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Operators

An operator 1" maps each point in R" to a subset of R"

» set valued 7'(x) returns a set
- single-valued T'(x) (function) returns a singleton

The domain of T'is the set domT = {x | T'(z) # ()}

Example

» The subdifferential 0f is a set-valued operator
* The gradient V f Is a single-valued operator



Summary of monotone and cocoercive operators

Monotone Lipschitz
(T(@) =T (@ =y) 20 |F(z) - F(y)| < Lz —y]
p=_0 | L=1/p
Strongly monotone Cocoercive
(T(x) = T(y)" (z —y) > pllz -yl ﬁl (F(z) — F(y))" (x —y) > pl|F(z) — F(y)|°
G=1-2uF

Nonexpansive
|G(z) -G <z —yll *



Zero
r is a zero of T if 0eT(x)

Zero set
The setof allthe zeros  T71(0) ={z |0 T(x)}

Example Many problems
f7T=0fand f: R" — R, then can be posed as finding zeros
0 € T'(x) means that x minimizes f of an operator



Fixed points

z 1S a fixed-point of a single-valued operator 7' if

r="T(x)

Set of fixed points fix7T = {x € domT |z =T(z)} = (I —T) *(0)

Examples
» Identity 7'(x) = z. Any point is a fixed point
» Zero operator T'(x) = 0. Only 0 is a fixed point



Lipschitz operators and fixed points

Given a L-Lipschitz operator T and a fixed point x = T'z,
|Te —z|| = ||[Te — Tz| < Lijr — z|

A contractive operator (L < 1) can have at most
one fixed point, i.e., fixT = {z}
Proof

If z,y € fix1T and z # y then
|z =yl =[T(z) = T(y)|| < ||z -yl (contradiction) Il

A nonexpansive operator (L = 1) need not
have a fixed point

Example T'(x) = x + 2




How to design an algorithm

Problem
minimize f(x)

Algorithm (operator) construction

1. Find a suitable 7" such that x € fix T’ solve your problem
2. Show that the fixed point iteration converges

If T"is contractive — linear convergence
If T'Is averaged — sublinear convergence

Most first order algorithms can be constructed in this way



Today'’s lecture
[ILSMO]IChapter 4, FMO][PA]

Operator theory

* Linking operators and functions
* Conjugate functions and duality
e Subdifferential operator

* Operators in optimization problems

* Operators in algorithms



Conjugate functions and duality




Dual norms

|- || and || - ||« are a pair of dual norms:

|||« = sup 2w

lz|l<1

This implies inequality 27z < ||z||||z][. Vz,2

relationships examples
Norm (p) Dual norm (¢) Sup T T < _ HZH2
2 2 |zl <1 |22
1 o0 sup 2l = Z\zz\ = |||l
00 1 [zl 0o <1

remarks

- all norms equivalent up to constant

€.9., [lzll2/vn < [[2] o0 < |[2]l2)

* wlogwewuse |[- || = |- |l = |- [|2
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Conjugate function

Given a function f : R” — R we define its conjugate f* : R — R as
f*(y) =sup y' = — f(x)

X

Note f* is always convex (pointwise maximum of affine functions in y)

f* Is the maximum gap
between y* x and f(x)
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Conjugate function properties and examples

Properties
Fenchel’s inequality flz)+ f*(y) >yl (from max inside conjugate)

Biconjugate  f**(z) =sup z y — f*(y) = f(z)> [ ()
Y

Biconjugate for CCP functions If f CCP, then f** = f

Examples

Norm — : (o)) — T indicator function
flay=lel: 7w =T <1(v) of dual norm set

Indicator function f(z) = Zo(z):  f*(y) =Z5(y) = sup y' 2 = oc(y) Support
reC function
13

More examples of conjugate functions [Page 101, FMO]



Fenchel dual

Dual using conjugate functions
Equivalent form (variables spilit)

minimize  f(x) 4+ g(z2)

