ORF522 – Linear and Nonlinear Optimization

10. Optimality conditions for nonlinear optimization

Today's lecture[Chapter 2 and 12, NO][Chapter 4 and 5, CO]

Optimality conditions for nonlinear optimization

- Unconstrained optimization
- Constrained optimization (KKT conditions)
- Duality

Unconstrained optimization

First-order necessary conditions

Fermat's Theorem

Theorem

If x^* is a local optimizer for the continuously differentiable function f, then

$$\nabla f(x^{\star}) = 0$$

First-order necessary condition

Proof (contraposition)

Assume that $\nabla f(x^*) \neq 0$. Define $d = -\nabla f(x^*)$. Then,

$$\nabla f(x^*)^T d = -\|\nabla f(x^*)\|^2 < 0$$

Then, by Taylor approximation

$$f(x^* + td) = f(x^*) + t\nabla f(x^*)^T d + o(t)$$

With small enough t, we can find $y = x^* + td$ in the neighborhood of x^* such that $f(y) < f(x^*)$

First-order necessary condition is not sufficient

$$f(x) = 10x^2(1-x)^2 - x$$

$$\nabla f(x) = 40x^3 - 60x^2 + 20x - 1$$

Each local minimum/maximum satisfies

$$\nabla f(x) = 0$$

Second-order necessary condition

Theorem

If x^* is a local optimizer for the continuously differentiable function f, then

$$\nabla f(x^*) = 0$$
 and $\nabla^2 f(x^*) \succeq 0$ (positive semidefinite)

Proof

If $\nabla f(x^*) = 0$, then the second-order approximation is

$$f(x^* + td) = f(x^*) + t\nabla f(x^*)^T d + t^2(1/2)d^T \nabla^2 f(x^*)d + o(t^2)$$
$$= f(x^*) + t^2(1/2)d^T \nabla^2 f(x^*)d + o(t^2)$$

To have a local minimum $d^T \nabla^2 f(x^\star) d \geq 0$ for any d

Example fixed

$$f(x) = 10x^2(1-x)^2 - x$$

$$\nabla f(x) = 40x^3 - 60x^2 + 20x - 1$$

$$\nabla^2 f(x) = 120x^2 - 120x + 20$$

Are they sufficient as well?

Second-order necessary condition is not sufficient

not local minimum

Cubic function

$$f(x) = x^3$$

$$\nabla f(x) = 3x^2$$

Conditionssatisfied

$$\nabla f(0) = 0$$
$$\nabla^2 f(0) = 0 \succeq 0$$

Second-order sufficient condition

Theorem

Let f be a continuously differentiable function. If x^* satisfies

$$\nabla f(x^{\star}) = 0 \quad \text{and} \quad \nabla^2 f(x^{\star}) \succ 0$$

then x^{\star} is a local minimum of f

Proof

If $\nabla^2 f(x^\star) \succ 0$, then $\exists \lambda > 0$ such that $d^T \nabla^2 f(x^\star) d > \lambda \|d\|_2^2$

Then, if $\nabla f(x^*) = 0$, in a neighborhood of x^* we have

$$f(x^* + td) = f(x^*) + t^2(1/2)d^T \nabla^2 f(x^*)d + o(t^2) > f(x^*)$$

for any d

Examples

Cubic function

$$f(x) = x^3 \longrightarrow \nabla^2 f(x) = 6x \longrightarrow \nabla^2 f(0) = 0$$
 (does not satisfy sufficient condition)

Least-squares

$$f(x) = ||Ax - b|| = x^T A^T A x - 2x^T A^T b + b^T b \longrightarrow \nabla^2 f(x) = 2A^T A$$

 $2A^TA \succ 0$ if A is full rank (linear independent columns in A)

Constrained optimization

Feasible direction

minimize f(x)subject to $x \in C$

Given $x \in C$, we call d a feasible direction at x if there exists $\overline{t} > 0$ such that $x + td \in C, \quad \forall t \in [0, t]$

