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Today'’s lecture
[Chapter 2 and 12, NO][Chapter 4 and 5, CO]

Optimality conditions for nonlinear optimization
 Unconstrained optimization
e Constrained optimization (KKT conditions)

* Duality



Unconstrained optimization



First-order necessary conditions

Fermat’s Theorem

Theorem
If £* Is a local optimizer for the continuously differentiable function f, then

Vix®) =0



First-order necessary condition

Proof (contraposition)

Assume that V f(x*) # 0. Define d = —V f(2*). Then,
Vi) d=—[|Vf(z)|* <0

Then, by Taylor approximation
f(z* +td) = f(z*) +tV f(z*)" d + o(t)

With small enough ¢, we can find y = 2™ + td in the neighborhood of =* such
that fly) < f(z™)
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First-order necessary condition Is not sufficient

f(x) =102%(1 — 2)* — x

Vf(z)=40z> — 60x* + 202 — 1
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Second-order necessary condition

Theorem
If £* Is a local optimizer for the continuously differentiable function f, then

Vf(z*)=0 and VZ*f(z*) > 0 (positive semidefinite)

Proof
If Vf(x*) =0, then the second-order approximation is

flz* +td) = f(z*) + 1T d + t2(1/2)dT V2 f(2*)d + o(t?)
= f(x ) +t2(1/2)d" V* f(2*)d + o(t?)

To have a local minimum d* V2 f(2*)d > 0 for any d o



Example fixed
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Second-order necessary condition is not sufficient

- / Cubic function
o f(z) = o
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Second-order sufficient condition

Theorem
Let f be a continuously differentiable function. If ™ satisfies

Vf(z*) =0 and VZf(z*) >0

then 2™ is a local minimum of f

Proof
If V2 f(2*) = 0, then 3\ > 0 such that d” V2 f(z*)d > \||d||3

Then, if Vf(x*) = 0, in a neighborhood of z* we have
f(a* +td) = f(z*) +1°(1/2)d" V* f(z*)d + o(t*) > f(z")

for any d
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Examples

Cubic function

_ .3 2 _ 2 _ (does not satisfy
flw) =z Vi) =6 V7i(0) =0 sufficient condition)

Least-squares
flx)=||Az —b|| =2t AT Az — 227 AT b+ b'b —— V°f(z)=24"A4A

2AT A = 0if A is full rank
(linear independent columns in A)
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Constrained optimization



FFeasible direction
minimize  f(x)
subjectto xzeC

Given x € C, we call d a feasible direction at x if there exists ¢ > 0 such that
r+tde C, Vtel0,t]

F(x) is the set of all feasible directions at =

Examples 7

C={Ax=0b} — F(x)={d|Ad =0}
— {Az < b} :F(aj):{d\a;rdg() ifa;-ra;*:bi}
C = {gi(z) <0, (nonlinear)} = F(z)={d|Vgi(z)'d<0 ifg(z)=0}

13



Descent direction

Given continuously differentiable f, we call d a descent direction at « if there

exists ¢t such that
flz+td) < f(z), Vie|0,1]

D(x) is the set of all descent directions

Remark
For all descent directions d at + we have V f(z)1d < 0
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Necessary optimality condition idea

All feasible directions are not descent directions

There I1s no feasible descent direction

If £* Is a local optimum, then
Fz*)ND(z™) =0
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Nonlinear optimization with equality constraints

minimize  f(x)
subjectto Az =10

Theorem
If 2* is a local optimum, then 3y such that V f(z*) + ATy =0

Interpretation (perpendicular
Vf(z*) € range(A’) = null(A)- —— Vf(z*) L null(A) to
hyperplane)
Example: constrained least squares optimality conditions
minimize || Az — b||2 24TA COT| || [2470

