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Decision-making under uncertainty

so far we have modeled and solved optimization
problems of the form

minimize  f(x)
subjectto g¢g(x) <0

what if we do not know f or g exactly?



Today'’s lecture
[RO, Ch 1 and 2] [TARO][ee364Db]

Decision-making under uncertainty with Robust Optimization
 Example why uncertain data can be problematic
 Reformulating robust constraints

* Constructing uncertainty sets



Why is uncertain data an issue?



A medical production example

x1 purchase raw material 1 (kg)
xo purchase raw material 2 (kg)
x3 produce drug 1 (1000 packs)

x4 produce drug 2 (1000 packs)
T

minimize c¢'x
subjectto —0.01xz; — 0.0225 + 0.523 + 0.624 < 0 - balance of active agent
r1 + x2 < 1000 - storage
9023 + 100x4 < 2000 - manpower
40x3 + o0x4 < 800 - equipment
100x1 4+ 199.929 + 700x3 + 80024 < 800 - budget
x>0

optimal objective -8819.66 (8.82% profit)



Uncertainty in the balance of active ingredients constraint

—0.01x7 — 0.0222 4 0.523 4+ 0.624 < 0

\ /

active agent content
In raw materials

What if the composition is not certain?

—0.01(1 £ 0.5%) for raw material 1
—0.02(1 £ 2%) for raw material 2

Constraint may we adjust z3 (prod. of drug 1) ~ What happens to the
become infeasible! to ensure feasibllity objective then?
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Large suboptimality
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Frequently lose up to more than 20% of profits



Chance constrained programs

Let u € RP be a random variable, we write a chance constrained program as

minimize  f(x)

. chance
subject to P(?(uaf) <0)>1-¢ - constraints

concave in
first argument
(e.q., linear, bilinear)

Remarks Issues
 Can model uncertain objectives < Typically intractable (honconvex,
through epigraph forms except special cases)
* Equality constraints do not * We often do not know the distribution

make sense



Robust Optimization

Replace chance constraint with

equivalently
g(u :13) <0. Yuel -« uncertainty Sup g(u, :1:‘) < 0
= set weld

Questions

e How to reformulate robust constraints?
(when are they tractable?)

 How to construct the uncertainty sets?



Reformulating robust constraints



Reformulation of uncertain nonlinear constraints

Let U/ be a nonempty, convex, compact set satisfying mild regularity
conditions. Then, x € R" satisfies g(u,z) < 0, Vu € U if and only if Jw:

—g]"(—w,z) + oy (w) <0

_— I

conjugate function support function
—g]*(—w, ) = sup —w' z + g(z, ) oy (w) = sup w' u = I (w)
zER™ uei

Proof sup g(u,x) =supg(u,x) — Iy (u) = —inf —g(u, z) + Zy (u)

ueU U
= —sup (—|—g/" (~w, ) — oy(w)) = inf|—g|* (—w, z) + oy (w)
| ﬂ' w
Fenchel dual function .
[ecture 15

Deriving robust counterparts of nonlinear uncertain inequalities, Ben-Tal, den Hertog, Vial 11



Constraint function examples

Bilinear functions: g(u,z) = u! Px +qlu+r'z + s

—g]"(—w,z) =sup—w' z+ 2z Pr+q' z+r'z+s=

<

rle+s w=Px+q
00 otherwise

Linear functions (P =1,¢q=0,7r =a,s = —b): g(u,z) = (a+u)' v — b

T ) o'z —b w=zx
o — W, L) — :
J 0O otherwise
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Uncertainty set examples

Norm ball: & = {u € R? | ||u|| < p}

T T

oy(w) = sup w' z =p sup w' v = pllwl

lz][<p lv]| <1

Polyhedral set: &/ = {u € R? | Fu < g}

T

dual norm

primal/dual norms
(Lecture 15)

Norm Dual norm

2 2
1 00
00 1

oy(w) =sup{w' z | Fz < g} =inf {g" A\ | F* X =w, X > 0}

T

strong duality LP
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You can mix and match various functions and sets

Requirements

* g(-,x) concave and |—g|*(-, x) easily computable for any x

» U IS nonempty, convex, compact, and o;, easily computable

You can break the rules sometimes and still get a convex problem (S-Lemma)

g9(u, z) = |[Az + Bujj2 < 1 U= ullullz <1}

(convex in u)

