ORF522 – Linear and Nonlinear Optimization

12. Subgradients

Today's lecture

[Chapter 3 and 8, FMO][ee364b][Chapter 1 LSCO][Chapter 3, ILCO]

Gradient descent

Line search

Subgradients

- Geometric definitions
- Subgradients
- Subgradient calculus
- Optimality conditions based on subgradients

Line search

Exact line search

Choose the best step along the descent direction

$$t_k = \underset{t>0}{\operatorname{argmin}} f(x^k - t\nabla f(x^k))$$

Used when

- computational cost very low or
- there exist closed-form solutions

In general, impractical to perform exactly

Backtracking line search

Condition

Armijo condition: for some $0 < \alpha \le 1/2$

$$f(x^k + td^k) < f(x^k) + \alpha t \nabla f(x^k)^T d^k$$

where $d^k = -\nabla f(x^k)$

$$f(x^k - t\nabla f(x^k)) < f(x^k) - \alpha t \|\nabla f(x^k)\|_2^2$$

Guarantees
sufficient decrease
in objective value

Backtracking line search

Iterations

initialization

$$t = 1, \quad 0 < \alpha \le 1/2, \quad 0 < \beta < 1$$
 while $f(x^k - t\nabla f(x^k)) > f(x^k) - \alpha t \|\nabla f(x^k)\|_2^2$

$$t \leftarrow \beta t$$

Backtracking line search

$$f(x) = (x_1^2 + 20x_2^2)/2$$

$$x^0 = (20, 1)$$

Backtracking line search

Converges in 31 iterations

Backtracking line search convergence

Theorem

Let f be L-smooth. Gradient descent with backtracking line search satisfies

$$f(x^k) - f(x^*) \le \frac{\|x^0 - x^*\|_2^2}{2t_{\min}k}$$

where $t_{\min} = \min\{1, \beta/L\}$

Proof almost identical to fixed step case

Remarks

- If etapprox 1, similar to optimal step-size (eta/L vs 1/L)
- Still convergence rate $O(1/\epsilon)$ iterations (can be very slow!)

Gradient descent issues

Slow convergence

Very dependent on scaling

$$f(x) = (x_1^2 + 20x_2^2)/2$$

$$f(x) = (x_1^2 + 2x_2^2)/2$$

Faster

Non-differentiability

Wolfe's example

$$f(x) = \begin{cases} \sqrt{x_1^2 + \gamma x_2^2} & |x_2| \le x_1 \\ \frac{x_1 + \gamma |x_2|}{\sqrt{1 + \gamma}} & |x_2| > x_1 \end{cases}$$

Gradient descent with exact line search gets stuck at x = (0,0)

In general: gradient descent cannot handle non-differentiable functions and constraints

Subgradients

Gradients and epigraphs

For a convex differentiable function f, i.e.

$$f(y) \ge f(x) + \nabla f(x)^T (y - x), \quad \forall y \in \mathbf{dom} f$$

 $(\nabla f(x), -1)$ defines a supporting hyperplane to epigraph of f at (x, f(x))

$$\begin{bmatrix} \nabla f(x) \\ -1 \end{bmatrix}^T \left(\begin{bmatrix} y \\ t \end{bmatrix} - \begin{bmatrix} x \\ f(x) \end{bmatrix} \right) \le 0, \quad \forall (y, t) \in \mathbf{epi} f$$

Subgradient

We say that g is a **subgradient** of function f at point x if

$$f(y) \ge f(x) + g^T(y - x), \quad \forall y$$

Subgradient properties

g is a subgradient of f at x iff (g, -1) supports $\operatorname{epi} f$ at (x, f(x))

g is a subgradient of f iff $f(x) + g^T(y - x)$ is a global underestimator of f

If f is convex and differentiable, $\nabla f(x)$ is a subgradient of f at x

(Sub)gradients and sublevel sets

g being a subgradient of f means $f(y) \geq f(x) + g^T(y-x)$

Therefore, if $f(y) \le f(x)$ (sublevel set), then $g^T(y-x) \le 0$.

f differentiable at x

 $\nabla f(x)$ is normal to the sublevel set $\{y \mid f(y) \leq f(x)\}$

f nondifferentiable at x subgradients define supporting hyperplane to sublevel set through x