subjectto Cx =d C 0 Y d 6




Proof of the theorem

;easilile 3"?:;3”(8)} K alternative 1 \ K alternative 2 \
De(:c):e;t{d'lectio—ns ' Ad=0 Jy such that
| *
_ T Vi) Td <0 Vi) + A"y =0
D(x) = {d | Vf(z)Td < 0} C U y
can’t be both true f Vi(a*)+Aly=0= Vf(z*)'d+y' Ad =0 (contradiction)
e both fa minimize  Vf(z*)'d maximize 0
n e DO alSe :
- subjectto Ad =0 subjectto Vf(z*)+ Aty =0
if alternative 1, then p* = —o0c = d* = —oo (dual infeasible)

if alternative 2, then p* =0 = d* = 0 (dual feasible)
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Necessary conditions for smooth nonlinear optimization

minimize  f(x)
subjectto g¢g;(x) <0, i=1,...,m (9;(x) nonlinear)

Linearly independence constraint qualification (LICQ)

Given x and the set of active constraints A(z) = {¢ | ¢g;(z) = 0}, we say that
LICQ holds if and only if

{Vg;(x), i€ A(x)} is linearly independent

Theorem
If * Is a local minimum and LICQ holds, then there exists y > 0 such that

Vfx™)+ Zyng@-(a:*) =0
i=1

Y;9i(x™) =0, i=1,...,m 18



Useful Lemma

Farkas lemmma variation

Given A, exactly one of the following statements is true

1. There exists an d with Ad < 0

2. There exists a u with ATuw =0, 11w =1,and u > 0

Proof

They cannot be both true. Ad <0 = u"' Ad < 0 (contradiction)

They cannot be both false
1is equivalentto Ad >0, ¢’'d < 0 with A =

_A 1_

By Farkas lemma (Lec 9) , we have the alternative

ATw = ¢, u >0, equivalent to 2.

,c=(0,...,0,1)and d = (—d, —¢)

B



Necessary conditions for smooth nonlinear optimization
Proof

Feasible directions Descent directions
F(z)={d| Vg (zx)'d <0, ic Ax)} D(z)={d| Vf(x)ld < 0}
Optimality condition Infeasible system

Ju > 0 suchthat Alu=0and 11u =1

Farkas lemma variation

Therefore, icA(z*)

u>0, 1'u= 20



Necessary conditions for smooth nonlinear optimization
Proof (continued)

If up =0,then »  u;Vg;(z*) = 0 (LICQ violated).
ieA(x*)

Hence, uo > 0. Let’s define y = u/ug, obtaining V f(z*) + Z y;Vgi(z*) =
1€ A(x)

Which can be rewritten as ~ V f(z*) + » 4 Vgi(z*) =0
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What happens if LICQ fails?

. . . 2.00
minimize  —x-

subjectto  x; — 2(1 — x9)° <0
—L1 — 2(1 — 562)3 S 0
xr > 0

1.757
1.501

1.257

0.751

0.50-

r* = (0,1) 0.25

£'1.00- Vga(x™) -

00— 15 —10

0.5

0.5

1.0

1.5

2.0

22




KKT necessary conditions for nonlinear optimization
minimize  f(x)
subjectto g¢g;(x) <0, 2=1,...,m
hi(x) =0, 1=1,...,p

Theorem
If * IS a local minimizer and LICQ holds, then there exists y*, v* such that
) + Z y; Vgi(z™) + Z v; V(2 stationarity
>0 dual feasibility
gi(z") <0, i=1,....,m | fensibilit
rimal feasibili
hi(CE‘*):O, izl,...,p p y
y:gi(z*) =0, 2=1,...,m complementary slackness
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Duality



p

*

Lagrangian dual function

= minimize  f(x)
. . L(x,y,v
subjectto g¢g;(x) <0, 71=1,...,m
hz(i):O 221, s P

Lower bound property

Forany y > 0and v, ¢(y,v) <

Proof. Let x be a feasible pomt Then,
q(y,v) = inf L(z,y,v) < +Zyzgz

*

—  g(y,v) <p

Lagrangian
p
_|_ Zyzgz T szhz(ib)
1=1

Lagrange dual function
q(y, z) = inf L(z,y,v)

