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Today'’s lecture
[Chapter 3 and 8, FMO][ee364b][Chapter 1 LSCO][Chapter 3, ILCO]

Gradient descent

* Line search
Subgradients

* Geometric definitions
* Subgradients

* Subgradient calculus

* Optimality conditions based on subgradients



LIne search



Exact line search

Choose the best step along the descent direction

t = argrgin f(x" =tV f(z"))

Used when
 computational cost very low or
e there exist closed-form solutions

In general, impractical to perform exactly



Backtracking line search

Condition

Armijo condition: forsome 0 < a < 1/2

f(z® +td®) < f(z") + atV f(z") ' d"

where d* = —V f(xF)

fa® =tV f(z")) < f(a") — at|V f(z7)]]3

0

(Guarantees admissible

sufficient decrease
IN objective value 5



Backtracking line search

Iterations

initialization

t=1, O0<a<1/2, 0<pB<l1

while f(z* —tVf(z")) > f(z") — at|V f(2")]3
t + Bt

admissible



Backtracking line search

f(z) = (a1 + 2023)/2

(20, 1)
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Backtracking line search convergence

Theorem
Let f be L-smooth. Gradient descent with backtracking line search satisfies

|2 — a*|3
think

f(z*) — f(a*) <

where t,,;, = min{1, 5/L}

Proof almost identical to fixed step case

Remarks
- If 8 =~ 1, similar to optimal step-size (6/L vs 1/L)
» Still convergence rate O(1/¢) iterations (can be very slow!)



(GGradient descent issues



Slow convergence

Very dependent on scaling

f(z) = (21 + 20z3)/2
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Slow convergence
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Non-differentiability

Wolfe’s example

vy 23 |z <@

flz) = r1 + y|T2)
V147

‘$2| > I

Gradient descent with exact line search gets stuck at x = (0, 0)

In general: gradient descent cannot handle non-differentiable
functions and constraints 11



Subgradients



Gradients and epigraphs

For a convex differentiable function f, I.e.

f(y) > f(x) +Vf(z)" (y —x), Vy€cdomf

(Vf(x),—1) defines a supporting hyperplane
to epigraph of f at (z, f(x))

V()
_ —1

Y

(¢

t

X

f(x)

) <0, VY(y,t)cepif

epi f

(Vf(ai), _1)
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Subgradient

We say that g is a subgradient of function f at point z if

fly) > flx)+g" (y—=x), Yy

f(x2) + g3 (x — x2)

e

< f(w2) + g5 (x — o)
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Subgradient properties

g is a subgradient of f at x iff (¢, —1)
epi f supports epi f at (z, f(x))

g is a subgradient of f iff f(z) + ¢7 (y — )
IS a global underestimator of f

If fis convex and differentiable, V f(x) is

(93, —1) a subgradient of f at z

1, —1
S (g2, 1)
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(Sub)gradients and sublevel sets

g being a subgradient of f means f(y) > f(z) + g7 (y — x)

Therefore, if f(y) < f(x) (sublevel set), then ¢ (y — z) < 0.
L0
fly) < f(x)
L]
f differentiable at « 7
V f(x) is normal to the sublevel set {y | f(y) < f(z)} Vf(z1)

f nondifferentiable at x
subgradients define supporting hyperplane to sublevel set throgh «

16



Subdifferential

The subdifferential 0f(x) of f at x is the set of all subgradients

Of(x)={g|g" (y—=) < fly)— f(z), Yy € dom f}

Properties

» Of(x) is always closed and convex, also for nonconvex f.
(intersection of halfspaces)

- If f is convex and differentiable at x, then 0f(x) = {V f(z)}

- If fisconvexand 0f(x) = {g}, then f is differentiable at x and g = V f(x)

17



Example

Absolute value

18



Subgradient calculus



Subgradient calculus

Strong subgradient calculus
Formulas for finding the whole subdifferential 0 f(r) —— Hard

Weak subgradient calculus
Formulas for finding one subgradient g € 0f(x) —— > Easy

In practice, most algorithms require only one subgradient ¢ at point x

20



Basic rules

Nonnegative scaling: d(af) = adf with a > 0

Addition: 8(f1 + fg) — 8f1 + 8f2

Affine transformation: f(z) = h(Ax + b), then

Of(x) = A* Oh(Ax + b)

21



Basic rules

Pointwise maxima

Finite pointwise maximum f(x) = max f;(x), then

0f(x) = conv (U{@fi(:c) | fi(x) = f(a:)}) (convex hull of active functions)

