ORF522 - Linear and Nonlinear Optimization

19. Computer-aided analysis of first-order methods

Bartolomeo Stellato — Fall 2024

Today'’s lecture

Computer Assisted Analysis and Large Scale Convex Optimization Review

* Analyzing gradient descent using computer-assisted proofs

e Performance estimation

 Summary of large-scale convex optimization

Material
- Blog post by Francis Bach: https://francisbach.com/computer-aided-analyses/

- Adrien Taylor’s tutorials https://adrientaylor.github.io/tutorials/
- Lots of exciting papers by Drori, Bach, Lessard, Hendrickx, de Klerk, Ryu, Bolte, and others.... 2

https://francisbach.com/computer-aided-analyses/
https://adrientaylor.github.io/tutorials/

Computer-assisted proof techniques are growing

Generative Al is a great It works well if we can check the
guessing machine correctness of the results!

Oxford Mathematics
London Public Lecture

Lean4 is a theorem proving
V- language
@ (used to check AlphaProof)

The Potential for Al

in Science and Mathematics
lerence lao

Today we will see a different
technique to

analyze first-order methods!

Oxforad
Mathematics

https://youtu.be/_sTDSO74D8Q?si=U7IYHZB8kBDYEPxv

https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://www.youtube.com/watch?v=_sTDSO74D8Q

Gradient descent example

Analysis of a gradient step

Unconstrained smooth optimization

L gradient descent
minimize f(x) r e R"

| et = gF —tV f(2F)
under some assumptions on f

What guarantees we can give in terms of the
following performance metrics after /N iterations?

» Cost function distance: e(z) = f(z) — f(a™)
» Solution distance: e(x) = ||x — x*||

» Gradient norm: e(z) = ||V f(2)]]

Convergence rate of a gradient step

For error e(x) = ||V f(x)]|, find the smallest 5 such that
V@) < BIVFE) va© 2

for 2! = 2° — tV f(2?)

We can write It as an optimization problem

maximize ||V f(z!)]]

f?x:[?w()
subjectto z! = 2" — tV f(2?)
assumptions on f
IVf(=?)] <1

We need assumptions on the problem function
L-smoothness: fly) < flx)+Vf(z) (y—x) A Hx—sz

p-strong convexity: f(y) > f(x) + Vf(2)" (y —) + 5 Hﬂf —yll3, Va,y

JF@)+ V@) (g~ o)+ S~y

(z, f(x))

We choose f ¢ F, 1, the class of p-strongly convex and L-smooth functions 7

Back to the convergence rate problem

maximize ||V f(z!)|

[zt xd
subjectto z! = 2" — tV f(2) (t, v, L are problem parameters)
strongly convex and
J € 6L smooth functions
V()] <1

The theoretical worst-case value Is

[Vf(@)]® < max{(1 —tp)*, (1 —tL)*}HVf(")| Vaz" 2

which gives the optimal step size ¢t = ; (from gradient descent lecture)
U

How can we solve the

maximization problem? 3

From infinite to finite dimensional optimization

ISsues

1. fis a function (infinite dimensional variable)

J€FurL 2. the set F, ; represents functions

Idea
1. replace f by its discrete representation
=1, ¢"=Vi’
fr=rf@h), g¢'=vVf)

2. require points (z*, g*, f*) to be interpolable by a function f € F,, 1.

Discretized worst-case problem

maximize ||V f(x!)||

f,xl 20
subjectto ' =2 -tV f(a")
f - 'F,U,L
IV f(z?)] <1

maximize ||g'|]
f17f07gl7

o _.1 0

g ,L ,ZX

subjectto ! = 2" — tg"”

3f € F,,.r such that {fz = ()

g' = Vf(a')
lg°] <1

10

Smooth and strongly convex interpolation

Consider an index set I with associated tuples {(z*, ¢*, f*}ic1

(sub)gradients

question

f € F,.1 such that {; :é(fm(;z) ?

