## **ORF522 – Linear and Nonlinear Optimization**

9. Introduction to nonlinear optimization

## Today's lecture

[Chapter 2-4 and 6, CO][Chapter 1, LSCOMO][Chapter A and B, FCA]

- Nonlinear optimization
- Convex analysis review: sets and functions
- Convex optimization

## What if the problem is no longer linear?

## Nonlinear optimization

minimize 
$$f(x)$$
 subject to  $g_i(x) \leq 0, \quad i = 1, \dots, m$ 

$$x = (x_1, \dots, x_n)$$
 Variables

$$f: \mathbf{R}^n \to \mathbf{R}$$
 Nonlinear objective function

$$g_i: \mathbf{R}^n \to \mathbf{R}$$
 Nonlinear constraints functions

#### Feasible set

$$C = \{x \mid g_i(x) \le 0, \quad i = 1, \dots, m\}$$

## Small example

minimize  $0.5x_1^2 + 0.25x_2^2$  subject to  $e^{x_1} - 2 - x_2 \le 0$   $(x_1 - 1)^2 + x_2 - 3 \le 0$   $x_1 \ge 0$   $x_2 \ge 1$ 



## Contour plot has curves (no longer lines)

Feasible set is no longer a polyhedron

## Integer optimization

### It's still nonlinear optimization

minimize f(x) subject to  $x \in \mathbf{Z}$ 



minimize f(x) subject to  $\sin(\pi x) = 0$ 



## Portfolio optimization

We have a total of n assets

 $x_i$  is fraction of money invested in asset i  $p_i$  is the relative price change of asset i  $p^T x$ 

p random variable: mean  $\mu$ , covariance  $\Sigma$ 

#### Portfolio optimization



# We cannot solve most nonlinear optimization problems

## Convex analysis review Sets

## Convex set

#### **Definition**

For any  $x, y \in C$  and any  $\alpha \in [0, 1]$ 



Convex

#### **Examples**

- $\mathbf{R}^n$
- Hyperplanes
- Hyperspheres
- Polyhedra





Not convex

#### **Examples**

- Cardinality constraint  $card(x) \le k$
- $\mathbf{Z}^n$
- Any disjoint set

intersection of convex sets is convex

## Convex combinations

#### **Convex combination**

 $\alpha_1 x_1 + \cdots + \alpha_k x_k$  for any  $x_1, \ldots, x_k$  and  $\alpha_1, \ldots, \alpha_k$  such that  $\alpha_i \ge 0$ ,  $\sum_{i=1}^k \alpha_i = 1$ 

#### **Convex hull**

$$\operatorname{conv} C = \left\{ \sum_{i=1}^k \alpha_i x_i \mid x_i \in C, \quad \alpha_i \ge 0, \quad i = 1, \dots, k, \quad \mathbf{1}^T \alpha = 1 \right\}$$





## Cones

Cone 
$$x \in C \implies tx \in C$$
 for all  $t \ge 0$ 

Convex cone (a cone that is also convex)

$$x_1, x_2 \in C \implies t_1 x_1 + t_2 x_2 \in C \text{ for all } t_1, t_2 \ge 0$$



#### **Examples**

Nonnegative orthant  $\mathbf{R}_{+}^{n} = \{x \in \mathbf{R}^{n} \mid x \geq 0\}$ 

Norm-cone  $\{(x,t) \mid ||x|| \le t\}$  (if 2-norm, second-order cone)

Positive semidefinite cone  $\mathbf{S}^n_+ = \{X \in \mathbf{S}^n \mid z^T X z \geq 0, \text{ for all } z \in \mathbf{R}^n\}$ 

### Conic combinations

#### **Conic combination**

 $\alpha_1 x_1 + \cdots + \alpha_k x_k$  for any  $x_1, \ldots, x_k$  and  $\alpha_1, \ldots, \alpha_k$  such that  $\alpha_i \geq 0$ 

$$\left\{ \sum_{i=1}^{k} \alpha_i x_i \mid x_i \in C, \quad \alpha_i \ge 0, \quad i = 1, \dots, k \right\}$$