General pointwise maximum (supremum) f(z) = max fs(x), then
SE

0f (v) 2 conv (| {0f.(@) | fo(@) = F(2)})

Note: Equality requires some regularity assumptions
(e.g. S compact and f, is continuous in s)

22



Example

Piecewise linear function

f(r) = max (a;-rm + b;)

1=1,....m

Subdifferential is a polyhedron
Of(x) =convia; |i € I(x)}

I(x) ={i|a; x +b; = f(x)}




Example

Norms
Given f(x) = ||z||, we can express it as

X — INlax ZT(E
H HP 9

Iz]lg<1

where ¢ such that 1/p 4+ 1/q = 1 defines the dual norm. Therefore,

Of(x) = argmax z' x

12lq<1
Example: f(z) =||z||1 = |\Iﬁ1a§1STx

=l <0 weak result
é)f(:c) = Ji X X J, where J;, = [—1, 1] r =0

1) 0 sign(x) € df(x) 5



Basic rules

Composition

Proof
fly) =h(f1(y), - [r(y))
> h(fi(x)+g1 (y—x),..., fe(z) + g; (v — 2))
> h(fr(x), .. fe(@) + " (gf (y—2),..., 9z (y — x))
= f(z)+g (y—x)




Optimality conditions




Fermat’s optimality condition

For a convex function f, then
™ IS a global minimizer if and only if

0€df(x™)

Proof
A subgradient ¢ = 0 means that, for all y

f(y) > f(z*) + 0" (y — 2%) = f(27)

Note differentiable case with 0f(z) = {V f(x)} 07



Example: piecewise linear function

Optimality condition
f(x) = max (a; x+ b;) - 0€0f(x) =conv{a; | aj x+b; = f(z)}

In other words, x> is optimal if and only if 3\ such that

A>0, 1"A=1, » Xa; =0
= T~ (0 € af(x))
where \; = 0 if a; * + b; < f(x*)
Same KKT optimality conditions as the primal-dual problems
minimize t maximize bT)\

subjectto Az +b < t1 subjectto A'A =0
A>0, 1TA=1 28



Constrained optimization

Indicator function
of a convex set

S

Constrained form Unconstrained form
minimize  f(x)

minimize T
subjectto xzeC inimize  f(z) + Zc(x)

29



Subgradient of indicator function

The subdifferential of the indicator
functon is the normal cone

0Zc(x) = Ne(o) )

where,

Ne(x)={g|g"(y—x) <0, forallye C}

Proof

By definition of subgradient g, Z(y) > Ze(z) + ¢* (y — x), Vy
ytC = Ic(y) =
yeC = 0>gqg (y—2x)

30



First-order optimality conditions from subdifferentials

f convex smooth,
C' convex

minimize f(x) + Zo(x)

Fermat’s optimality condition
0€0(f(z)+Zc(z))

— 0e€{Vf(x)} +Nc(z)
<~ —Vf(.il}) C Nc(aj)

Equivalent to
Vi) (y—2z)>0, VyeC
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Normal cone condition

Linear program example

minimize ¢z

subjectto Az <b

Recap from Lecture 8
Two active constraints at optimum: aipx* = by, aga:* = by
Optimal dual solution y satisfies:

Aly+¢c=0, y>0, y;=0fori##{1,2}
In other words, —c = a1y1 + asys With y1, 52 > 0

Normal cone to polyhedron
—c € Nyaz<n(2¥) = {A'y|y>0 and yi(a; z* —b;) =0} 32



Example: KKT of a quadratic program

minimize  (1/2)z? Pz + q''z
subjectto Az <b

—— minimize (1/2)z" Pz + ¢' = + Ly ap<pr (@)

Normal cone to polyhedron Proof: [Theorem 6.46, Variational Analysis,

G rad ient Rockafellar & Wets]
Vf(x) =Pz +q Niaz<py(@) ={A%y |y >0 and y;(a; z —b;) = 0}
First-order optimality condition KKT Optimality conditions
Pr+qg+ Aly=0
y >0
—Vf(ﬂf) = 8I{A£U§b} (Qj) — N{Amgb} (Qj) — Ar — b6 <0

yi(a;-rx—bi):O, i=1,...,m
33



Subgradient methods

Today, we learned to:

Analyze gradient descent with line search
Understand issues with gradient descent
Define subgradients

Apply subgradient calculus

Derive optimality conditions from subgradients
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Next lecture

* Subrgradient method

 Proximal algorithms
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