Necessary and sufficient conditions Vi, 5 € [

- T) 1
s 4 (N (s —) i |2 i
[>f +(9) (37@ 93]) ZLHQ gH 2(L L

11

Discretized worst-case problem with interpolation constraints

_ | i i
maximize lg°] 3f € F,p, such that 47 fla)
) g' =V f(z")
subjectto ! = 2% — tgY
2
1210+ (007 —2°) + o llgt — 6017 + gy ot — 20 — L(g" — g%
2
FO > 14 (g7 (0 — 2) + 2 llg” — gM12 + sty [l — 2t — £ — gV
Ig°]] <1

Substitute gradient step z! = 2% — t¢"

maximize g
{(z*,9", ") }ie{o,1} 2 nonconvex
subject to 1> 10— ?f||gOH2 21L | g' — 90H2 | 2(1—MM/L) H (% — t) g" — %ng quadratic

| 2 .
fO=> 4+t 9" + 5zlle” — a1 + sty |t — 1) 9° + 29| constraints

Semidefinite programming lifting procedure

We stack variables in matrix P = [z 2! ¢° ¢'] € R™**

Define Gram matrix

(CUO)TZCO (CCO)TCE'l (CE‘O)TQO (IIJO)Tgl

B - B (xl)TmO (ml)Txl (Q?l)TgO (CBl)Tgl
T e (0Tt (00T (¢0)Tgt| T

(g5)"2” (¢5) 'zt (¢9)79° (99)" g

Our problem is linear in G'!
G = 0andrank(G)<n <= G =P'PwithPecR"

Since G € R*** we have rank(G) <4 — Therefore, rank constraint disappears when n > 4

= We can recover P = [z z! ¢° ¢'| from G with a Cholesky factorization. 13

Semidefinite formulation

- encode objective ||¢t]]? = (¢}) ¢! = Gu
- encode initial condition ||¢°||? = (¢")! ¢° = G33 < 1

- encode interpolation constraints as f7 — f* + tr(GA;;) < 0 for some A;;

automated performance estimation problem

maximize Gyy

G,fl,fo
subjectto [/ — fi +tr(GA;;) <0, i,5¢€{0,1}
G >0
Gz <1

14

Solving the SDP

Fix L =1, = 0.1 and solve SDP for varying step size ¢

4.0

worst case theory
3.97 — == worst case pep
3.0

Y
&

can we translate this into

analytical guarantees?

worst-case objective
DO
-

—_
O

—_
-

...

0.51

U075 0.5 0.0 0.5 1.0 15 2.0 2.5 3.0

t

Exactly matches max{(1 — tu)%, (1 — tL)*}-convergence for t € (0,2/L)

Divergence (> 1) fort < 0ort > 2

gradient step with ¢ = 1/L

Analytical proofs with duality (./.:- 1 250 w2—0

Interpolation inequalities
f'2 04 V)T (@ = a®) + 5 [V 1> Vf<a:0>||2

dual variables

2
A= —(1—put) >0

| M 0
~ 3(1—p/L) Hx — 1Y — 7(Vf(a' (@ H L guess
T~ (from numerical
A AL Ay
. 120 — ot — L(Vf(2%) - V() 2= (1l =ut) 20
- D) L

Weighted sum of the constraints with weights A\, A\, can be written as

IVf(h)]? < (1 —tu)? ||V ()] 2;{5’::5) |(1 = t)Vf(x?) = V(')
< (1 —tp)?||VFf () >0 (=0 at the worst-case)
< (1—tp)?

with ¢ = 1/ we have the convergence rate |V./(z")[* < (1 —p/L)*|[Vf(z7)[|* (tight) 16

Remarks on dual problem

Interpretation

* find the smallest upper bound that can be proved by a linear
combination of the interpolation inequalities

 we can show that strong duality holds
(existence of Slater’s point)

O any convergence rate (primal objective) can be proved by
a linear combination of interpolation inequalities (dual objective)

o0 any dual feasible point can be translated into “traditional” (SDP-
less) proofs

how to build purely analytical proofs?

 we need to “guess” how the optimal dual variables depend on
problem parameters

 SDP optimal values gives us a way to check correctness

17

Performance estimation

Performance Estimation Problem (PEP)

Features
* any primal solution gives a lower bound (i.e., function)
» any dual solution is a worst-case guarantee (i.e., a proof)
* pboth can be computed using semidefinite programming (SDP)

Algorithms (with accelerated variants)
* (sub)gradient methods
e proximal point methods
* projected and proximal gradients methods
» splitting methods
* randomized/stochastic gradient methods
» distributed/decentralized gradient methods
e ... and many more!