Lagrangian
L(z,z,y) = f(z) +9(2) +y" (2 —2) = —=(y" = — f(x)) — (~y" 2 — g(2))

Dual function
inf L(z, z,y) = —f"(y) — 9" (=)

Dual problem
maximize — f*(y) — g"(—y)
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Fenchel dual example

Constrained optimization Dual problem
minimize f(x) 4+ Z¢(x) ——  maximize — f*(y) — oc(—y)
Norm penalization Dual problem
maximize —f*(y)
Mminimize f(a:) -+ HLIZ‘H —_ subject to HyH* <1
Remarks

* Fenchel duality can simplify derivations
* Useful when conjugates are known
* \VVery common in operator splitting algorithms
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Subdifferential operator and monotonicity



Subdifferential operator monotonicity
Of(x)={g| fly) > flx)+g" (y— )}

0f(xz) is monotone (also for nonconvex functions)

Proof Suppose u € df(x) and v € df(y) then
fly) > fle)+u' (y—x),  fl@)> fly)+o’ (@ -
>0 |

By adding them, we can write (u — v)? (z — y)

Maximal monotonicity
If fis convex, closed and proper (CCP), then 0f(x) is maximal monotone

Remark: For differentiable f, convexity <— V f monotone (lecture 11)

Y)
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Strongly monotone and cocoercive subdifferential

f is u -strongly convex <«<—  0f p-strongly monotone
(Df(x) = 0f (y)" (x —y) > pllz —y|°

f 1s L-smooth
<= Of L-Lipschitzand 0f = V f: |Vf(x)—Vf(y)l| <Llx— 1yl
<= 0f (1/L)-cocoercive: (Vf(x) = Vf(y)) (x —y) > (1/L)|Vf(z) = V(Y|

1@+ V@ @)+ 5 el

f(y)

f(@)+ V@) (y—2) + Slle =yl 18



Inverse of subdifferential
If fis CCP, then, (Of)~t =0f*

Proof
(u,v) € gph(df)™" <= (v,u) € gphdf
<~ u € Jf(v)
<— 0€0f(v) —u
<= v € argmin f(x) —u" x
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Strong convexity is the dual of smoothness

f is p-strongly convex <= f*is (1/u)-smooth

Proof
f w-strongly convex <=  0Jf p-strongly monotone

— (0f)"'=0f* p-cocoercive
<~ f* (1/u)-smooth B

Remark: strong convexity and (strong) smoothness are dual
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Operators in optimization problems



KKT operator

minimize  f(x)

subjectto Az =0
KKT operator
_ﬁxLx, _ E :c—I—AT_
T(2.y) = 6’L( y) | _ |9f(x) y
—0yL(z,y) - b—Azx

zeroset {(z,y) | 0 € T'(x,y)} is the set of primal-dual optimal points

jﬁcxay):::

Monotonicity

Of (x)
b

_I_

0 AT

—-A 0

Lagrangian

X

Y

skew-symmetric

Tdual

_JTprhn

sum of monotone
operators

L(x,y) = f(z) +y" (Az —Db)




“multiplier to residual” mapping

Lagrangian
—  L(z,y) = f(z) +y (Az —b)

minimize  f(x)
subjectto Az =0

Dual problem
maximize g(y) = inf L(z,y) = —sup —L(z,y) = —(f*(-A"y) +y" b)

Operator Monotonicity

T(y) =b— Ax, where x = argmin, L(z,y) —— If f CCP, then T is monotone

Proof
0€ 0,L(x,y) =0f(x) + Ay = =
Therefore, T(y) = b — A(Of) 1(—Aly) =

monotone

= (0f)"'(—A"y) —
Oy (b'y+ f*(—A"y)) =0(—9) IR
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Operators in algorithms



Forward step operator

The forward step operator of 7' is defined as
I —~T

In general monotonicity of 7' is not enough for convergence

Example KKT operator Monotone (skew-symmetric)
minimize « 0 11 [ 1 0 1
subjectto z =0 T(z,y) = 1 0l |y + 0 A = 10 A+ A" =0=0
Forward step Expansive
Kl 1 - |z 1 1
yl vy 1] |y] |0 REEENEIE