In general, it is hard when ¢(-, ) not concave [More details in ORF523] 4,



Back to production example

uncertainty

balance of active ingredients raw material 1° —0.01 +5-10~°
—OO].Q/’l — 0021’2 + 05373 + 06$4 < 0 raw material 2: —0.02 4 . 10—4
g(u,z) equivalent robust constraint a = (-0.01,-0.02,0.5,0.6)
T M = diag(5-107°,4-10"%,0,0)

T
<
(a4+ Mu) 2z <0, Vueld U= fue R Jullw < 1)

conjugate function

support function
. ot w=M"z
—g]"(—w,z) =

| oy(w) = ||Jwl
0O otherwise

reformulation
o' x4 [|[M* x| <0 15



Robust performance In production example
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r* has degradation provably no worse than 3.7%
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Constructing uncertainty sets



Uncertain linear constraint with Gaussian data

assumption
P(aTm <bh)>1—c¢ multivariate Gaussian
| a~N(a,X)
assumption
l—e>1/2

How can we rewrite
the chance constraint?

projection property
o'z~ Nz, ' T

18



Uncertain linear constraint with Gaussian data

Exact reformulation projection property
T —T —T —T T 1 I
axrx—a xr b—a'x b—a' x a x~N@a x,z° Yz
VTS VTS | VTS
T cumulative 1 2 ,
distribution function _ —t7/2
N(O, 1) of zero mean unit (I)(Z) Qﬁ /_OO © at
variance Gaussian
)
b—a'x H
Pla'z<b)>1—€ <+— >d 1(1—€ Lo
L,
0.00  0.25  0.50  0.75  1.00
1l —€
exact reformulation equivalent to robust constraint with
a'z + @M1 - )=z < b g(u,@) = (@+ 5 *u) e —b

> () U={uecR"||us <d'(1—e)} 19



Approximation with high probability bounds

Approximate
- What if the distribution is chance constraint
Pla"z<b)>1—¢ not Gaussian? | with high
probability bounds

Assumption

E(a;r;) = a;x;
mean a, and a € ¢, u

&-xi < a; X, < U, X4

Hoeffding’s
inequality

n | T \2
2(b —
P(aT:C <b)=P (Z a; T; — a;x; < b — aT:c> > 1—exp ( Zn (1(%0; Z))Zx2>

1=1 1= ()

2(b — al x)?
- Plalz<b)>1—
more compactly: (a”z < b) > oxP ( |diag(u — E):I:H%) 20



Constraint reformulation with high probability bounds

2(b—a” x)° )
P(aTang)Zl—exp( > 1 —€
Hdlag(u — )z |3
< exXp ( (b_ Q" )2 ) <
X €
|diag(u —£)z|5 /) ~
2(b — al x)?
= , < log(e
diag(u— Daf3 = )

= 2(b-a x)° >log(1/e)||diag(u — £)z|3

equivalent to robust constraint with

reformulation g(v,z) = (a + diag(u — £)v)' = — b

B 1 L, ..
vzt \/5 log —l|diag(u — )xl> < b U = {u e R" | |luf]2 < \/1 1Og1}
€ 21
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Portfolio optimization example

optimization problem
expected

maximize p'xz ——  returns

. . 78 loss risk
asset allocations x €¢ R" subjectto P(r"z < a) < e “— constraint
uncertain returns r € |£, u| with mean T, _

£l - 17z =1 unwanted
x > 0 return level

robust reformulation
maximize ulax
subjectto plz — +/(1/2)log(1/¢)||diag(u — £)z||2 > «
11 =1

r > 0 2P,




Portfolio optimization strategies

returns
3(n — 1)
; = 1.00 > M2 Z 2 fn _
s 10n (H1 .“ ; fin) n-th asset Is cash
i — il < wi = 0.05 n—u 0 — () (quaranteed 5% return)
(/ 1] — (/ 2n y n
baselines
* nominal minimizer xzx_ . = €,
- conservative minimizer x5, = e,

* robust minimizer x’,

23



Portfolio optimization results comparison
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L
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Issues with traditional uncertainty set construction

Probability distributions P are never observed in practice

Data is observed in practice

All we have is the empirical distribution l | l l
N
v Ly l
PN — N . 5d73 l\ l
1=1 \d”;

Are there better ways to model the uncertainty
that still lead to tractable formulations?

25



Robust Optimization

 [oday we learned to:
 Understand the limitations of optimization in presence of uncertainty
* Derive tractable reformulations of robust constraints using duality theory

 Construct uncertainty sets from probabilistic assumptions on the
uncertainty

20



Next lecture

* Bringing data in the picture

27