19

Classes of optimization problems

We can model any composite optimization problem of the form

minimize f(x) + h(z)

For many functional classes in convex optimization::

» different types of (smooth or non-smooth) functions
e convex indicator and support functions
 monotone inclusion problems

e ... and more

any class whose interpolation conditions are SDP-representable

20

Performance metrics

common errors

» Cost function distance: e(z) = f(z) — f(a™)

» Solution distance: e(z) = ||x — x™||

- Gradient norm: e(z) = ||V f(2)]]

best error along the way

min e(x")
0<i<N

any linear function of

f; and gram matrix entries ||z*||?, ||¢°||?, (¢*)* 2’

21

PEPIt toolbox

https://github.com/PerformanceEstimation/PEPIit

 Works in Python

 Used to analyze virtually any first-order method used in convex optimization
(includes stochastic, and continuous-time methods)

* Interfaces with cvxpy to call an SDP solver

problem = PEP()
func = problem.declare_function(

function_class=SmoothStronglyConvexFunction, mu=mu, L=L)
X0 problem.set_tinttital_pouint()

X1 = x0 - t * func.gradient(x0)
problem.set_intttal_condition(func.gradient(x0) **x 2 <= 1)
problem.set_performance_metric(func.gradient(xl) ** 2)
worst _case_value = problem.solve()

22

Can be used to design algorithms as well
Optimized Gradient Method

1 .
Rt = yF 7V f(y") tight convergence guarantee
9, — 1 0, (lower and upper bounds match
Yyt =2t e @ 2t s (T) exactly up to constants)

(for appropriately chosen 6;.)

Y. Drori, M. Teboulle (2014). Performance of first-order methods for smooth convex minimization: a novel approach. Mathematical Programming
D. Kim, J. Fessler (2016). Optimized first-order methods for smooth convex minimization. Mathematical Programming
Y. Drori (2017). The exact information-based complexity of smooth convex minimization. Journal of Complexity

Numerically optimal step sizes

Solve minmax problem using branch-and-bound:
1. we minimize over step sizes t;
2. we maximize over PEP problem variables (f*, G,...)

S. Das Gupta, B. Van Parys, E. Ryu, (2024) "Branch-and-Bound Performance Estimation Programming: A Unified Methodology for Constructing
Optimal Optimization Methods", Mathematical Programming

Many more (active research area...) 23

Limitations of PEP

* Results are not interpretable in terms of problem parameters. You need to
“guess” the connections.

* |f you already have an optimal algorithm matching lower bounds (e.g., in
Nesterov acceleration), PEP cannot give you better rates. It can give you
the exact constant in front of the rate.

 SDPs can become very large for 50/100 steps and take a very long time

* Results are dimension-independent: cannot represent exactly the iterates
because they disappear in the Gram matrix

24

Summary of large-scale convex optimization

Large-scale convex optimization

T - General
Optimality conditions Necessary
- KKT optimality conditions
» Subgradient optimality conditions 0 € 9 f (x*) Convex

Necessary and sufficient

First order methods: Moderate accuracy on Large-scale data

» Gradient descent

» Subgradient methods

» Proximal algorithms (e.g., ISTA)

» Operator splitting algorithms (e.g., ADMM)

20

Convergence rates

Typical rates
(gradient descent, proximal gradient, ADMM, etc.)

- L-smoothness: O(1/k), accelerated O(1/k%)

» u-strong convexity: O(log(1/k))

» We can always combine line search

» Convergence bounds usually in terms of cost function distance

Operator theory

* Helps developing and analyzing serial and distributed algorithms
» Algorithms always converge for convex problems

(independently from step size)
» Convergence bounds usually in terms of iterates distance

27

First-order methods

» Gradient/subgradient method

 Forward-backward splitting (proximal algorithms)

Per-iteration Number of

cost terations » Accelerated forward-backward splitting

* Douglas-Rachford splitting (ADMM)

* |nterior-point methods (not covered)

Large-scale systems
e start with feasible method with cheapest per-iteration cost
* |f too many iterations, transverse down the list 28

Computer-assisted analysis of optimization algorithms

Today, we learned to:
 Formulate performance analysis problem using semidefinite programming
 Recover known convergence rates by observing SDP solution

 Prove convergence rates using dual variables by combining interpolation
iInequalities

« Select the appropriate algorithms to apply in large-scale optimization

29

Next lecture

 Extensions and nonconvex and stochastic optimization

30