F(x) is the set of all feasible directions at x

Examples

$$C = \{Ax = b\} \implies F(x) = \{d \mid Ad = 0\}$$

$$C = \{Ax \le b\} \implies F(x) = \{d \mid a_i^T d \le 0 \text{ if } a_i^T x = b_i\}$$

$$C = \{g_i(x) \le 0, \text{ (nonlinear)}\} \implies F(x) = \{d \mid \nabla g_i(x)^T d < 0 \text{ if } g_i(x) = 0\}$$

if
$$g_i(x) = 0$$

Descent direction

Given continuously differentiable f, we call d a **descent direction** at x if there exists \bar{t} such that

$$f(x+td) < f(x), \quad \forall t \in [0, \overline{t}]$$

D(x) is the set of all descent directions

Remark

For all descent directions d at x we have $\nabla f(x)^T d < 0$

Necessary optimality condition idea

All feasible directions are not descent directions

There is no feasible descent direction

If x^* is a local optimum, then

$$F(x^{\star}) \cap D(x^{\star}) = \emptyset$$

Nonlinear optimization with equality constraints

minimize f(x)subject to Ax = b

Theorem

If x^* is a local optimum, then $\exists y$ such that $\nabla f(x^*) + A^T y = 0$

Interpretation

$$\nabla f(x^\star) \in \mathbf{range}(A^T) = \mathbf{null}(A)^\perp \longrightarrow \nabla f(x^\star) \perp \mathbf{null}(A)$$

(perpendicular to hyperplane)

Example: constrained least squares

optimality conditions

minimize
$$||Ax - b||_2^2$$
 subject to $Cx = d$

$$\begin{bmatrix} 2A^T A & C^T \\ C & 0 \end{bmatrix} \begin{bmatrix} x^* \\ y \end{bmatrix} = \begin{bmatrix} 2A^T b \\ d \end{bmatrix}$$

Proof of the theorem

Feasible directions

$$F(x) = \{d \mid Ad = 0\}$$

Descent directions

$$D(x) = \{d \mid \nabla f(x)^T d < 0\}$$

alternative 1

$$Ad = 0$$

$$\nabla f(x^{\star})^T d < 0$$

alternative 2

$$\exists y$$
 such that

$$\nabla f(x^*) + A^T y = 0$$

can't be both true

if
$$\nabla f(x^*) + A^T y = 0 \Longrightarrow \nabla f(x^*)^T d + y^T A d = 0$$
 (contradiction)

can't be both false

minimize
$$\nabla f(x^{\star})^T d$$
 subject to $Ad = 0$

subject to
$$\nabla f(x^*) + A^T y = 0$$

if alternative 1, then $p^{\star} = -\infty$ $\Rightarrow d^{\star} = -\infty$ (dual infeasible)

if alternative 2, then
$$p^* = 0 \implies d^* = 0$$
 (dual feasible)

Necessary conditions for smooth nonlinear optimization

minimize
$$f(x)$$
 subject to $g_i(x) \leq 0, \quad i=1,\ldots,m$ $(g_i(x) \text{ nonlinear})$

Linearly independence constraint qualification (LICQ)

Given x and the set of active constraints $A(x) = \{i \mid g_i(x) = 0\}$, we say that LICQ holds if and only if

$$\{\nabla g_i(x), i \in \mathcal{A}(x)\}$$
 is linearly independent

Theorem

If x^* is a local minimum and LICQ holds, then there exists $y \geq 0$ such that

$$\nabla f(x^*) + \sum_{i=1} y_i \nabla g_i(x^*) = 0$$

$$y_i g_i(x^*) = 0, \quad i = 1, \dots, m$$

Useful Lemma

Farkas lemma variation

Given A, exactly one of the following statements is true

- 1. There exists an d with Ad < 0
- 2. There exists a u with $A^T u = 0$, $\mathbf{1}^T u = 1$, and $u \geq 0$

Proof

They cannot be both true. $Ad < 0 \implies u^T Ad < 0$ (contradiction)

They cannot be both false

1 is equivalent to $\tilde{A}\tilde{d}\geq 0,\ c^T\tilde{d}<0$ with $\tilde{A}=\begin{bmatrix}A&\mathbf{1}\end{bmatrix}$, $c=(0,\ldots,0,1)$ and $\tilde{d}=(-d,-\epsilon)$

By Farkas lemma (Lec 9) , we have the alternative $\tilde{A}^T u = c, \ u \geq 0$, equivalent to 2.

