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Today'’s lecture
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Operator theory |
 Operators
 Monotone operators

* Fixed-point lterations



Operators



Operators

An operator 1" maps each point in R" to a subset of R"

» set valued 7'(x) returns a set
- single-valued T'(x) (function) returns a singleton

The domain of T'is the set domT = {x | T'(z) # ()}

Example

» The subdifferential 0f is a set-valued operator
» The gradient V f Is a single-valued operator



Graph and inverse operators

Graph
The graph of an operator 7' is defined as

gphT = {(z,y) |y € T'(v)}

In other words, all the pairs of points (x,y) such that y € T'(x).

Inverse
The graph of the inverse operator 7! is defined as

gphT ' = {(y,2) | (z,y) € gphT}

Therefore, y € T'(x) ifand only if x € T 1(y).



Zero
r is a zero of T if 0eT(x)

Zero set
The setof allthe zeros  T71(0) ={z |0 T(x)}

Example Many problems
f7T=0fand f: R" — R, then can be posed as finding zeros
0 € T'(x) means that x minimizes f of an operator



Fixed points

z 1S a fixed-point of a single-valued operator 7' if

r="T(x)

Set of fixed points fix7T = {x € domT |z =T(z)} = (I —T) *(0)

Examples
» Identity 7'(x) = z. Any point is a fixed point
» Zero operator T'(x) = 0. Only 0 is a fixed point



Lipschitz operators

An operator 7' is L-Lipschitz if
|T(x) —T(y)|| < Lllz —yll, Va,y€domT

Fact If 7' is Lipschitz, then it is single-valued
Proof If y € T'(x),z € T(x), then ||y —z|| < Lz —z|| =0 =y =2 |

For L =1 we say 7' iIs nonexpansive
For L. < 1 we say 1’ is contractive (with contraction factor L)



Lipschitz operators examples

Lipschitz affine functions maximum singular value
T(z) = Az +b L= Al = \/Auax(ATA)
Lipschitz differentiable functions derivative I1s bounded

T such that there exists derivative DTT <«——— ||DT||s < L



Lipschitz operators and fixed points

Given a L-Lipschitz operator T and a fixed point x = T'z,
|Te —z|| = ||[Te — Tz| < Lijr — z|

A contractive operator (L < 1) can have at most
one fixed point, i.e., fixT = {z}

Proof
If z,y € fixT and x # y then

|z =yl = IT(x) =T(y)|l < |l -yl (contradiction) i}

A nonexpansive operator (L = 1) need not
have a fixed point

Example T'(x) = x + 2
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Combining Lipschitz operators

17 1s L1-Lipschitz and 15 I1s Ls-Lipschitz

The composition 7,75 Is L Lo-Lipschitz
Proof ||111Tox — TiToy|l2 < Ly||Tex — Toyl|ls < LiLao|lz —yll2 IR

» Composition of nonexpansive is nonexpansive
« Composition of nonexpansive and contractive is contractive

The weighted average 07 + (1 —0)15, 0 € (0,1) is (AL, 4+ (1 —60)L-)-Lipschitz
Proof (exercise)

- Weighted average of nonexpansive is nonexpansive
» Weighted average of nonexpansive and contractive is contractive
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Monotone cocoercive operators



Monotone operators

An operator 7' on R"™ is monotone if

(u—v) (x—y) >0, V(r,u),(y,v) € gphT

T 1s maximal monotone if
B(z,u) ¢ gphT such that

(w—u)' (z —2) >0, VY(z,u) € gphT

Equivalently: # monotone R
such that gph T’ C gphR
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Monotone operators in 1D Let's fill the table

Monotone Max Monotone

A T'(z) B I'(x)
<N

N
J

C T(x) D T(x) Monotonicity

/ J y>x = T(y)>T(z)

Continuity

- If T single-valued,
/ continuous and monotone,

. . 14
then it’'s maximal monotone




Monotone operator properties

* sum 7" + R Is monotone
* nhonnegative scaling o7 with o > 0 Is monotone

 inverse 7! is monotone

- congruence for M € R"*™, then M T(Mz) is monotone on R™

Affine function 7'(x) = Ax + b is maximal monotone
— A+4+A" =0
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Strongly monotone operators

An operator 7' on R" is u-strongly monotone if
(w—v)" (z—y) > pllz—yl|*?, pu>0 (also called u~-coercive)

V(z,u), (y,v) € gphT

Let’s fill the table

Monotone Strongly Monotone

- o

v B

b /
/ The slopeisatleast 1 16



Cocoercive operators

An operator 1" is 5-cocoercive, 5 > 0, If
(T(z) = T(y))" (x —y) > BIT(x) = T(y)|I”

If T"is -cocoercive, then T'is (1/3)-Lipschitz

Proof f|T(z) —T(y)|I* < (T(z) = T(y))" (z —y) < |T(z) = T(y)ll[lz -yl
= |T(x) =T(y)ll =< (1/8)llz =y _

If T is u-strongly monotone if andonlyif 7! is u-cocoercive

Proof (1'(xz) — T(SE))T(x —y) > pllr — yHQ
Inverse: w =T(x)and v =T(y) ifandonlyifz € T-'(u) and y € T (v)
(w=v) (T w) =T (W) > p T (w) =T "
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Cocoercive and nonexpansive operators