Subdifferential

The subdifferential $\partial f(x)$ of f at x is the set of all subgradients

$$\partial f(x) = \{g \mid g^T(y - x) \le f(y) - f(x), \quad \forall y \in \mathbf{dom} f\}$$

Properties

- $\partial f(x)$ is always closed and convex, also for nonconvex f. (intersection of halfspaces)
- If f is convex and differentiable at x, then $\partial f(x) = \{\nabla f(x)\}$
- If f is convex and $\partial f(x) = \{g\}$, then f is differentiable at x and $g = \nabla f(x)$

Example

Absolute value

$$f(x) = |x|$$

$$\partial f(x) = \begin{cases} \{-1\} & x < 0 \\ [-1, 1] & x = 0 \end{cases} = \begin{cases} \mathbf{sign}(x) & x \neq 0 \\ [-1, 1] & x = 0 \end{cases}$$

Subgradient calculus

Subgradient calculus

Strong subgradient calculus

Formulas for finding the whole subdifferential $\partial f(x)$ ———— Hard

Weak subgradient calculus

Formulas for finding *one* subgradient $g \in \partial f(x)$ ———— Easy

In practice, most algorithms require only one subgradient g at point x

Basic rules

Nonnegative scaling: $\partial(\alpha f) = \alpha \partial f$ with $\alpha > 0$

Addition: $\partial (f_1 + f_2) = \partial f_1 + \partial f_2$

Affine transformation: f(x) = h(Ax + b), then

$$\partial f(x) = A^T \partial h(Ax + b)$$

Basic rules

Pointwise maxima

Finite pointwise maximum $f(x) = \max_{i=1,...,m} f_i(x)$, then

$$\partial f(x) = \mathbf{conv}\left(\bigcup\{\partial f_i(x) \mid f_i(x) = f(x)\}\right)$$
 (convex hull of active functions)

General pointwise maximum (supremum) $f(x) = \max_{s \in S} f_s(x)$, then

$$\partial f(x) \supseteq \mathbf{conv} \left(\bigcup \{ \partial f_s(x) \mid f_s(x) = f(x) \} \right)$$

Note: Equality requires some regularity assumptions (e.g. S compact and f_s is continuous in s)

Example

Piecewise linear function

$$f(x) = \max_{i=1,...,m} (a_i^T x + b_i)$$

Subdifferential is a polyhedron

$$\partial f(x) = \mathbf{conv}\{a_i \mid i \in I(x)\}$$

$$I(x) = \{i \mid a_i^T x + b_i = f(x)\}$$

Example

Norms

Given $f(x) = ||x||_p$ we can express it as

$$||x||_p = \max_{\|z\|_q \le 1} z^T x,$$

where q such that 1/p + 1/q = 1 defines the dual norm. Therefore,

$$\partial f(x) = \underset{\|z\|_q \le 1}{\operatorname{argmax}} z^T x$$

Example:
$$f(x) = ||x||_1 = \max_{\|s\|_{\infty} \le 1} s^T x$$

$$\partial f(x) = J_1 \times \dots \times J_n$$
 where $J_i = \begin{cases} \{-1\} & x < 0 \\ [-1,1] & x = 0 \\ \{1\} & x > 0 \end{cases}$

weak result

$$\mathbf{sign}(x) \in \partial f(x)$$

Basic rules

Composition

 $f(x) = h(f_1(x), \dots, f_k(x)), \quad h \text{ convex nondecreasing, } f_i \text{ convex}$

$$g = q_1 g_1 + \dots + q_k g_k \in \partial f(x)$$

where
$$q \in \partial h(f_1(x), \dots, f_k(x))$$
 and $g_i \in \partial f_i(x)$

Proof

$$f(y) = h(f_1(y), \dots, f_k(y))$$

$$\geq h(f_1(x) + g_1^T(y - x), \dots, f_k(x) + g_k^T(y - x))$$

$$\geq h(f_1(x), \dots, f_k(x)) + q^T(g_1^T(y - x), \dots, g_k^T(y - x))$$

$$= f(x) + g^T(y - x)$$

Optimality conditions

Fermat's optimality condition

For a convex function f, then x^* is a global minimizer if and only if

$$0 \in \partial f(x^*)$$

Proof

A subgradient g = 0 means that, for all y

$$f(y) \ge f(x^*) + 0^T (y - x^*) = f(x^*)$$

Note differentiable case with $\partial f(x) = \{\nabla f(x)\}$

Example: piecewise linear function

Optimality condition

$$f(x) = \max_{i=1,...,m} (a_i^T x + b_i)$$
 $0 \in \partial f(x) = \mathbf{conv}\{a_i \mid a_i^T x + b_i = f(x)\}$