Necessary conditions for smooth nonlinear optimization **Proof**

Feasible directions

$$F(x) = \{d \mid \nabla g_i(x)^T d < 0, \quad i \in \mathcal{A}(x)\}$$

$$D(x) = \{d \mid \nabla f(x)^T d < 0\}$$

Descent directions

$$D(x) = \{d \mid \nabla f(x)^T d < 0\}$$

Optimality condition Infeasible system

$$F(x) \cap D(x) = \emptyset \longrightarrow Ad < 0, \quad A = \begin{bmatrix} \nabla f(x) & \nabla g_{\mathcal{A}(x)_1}(x) & \dots & \nabla g_{\mathcal{A}(x)_n}(x) \end{bmatrix}^T$$

Farkas lemma variation \longrightarrow $\exists u \geq 0$ such that $A^T u = 0$ and $\mathbf{1}^T u = 1$

Therefore,

$$u_0 \nabla f(x^*) + \sum_{i \in \mathcal{A}(x^*)} u_i \nabla g_i(x^*) = 0$$

$$u \ge 0$$
, $\mathbf{1}^T u = 1$

Necessary conditions for smooth nonlinear optimization

Proof (continued)

$$u_0 \nabla f(x^*) + \sum_{i \in \mathcal{A}(x^*)} u_i \nabla g_i(x^*) = 0$$
$$u \ge 0, \quad \mathbf{1}^T u = 1$$

If
$$u_0 = 0$$
, then $\sum_{i \in \mathcal{A}(x^*)} u_i \nabla g_i(x^*) = 0$ (LICQ violated).

Hence, $u_0 > 0$. Let's define $y = u/u_0$, obtaining $\nabla f(x^*) + \sum y_i \nabla g_i(x^*) = 0$ $i \in \mathcal{A}(x)$

Which can be rewritten as $\nabla f(x^*) + \sum y_i \nabla g_i(x^*) = 0$ i=1

$$y_i g_i(x^*) = 0, \quad i = 1, \dots, m$$

What happens if LICQ fails?

minimize $-x_2$ subject to $x_1-2(1-x_2)^3 \leq 0$ $-x_1-2(1-x_2)^3 \leq 0$ $x \geq 0$

$$x^* = (0, 1)$$

KKT necessary conditions for nonlinear optimization

minimize
$$f(x)$$
 subject to $g_i(x) \leq 0, \quad i=1,\ldots,m$ $h_i(x)=0, \quad i=1,\ldots,p$

Theorem

If x^* is a local minimizer and LICQ holds, then there exists y^*, v^* such that

$$\nabla f(x^*) + \sum_{i=1}^{m} y_i^* \nabla g_i(x^*) + \sum_{i=1}^{p} v_i^* \nabla h_i(x^*) = 0$$

stationarity

$$y^{\star} \geq 0$$

dual feasibility

$$g_i(x^*) \le 0, \quad i = 1, ..., m$$

 $h_i(x^*) = 0, \quad i = 1, ..., p$

primal feasibility

$$h_i(x^*) = 0, \quad i =$$

$$g_i^* g_i(x^*) = 0, \quad i = 1, \dots, m$$

 $y_i^{\star}g_i(x^{\star})=0, \quad i=1,\ldots,m$ complementary slackness

Duality

Lagrangian dual function

$$p^{\star} = \begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & g_i(x) \leq 0, \quad i=1,\dots,m \\ & h_i(x)=0, \quad i=1,\dots,p \end{array} \qquad L(x,y,v) = f(x) + \sum_{i=1}^m y_i g_i(x) + \sum_{i=1}^p v_i h_i(x)$$

Lagrangian

$$L(x, y, v) = f(x) + \sum_{i=1}^{m} y_i g_i(x) + \sum_{i=1}^{p} v_i h_i(x)$$

Lagrange dual function

$$q(y,z) = \inf_{x} L(x,y,v)$$

Lower bound property

For any $y \ge 0$ and v, $q(y,v) \le p^*$

Proof. Let
$$\tilde{x}$$
 be a feasible point. Then,

$$q(y,v) = \inf_{x} L(x,y,v) \le f(\tilde{x}) + \sum_{i=1}^{m} y_i g_i(\tilde{x}) + \sum_{i=1}^{p} v_i h_i(\tilde{x}) \le f(\tilde{x})$$

$$< 0 \qquad = 0$$

$$\implies g(y,v) \leq p^*$$

Dual problem and weak duality

primal problem

$$p^{\star} = \text{ minimize } \qquad f(x)$$

$$\text{ subject to } \qquad g_i(x) \leq 0, \quad i = 1, \dots, m \qquad q(y, z) = \inf_x f(x) + \sum_{i=1}^m y_i g_i(x) + \sum_{i=1}^p v_i h_i(x)$$

$$h_i(x) = 0, \quad i = 1, \dots, p$$

dual problem

(find best lower bound)

$$d^{\star} = \max i g = q(y, v)$$
 subject to $y \geq 0$

always convex optimization problem (even when primal is not)

weak duality

(from lower bound property)

$$d^{\star} \leq p^{\star}$$

$$p^* = \text{minimize} \quad f(x)$$

subject to
$$g_i(x) \leq 0, \quad i = 1, \ldots, m$$

$$h_i(x) = 0, \quad i = 1, \dots, p$$

Strong duality

When is $p^* = d^*$?