If T is S-cocoercive ifandonlyif [ — 257 is nonexpansive

Proof | (I-28T)(y) — (I —28T)(x)||* =
= ||y — 28T (y) — = + 2687 (x)||”
2 —4B(T(y) — T(x))" (y — x) + 48| T (y) — T'(z)||?
)

y—z|* =48 ((T(y) = T(2))" (y = 2) = BIT(y) = T(x)|)
- (cocoercive)

|
<
|
3

A
<
|
S
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Summary of monotone and cocoercive operators

Monotone Lipschitz
(T(@) =T (@ =y) 20 |F(z) - F(y)| < Lz —y]
p=_0 | L=1/p
Strongly monotone Cocoercive
(T(x) = T(y)" (z —y) > pllz -yl ﬁl (F(z) — F(y))" (x —y) > pl|F(z) — F(y)|°
G=1-2uF

Nonexpansive
|G(z) -G <z —yll P



Fixed point iterations



Fixed point iteration

Apply operator

until you reach r € fix T

Main approach

1. Find a suitable 7" such that x € fix T’ solve your problem
2. Show that the fixed point iteration converges

Fixed point residual to terminate
r® =T (z") — 2"
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Contractive fixed point iterations

Contraction mapping theorem
If T'Is L-Lipschitz with L < 1 (contraction), the iteration

ph = T(xk) >
3
converges to x, the unique fixed point of T° /B T
Properties "
» Distance to ¥ decreases at each step
|z" —z|| < L|j2" — 7|
22

(if it does not increase, we have Fejer monotonicity)

» Linear convergence rate L



Contraction mapping theorem

Proof
The sequence z* is Cauchy

< (Lé_1 + - 1)kaJr1 — ka

(Lipschitz constant)

1 k+1 _ _k
< | (geometric series)

L" 1 0 (Lipschitz constant)
——[|la" — o°|

Therefore it converges to a point £ which must be the (unique) fixed point of T’

VA

The convergence is linear (geometric) with rate L
|2 — & = |T(«"") = T(@)|| < Ll|lz"" = 7| < L¥||2° - 7] g =



Nonexpansive fixed point iterations

If T'is L-Lipschitz with L = 1 (honexpansive), the iteration
et = T (2")

need not converge to a fixed point, even if one exists.

Example X
» Let 7' be a rotation around the origin

» T is nonexpansive and has a fixed point z = 0 z°
- ||2*|| never decreases
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Averaged operators

We say that an operator T' is a—averaged with o € (0, 1) if
T=(1—-a)l+aR

and R IS honexpansive.
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Averaged operators fixed points

We say that an operator 1" is a—averaged with o € (0, 1) if
T=(1—-a)l+aR

Fact If ' is a«-averaged, then fixT' = fix R
Proof z=T(z)=(1—a)l(Z)+ aR(Z)
= (1 - 0)z + aR(z)

ar = aR(Z)

T = R(Z) B

<
<
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Averaged fixed point iterations

If T'= (1 - a)l + aR is a-averaged
(a € (0,1) and R nonexpansive), the iteration \
k+1 T(Cbk) ; 1

converges to r € fix 7T

(also called damped, averaged
or Mann-Krasnosel’skii iteration)

Properties
» Distance to x does not increase at each step (Fejer monotone)
» Sublinear convergence to fixed-point residual

1 _
|R(z") — 2| < |27 — 7 07

- \/(k+ Da(l — a)




Averaged fixed point iterations

Proof
Use the identity (proof by expanding)

(1 -a)a+ad|* = (1-a)lall* +alb]|* — a(l - a)la - b]*
and apply it to

a b
obtaining
|27 = 2)* = (1 = a)[la" — 2||* + a|R(z") — 2|* — a(l - a)|l2" — R(z")|]
< (1 — Oz) ® — Z||? + al|z" — CI_ZHQ — Oz(l — Oz)H.ﬁEk — R(x )|| (honexpansive)
= [|z" - 2|* = a(l = a)llz" — R(z")|]

lterations are Fejer monotone
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Averaged fixed point iterations

Proof (continued
( ) iterate righthand side over kksteps

[2" =z < ]2 = 2]* —a(l —a) ) _ [a* — R(z")|?

1=0
- 1
Since ||zt — Z||* > 0, we have ; |zt — R(z")||* < ol — o) |z — z||°
k
Using » [|z' — R(z")|> > (k+1) min |[|z" - R(z%)||?, we obtain
P 1=0,...,
. . 1
: b _ R(x* 2 < 0 =112
2o I T O S a1
. . . 1
(R is nonexpansive — min at k) ||z — R(z")||* < |2° — Z||° i 20

~ (k+Da(l —a)



Average fixed point iteration convergence rates

1 _
|R(z") — 2| < |27 — 7

- V(k+1a(l = a)

Iterations

IR@*) — 2] < - |a” — 2| = (1/2)ak + (1/2)R(a*)

Remarks

» Sublinear convergence (same as subgrad method),
INn general not the actual rate
» o = 1/2 is very common for averaged operators 30



How to design an algorithm

Problem
minimize f(x)

Algorithm (operator) construction

1. Find a suitable 7" such that x € fix T’ solve your problem
2. Show that the fixed point iteration converges

If T"is contractive — linear convergence
If T'Is averaged — sublinear convergence

Most first order algorithms can be constructed in this way
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Operator theory

Today, we learned to:
 Define operators and fixed points
* Define operator properties such as monotonicity

 Use operator theory to construct general fixed-point iterations
and prove their convergence
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Next lecture

* Operators in optimization algorithms
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