Gradient step: special case of forward step

f L-smooth <= Vf (1/L)-cocoercive <= I—(2/L)V f nonexpansive

Construct averaged iterations
I —wWVf=01-a)l+ ol —(2/L)Vf)
where a =~vL/2 € (0,1) <«<— ~¢€(0,2/L)

T

(to be averaged)

Remark
» Only smoothness assumption gives sublinear convergence
 Similar result we obtained in gradient descent lecture
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Resolvent and Cayley operators

The resolvent of operator A is defined as
Ra=(I+ A)_l

The Cayley (reflection) operator of A is defined as
Cap=2Ry—1=20+A)" -1

Properties

* |If A is maximal monotone, dom R4 = dom (4 = R"™ (Minty’s theorem)
- If A is monotone, R4 and C' 4 are nonexpansive (thus functions)

« Zeros of A are fixed points of R4 and C'4

Key result we can solve 0 € A(x) by finding fixed points of C'4 or R 4
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Fixed points of R4 and (4 are zeros of A

Proof
Ry=(I+A4)""

r € fix R 0€ Alx) <—= xz € (I+ A)(x)
— (I+4) (@) =2
< QZ‘:RA(J})

r € fix(Cy Ca(x) =2Ra(x) —I(zx) =20 —x == B
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If Ai1s monotone, then R 4 IS nhonexpansive

Proof
If (x,u) € gphR4 and (y,v) € gphR 4, then
u—+ A(u) 3 x, v+ A(v) Dy

Subtracttoget u — v+ (A(u) — A(v)) 22—y

Multiply by (v —v)* and use monotonicity of A (being also a function: € — =),

Ju—v]* < (z—y)" (u—0)

Apply Cauchy-Schwarz and divide by ||u — v|| to get

Ju—ol| < [z —y] N



If Ai1s monotone, then (4 IS nonexpansive

Proof
Givenu = Ra(x) and v = R4(y) (R4 is a function)

|C(z) = CY)I* = (2u —2) — (2v —y)|I
= [2(u—v) = (z = y)II
= 4flu—v[]* —4(u—v)" (z —y) + [z -y

Note 124 monotonicity (prev slide): |lu — v[|* < (u —v)! (z — y) B

Remark
R 4 1s nonexpansive since it is the average of I and (4

Ra=(1/2)I+ (1/2)Ca = (1/2)I + (1/2)(2R4 — 1) 30



Role of maximality

We mostly consider maximal operators A because of

Theory: R4 and C' 4 do not bring iterates outside their domains

Practice: hard to compute R4 and (4 for non-maximal monotone operators,
e.g., when A = 0f(z) where f nonconvex.
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Resolvent of subdifferential: proximal operator

prox; = Ryy = (I + Of)*

Proof
Let z = prox,(z), then

1
z = argmin f(u) 1 2Hu—a:||2

<— 0€0f(z)+z—x (optimality conditions)
< x e (l+0f)(z)
= z=UI+0f) Hx) B
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Resolvent of normal cone: projection

Razc =31V (x) _Ne(z)

Proof

Let f = 7, the Iindicator function of a convex set

Recall: 0Zo(x) = Neo(xr) normal cone operator
u= (I+0Ic) *(r) <= u=argmin Zc(u)+ (1/2)]|z — z||* = llc(z)

Z

Nc monotone =— Il nonexpansive

Proof of monotonicity
ueENg(z) = v (z—2)<0,VzelC = u' (y—2x)

add to obtain u
veNe(y) = vl (z—y) <0, VzeC = vl(z—vy)

monotonicity 33




Operator theory

Today, we learned to:

* Use conjugate functions to define duality

* Relate subdifferential operator and monotonicity
 Recognize monotone operators in optimization problems

* Apply operators in algorithms: forward step, resolvent, Cayley
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Next lecture

» Operator splitting algorithms
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