily computable for any x
- $\mathcal U$ is nonempty, convex, compact, and $\sigma_{\mathcal U}$ easily computable

You can break the rules sometimes and still get a convex problem (S-Lemma)

$$g(u,x) = ||Ax + Bu||_2 \le 1$$
 $\mathcal{U} = \{u \mid ||u||_2 \le 1\}$ (convex in u)

Back to production example

balance of active ingredients

$$-0.01x_1 - 0.02x_2 + 0.5x_3 + 0.6x_4 \le 0$$

g(u,x) equivalent robust constraint

$$(a + Mu)^T x \le 0, \ \forall u \in \mathcal{U}$$

conjugate function

$$[-g]^*(-w,x) = \begin{cases} a^T x & w = M^T x \\ \infty & \text{otherwise} \end{cases}$$

uncertainty

raw material 1: $-0.01\pm5\cdot10^{-5}$ raw material 2: $-0.02\pm4\cdot10^{-4}$

$$a = (-0.01, -0.02, 0.5, 0.6)$$

$$M = \operatorname{diag}(5 \cdot 10^{-5}, 4 \cdot 10^{-4}, 0, 0)$$

$$\mathcal{U} = \{ u \in \mathbf{R}^4 \mid ||u||_{\infty} \le 1 \}$$

support function

$$\sigma_{\mathcal{U}}(w) = \|w\|_1$$

reformulation

$$a^T x + ||M^T x||_1 \le 0$$

Robust performance in production example

How can we construct $\mathcal U$ in general?

 $x_{\rm ro}^{\star}$ has degradation provably no worse than 3.7%

Constructing uncertainty sets

Uncertain linear constraint with Gaussian data

$$\mathbf{P}(a^Tx \leq b) \geq 1 - \epsilon$$

$$\uparrow$$

$$\mathbf{assumption}$$

$$1 - \epsilon \geq 1/2$$

How can we rewrite the chance constraint?

assumption multivariate Gaussian

projection property

$$a^T x \sim \mathcal{N}(\bar{a}^T x, x^T \Sigma x)$$

Uncertain linear constraint with Gaussian data

Exact reformulation

projection property

$$a^T x \sim \mathcal{N}(\bar{a}^T x, x^T \Sigma x)$$

$$\Phi(z) = \frac{1}{2\sqrt{\pi}} \int_{-\infty}^{z} e^{-t^2/2} dt$$

$$\mathbf{P}(a^T x \le b) \ge 1 - \epsilon \qquad \Longleftrightarrow \qquad \frac{b - \bar{a}^T x}{\sqrt{x \Sigma x}} \ge \Phi^{-1}(1 - \epsilon) \qquad = 0$$

$$\frac{b - \bar{a}^T x}{\sqrt{x \Sigma x}} \ge \Phi^{-1} (1 - \epsilon)$$

exact reformulation

$$\bar{a}^T x + \Phi^{-1} (1 - \epsilon) \| \Sigma^{1/2} x \|_2 \le b$$
> 0

equivalent to robust constraint with

$$g(u, x) = (\bar{a} + \Sigma^{1/2} u)^T x - b$$

$$\mathcal{U} = \{ u \in \mathbf{R}^n \mid ||u||_2 \le \Phi^{-1} (1 - \epsilon) \}$$
19

Approximation with high probability bounds

$$\mathbf{P}(a^T x \le b) \ge 1 - \epsilon$$

What if the distribution is ____ chance constraint not Gaussian?

Approximate with high probability bounds

Assumption

mean \bar{a} , and $a \in [\ell, u]$

$$\mathbf{E}(a_i x_i) = \bar{a}_i x_i$$
$$\ell_i x_i \le a_i x_i \le u_i x_i$$

Hoeffding's inequality

$$\mathbf{P}(a^{T}x \le b) = \mathbf{P}\left(\sum_{i=1}^{n} a_{i}x_{i} - \bar{a}_{i}x_{i} \le b - \bar{a}^{T}x\right) \ge 1 - \exp\left(-\frac{2(b - \bar{a}^{T}x)^{2}}{\sum_{i=1}^{n} (u_{i} - \ell_{i})^{2}x_{i}^{2}}\right)$$

more compactly:

$$\mathbf{P}(a^T x \le b) \ge 1 - \exp\left(-\frac{2(b - \bar{a}^T x)^2}{\|\mathbf{diag}(u - \ell)x\|_2^2}\right)$$

Constraint reformulation with high probability bounds

$$\mathbf{P}(a^{T}x \le b) \ge 1 - \exp\left(-\frac{2(b - \bar{a}^{T}x)^{2}}{\|\mathbf{diag}(u - \ell)x\|_{2}^{2}}\right) \ge 1 - \epsilon$$

$$\iff \exp\left(-\frac{2(b - \bar{a}^{T}x)^{2}}{\|\mathbf{diag}(u - \ell)x\|_{2}^{2}}\right) \le \epsilon$$

$$\iff -\frac{2(b - \bar{a}^{T}x)^{2}}{\|\mathbf{diag}(u - \ell)x\|_{2}^{2}} \le \log(\epsilon)$$

$$\iff 2(b - \bar{a}^{T}x)^{2} \ge \log(1/\epsilon)\|\mathbf{diag}(u - \ell)x\|_{2}^{2}$$

reformulation

$$\bar{a}^T x + \sqrt{\frac{1}{2} \log \frac{1}{\epsilon}} \| \mathbf{diag}(u - \ell) x \|_2 \le b$$

equivalent to robust constraint with

$$g(v, x) = (\bar{a} + \mathbf{diag}(u - \ell)v)^T x - b$$

$$\mathcal{U} = \left\{ u \in \mathbf{R}^n \mid ||u||_2 \le \sqrt{\frac{1}{2} \log \frac{1}{\epsilon}} \right\}$$

Portfolio optimization example

asset allocations $x \in \mathbf{R}^n$ uncertain returns $r \in [\ell, u]$ with mean μ

robust reformulation

maximize
$$\mu^T x$$
 subject to
$$\mu^T x - \sqrt{(1/2)\log(1/\epsilon)}\|\mathrm{diag}(u-\ell)x\|_2 \ge \alpha$$

$$\mathbf{1}^T x = 1$$

$$x \ge 0$$

Portfolio optimization strategies

returns

$$\mu_i = 1.05 + \frac{3(n-i)}{10n} \quad (\mu_1 \ge \mu_2 \ge \dots \ge \mu_n)$$
$$|r_i - \mu_i| \le u_i = 0.05 + \frac{n-i}{2n}, \qquad u_n = 0$$

n-th asset is cash (guaranteed 5% return)

baselines

- nominal minimizer $x_{\text{nom}}^{\star} = e_1$
- conservative minimizer $x_{\text{con}}^{\star} = e_n$
- robust minimizer x_{ro}^{\star}

Portfolio optimization results comparison

robust is guaranteed to do better than conservative (cash)

Issues with traditional uncertainty set construction

Probability distributions P are never observed in practice

Data is observed in practice

All we have is the empirical distribution

$$\hat{\mathbf{P}}^N = \frac{1}{N} \sum_{i=1}^N \delta_{d^i}$$

Are there better ways to model the uncertainty that still lead to tractable formulations?

Robust Optimization

- Today we learned to:
 - Understand the limitations of optimization in presence of uncertainty
 - Derive tractable reformulations of robust constraints using duality theory
 - Construct uncertainty sets from probabilistic assumptions on the uncertainty

Next lecture

Bringing data in the picture