p*

25



Dual problem and weak duality

primal problem

p* = minimize  f(x) p
subjectto g;(z) <0, i=1,....m  qy,2) =l f(z _I_Zyzgz )+ vihi(x)
hi(z) =0, i=1,...,p =

dual function

dual problem
(find best lower bound)

d* = maximize q(y, v) always convex optimization problem
subjectto y >0

(even when primal is not)

weak duality
(from lower bound property)

d* < p” 26



*

p* = minimize  f(x)

Strong duallty subjectto g;(x) i(()), i.: 1, ...

 Does not hold in general
When is p* = d*"? » (usually) holds for convex problems

* needs conditions
(constraint qualifications)

theorem
If the problem is convex and there exists at least a strictly feasible z, i.e.,

gi(x) <0, (forall affine g;)
gi(z) <0, (forall non-affine g;) Slater’s condition
hz(x):(), iZl,...,p

then p* = d* (strong duality holds)

remarks

o Slater’s condition implies that dual is not unbounded
* (Generalizes LP duality
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KKT necessary conditions revisited

minimize  f(x)
subjectto g;(x) <0, i=1,...,m
hi(x) =0, 1=1,...,p

Theorem
If * IS a local minimizer and strong duality holds, then dy*, v* such that
p - -
N ok o stationarity
+ZyZVg@ —|—Z th(x )—O (VxL(a:,y,v):O)

dual feasibility

. primal feasibility
, o1 =1,...,p

., 1=1,...,m complementary slackness
28

0
0, 2=1,...,m
0
0



KKT conditions for convex problems

minimize  f(x)
subjectto g¢g;(x) <0, 2=1,...,m
hz(CC):O, izl,...,p

f, g; convex
h; affine

conditions are also sufficient
If *, y*, v* satisfy KKT conditions for convex problem, then they are optimal.

Proof

m P
*\ * * * * *\ * koK from Complementary
- ; Z. .h’i/ _L ’
f(z*) = f(a )+Z§:1iy@g<x )+Z§:1ivz (%) = L(z*, y*v") slackness

Since L(x,y,v) isconvexinxand V. L(x*,y*,v*) =0 = q(y*,v*) =inf, L(x,y*,v*) = L(z*,y*,v*)

= p* = f(z¥) =q(y",v)=d" B
29



KKT remarks

History
* First appeared in publication by Kuhn and Tucker (1951)
* |t already existed in Karush’s unpublished master thesis (1939)

Unconstrained problems
They reduce to necessary first-order condition Vf(z) = 0

Strong duality
In general, we can replace LICQ assumption with strong duality

Convex problems

KKT conditions are always sufficient
If Slater condition holds, KKT conditions are necessary and sufficient
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Example: KKT conditions for convex QP

minimize  (1/2)z? Px + ¢«
subjectto Az =0
Cx <d

Lagrangian

L(z,y,v) = (1/2)z" Pxr +q¢' = +y' (Cx — d) +v' (Az — b) where y > 0

Stationarity condition

V.L(z,y,u)=Pr+q+C'y+A"v=0
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Example: KKT conditions for convex QP

minimize  (1/2)z? Px + ¢«
subjectto Az =0
Cx <d

KKT Optimality conditions

Px*+q+Cly*+AMv* =0 stationarity condition
y* >0 dual feasibility
Ar —b =0 _ o
Cor— d <0 primal feasibility

yi(c; ¥ —d;) =0, i=1,...,m complementary slackness
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Optimality conditions in nonlinear optimization

Today, we learned to:

* Prove optimality conditions for unconstrained optimization
« Compute feasible and descent directions

* Derive optimality conditions for constrained optimization

 Connect optimality conditions to duality theory
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Next lecture

* Optimization algorithms
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