- Does not hold in general
- (usually) holds for convex problems
- needs conditions (constraint qualifications)

theorem

If the problem is convex and there exists at least a strictly feasible x, i.e.,

$$g_i(x) \leq 0$$
, (for all affine g_i)

$$g_i(x) < 0$$
, (for all non-affine g_i)

Slater's condition

$$h_i(x) = 0, \quad i = 1, \dots, p$$

then $p^* = d^*$ (strong duality holds)

remarks

- Slater's condition implies that dual is not unbounded
- Generalizes LP duality

KKT necessary conditions revisited

minimize
$$f(x)$$
 subject to $g_i(x) \leq 0, \quad i=1,\ldots,m$ $h_i(x)=0, \quad i=1,\ldots,p$

Theorem

If x^* is a local minimizer and strong duality holds, then $\exists y^*, v^*$ such that

$$\nabla f(x^*) + \sum_{i=1}^{m} y_i^* \nabla g_i(x^*) + \sum_{i=1}^{p} v_i^* \nabla h_i(x^*) = 0$$

stationarity
$$(\nabla_x L(x, y, v) = 0)$$

$$y^{\star} \ge 0$$

$$a(x^{\star}) < 0$$

$$i=1,\ldots,m$$

$$g_i(x^*) \le 0, \quad i = 1, \dots, m$$

 $h_i(x^*) = 0, \quad i = 1, \dots, p$

$$y_i^{\star}g_i(x^{\star})=0, \quad i=1,\ldots,m$$
 complementary slackness

dual feasibility

primal feasibility

KKT conditions for convex problems

minimize
$$f(x)$$
 subject to $g_i(x) \leq 0, \quad i=1,\ldots,m$ $h_i(x)=0, \quad i=1,\ldots,p$ h_i affine

conditions are also sufficient

If x^*, y^*, v^* satisfy KKT conditions for convex problem, then they are optimal.

Proof

$$f(x^\star) = f(x^\star) + \sum_{i=1}^m y_i^\star g_i(x^\star) + \sum_{i=1}^p v_i^\star h_i(x^\star) = L(x^\star, y^\star v^\star) \qquad \text{from complementary slackness}$$

Since L(x,y,v) is convex in x and $\nabla_x L(x^\star,y^\star,v^\star)=0 \Rightarrow q(y^\star,v^\star)=\inf_x L(x,y^\star,v^\star)=L(x^\star,y^\star,v^\star)$

$$\Rightarrow p^{\star} = f(x^{\star}) = q(y^{\star}, v^{\star}) = d^{\star} \quad \blacksquare$$

KKT remarks

History

- First appeared in publication by Kuhn and Tucker (1951)
- It already existed in Karush's unpublished master thesis (1939)

Unconstrained problems

They reduce to necessary first-order condition $\nabla f(x) = 0$

Strong duality

In general, we can replace LICQ assumption with strong duality

Convex problems

KKT conditions are always **sufficient**If Slater condition holds, KKT conditions are **necessary and sufficient**

Example: KKT conditions for convex QP

minimize
$$(1/2)x^TPx + q^Tx$$
 subject to
$$Ax = b$$

$$Cx < d$$

Lagrangian

$$L(x, y, v) = (1/2)x^{T}Px + q^{T}x + y^{T}(Cx - d) + v^{T}(Ax - b)$$
 where $y \ge 0$

Stationarity condition

$$\nabla_x L(x, y, u) = Px + q + C^T y + A^T v = 0$$

Example: KKT conditions for convex QP

minimize
$$(1/2)x^TPx + q^Tx$$
 subject to
$$Ax = b$$

$$Cx \leq d$$

KKT Optimality conditions

$$Px^\star + q + C^Ty^\star + A^Tv^\star = 0$$
 stationarity condition
$$y^\star \geq 0$$
 dual feasibility
$$Ax - b = 0 \\ Cx - d \leq 0$$
 primal feasibility
$$y_i(c_i^Tx^\star - d_i) = 0, \quad i = 1, \dots, m$$
 complementary slackness

Optimality conditions in nonlinear optimization

Today, we learned to:

- Prove optimality conditions for unconstrained optimization
- Compute feasible and descent directions
- Derive optimality conditions for constrained optimization
- Connect optimality conditions to duality theory

Next lecture

Optimization algorithms