In other words, x^* is optimal if and only if $\exists \lambda$ such that

$$\lambda \geq 0, \quad \mathbf{1}^T \lambda = 1, \quad \sum_{i=1}^m \lambda_i a_i = 0$$
 where $\lambda_i = 0$ if $a_i^T x^\star + b_i < f(x^\star)$

Same KKT optimality conditions as the primal-dual problems

$$\begin{array}{ll} \text{minimize} & t \\ \text{subject to} & Ax+b \leq t\mathbf{1} \end{array}$$

$$\begin{array}{ll} \text{maximize} & b^T \lambda \\ \text{subject to} & A^T \lambda = 0 \\ & \lambda \geq 0, \quad \mathbf{1}^T \lambda = 1 \end{array}$$

Constrained optimization

Indicator function

of a convex set

$$\mathcal{I}_C(x) = \begin{cases} 0 & x \in C \\ \infty & x \notin C \end{cases}$$

Constrained form

 $\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in C \end{array}$

Unconstrained form

minimize $f(x) + \mathcal{I}_C(x)$

Subgradient of indicator function

 $\mathcal{N}_C(x)$

The subdifferential of the indicator function is the normal cone

$$\partial \mathcal{I}_C(x) = \mathcal{N}_C(x)$$

where,

$$\mathcal{N}_C(x) = \left\{ g \mid g^T(y - x) \le 0, \text{ for all } y \in C \right\}$$

By definition of subgradient g, $\mathcal{I}_C(y) \geq \mathcal{I}_C(x) + g^T(y-x)$, $\forall x \in \mathcal{I}_C(x)$

$$y \notin C \implies \mathcal{I}_C(y) = \infty$$

$$y \in C \implies 0 \ge g^T(y - x)$$

First-order optimality conditions from subdifferentials

minimize
$$f(x) + \mathcal{I}_C(x)$$

f convex smooth, C convex

Fermat's optimality condition

$$0 \in \partial(f(x) + \mathcal{I}_C(x))$$

$$\iff 0 \in \{\nabla f(x)\} + \mathcal{N}_C(x)$$

$$\iff -\nabla f(x) \in \mathcal{N}_C(x)$$

Equivalent to

$$\nabla f(x)^T (y - x) \ge 0, \quad \forall y \in C$$

Normal cone condition

Linear program example

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$

Recap from Lecture 8

Two active constraints at optimum: $a_1^T x^* = b_1$, $a_2^T x^* = b_2$ Optimal dual solution y satisfies:

$$A^T y + c = 0, \quad y \ge 0, \quad y_i = 0 \text{ for } i \ne \{1, 2\}$$

In other words, $-c = a_1y_1 + a_2y_2$ with $y_1, y_2 \ge 0$

Normal cone to polyhedron

$$-c \in \mathcal{N}_{\{Ax < b\}}(x^*) = \{A^T y \mid y \ge 0 \text{ and } y_i(a_i^T x^* - b_i) = 0\}$$

Example: KKT of a quadratic program

Gradient

$$\nabla f(x) = Px + q$$

Normal cone to polyhedron Proof: [Theorem 6.46, Variational Analysis,

$$\mathcal{N}_{\{Ax < b\}}(x) = \{A^T y \mid y \ge 0 \text{ and } y_i(a_i^T x - b_i) = 0\}$$

First-order optimality condition

$-\nabla f(x) \in \partial \mathcal{I}_{\{Ax < b\}}(x) = \mathcal{N}_{\{Ax < b\}}(x)$

KKT Optimality conditions

$$Px + q + A^{T}y = 0$$

$$y \ge 0$$

$$Ax - b \le 0$$

$$y_{i}(a_{i}^{T}x - b_{i}) = 0, \quad i = 1, ..., m$$

Rockafellar & Wets]

Subgradient methods

Today, we learned to:

- Analyze gradient descent with line search
- Understand issues with gradient descent
- Define subgradients
- Apply subgradient calculus
- Derive optimality conditions from subgradients

Next lecture

- Subrgradient method
- Proximal algorithms