## Supporting hyperplanes

Given a set C point x at the boundary of C a hyperplane  $\{z \mid a^Tz=a^Tx\}$  is a supporting hyperplane if

$$a^T(y-x) \le 0, \quad \forall y \in C$$



## Normal cone

For any set C and point  $x \in C$ , we define



 $\mathcal{N}_C(x)$  is always convex

Proof For  $g_1, g_2 \in \mathcal{N}_C(x)$ ,

$$(t_1g_1 + t_2g_2)^T(y - x) = t_1g_1^T(y - x) + t_2g_2^T(y - x) \le 0$$

for all  $t_1, t_2 \geq 0$ 

How does it relate to supporting hyperplanes?

## Convex analysis review Functions

## Convex functions

Extended-value functions map  ${f R}^n$  to the extended real line  ${f R} \cup \{\pm \infty\}$ 

Effective domain of f: dom  $f = \{x \in \mathbf{R}^n \mid f(x) < \infty\}$ 

#### **Convex function**

For every  $x, y \in \mathbf{R}^n$ ,  $\alpha \in [0, 1]$ 

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y)$$



#### **Concave function**

f is concave if and only if -f is convex

## Gradient

#### **Derivative**

If  $f(x): \mathbf{R}^n \to \mathbf{R}^m$  continuously differentiable, we define

$$Df(x)_{ij} = \frac{\partial f_i(x)}{\partial x_j}, \quad i = 1, \dots, m, \quad j = 1, \dots, n$$

#### Gradient

If  $f: \mathbf{R}^n \to \mathbf{R}$ , we define

$$\nabla f(x) = Df(x)^T$$

#### **Example**

$$f(x) = (1/2)x^T P x + q^T x$$
$$\nabla f(x) = P x + q$$

#### First-order approximation

$$f(y) \approx f(x) + \nabla f(x)^T (y - x)$$
 (affine function of  $y$ )

## Hessian

#### Hessian matrix (second derivative)

If  $f(x): \mathbf{R}^n \to \mathbf{R}$  second-order differentiable, we define

$$\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}, \quad i, j = 1, \dots, n$$

#### **Example**

$$f(x) = (1/2)x^T P x + q^T x$$
$$\nabla^2 f(x) = P$$

#### Second-order approximation

$$f(y) \approx f(x) + \nabla f(x)^T (y-x) + (1/2)(y-x)^T \nabla^2 f(x)(y-x)$$
 (quadratic function of  $y$ )

## Convex conditions

#### First-order

Let f be a continuous differentiable function, then it is convex if and only if dom f is convex and

$$f(y) \ge f(x) + \nabla f(x)^T (y - x)$$

for all  $x, y \in \mathbf{dom} f$ 

#### Second-order

If f is twice differentiable, then f is convex if and only if dom f is convex and

$$\nabla^2 f(x) \succeq 0$$

for all  $x \in \mathbf{dom} f$ 



f(y)

## Convex domain requirement

$$f(x) = 1/x^2$$

$$\mathbf{dom} f = \{ x \in \mathbf{R} \mid x \neq 0 \}$$

 $\nabla^2 f(x) > 0$  for all  $x \in \mathbf{dom} f$ 

Non convex!



## Function epigraph and sublevel sets

#### function epigraph

$$epi f = \{(x, t) \mid x \in dom f, f(x) \le t\}$$



#### sublevel sets

$$C_{\alpha} = \{ x \in \mathbf{dom} \, f \mid f(x) \le \alpha \}$$



## Closed convex proper functions

A function f is called **CCP** if it is

closed epi f is a closed set

**convex**  $f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y), \quad \alpha \in [0, 1]$ 

**proper**  $\operatorname{dom} f$  is nonempty and  $f = -\infty$  never

If not otherwise stated, we assume functions to be CCP

#### **Properties**

f is convex  $\iff$  epi f is convex

f is convex  $\Rightarrow C_{\alpha}$  is convex  $\forall \alpha$  (converse not true, e.g.,  $f(x) = -e^x$ )

For proper f, f is closed  $\iff$  all sublevel sets closed (f lower semicontinuous)

f is CCP  $\iff$  epi f is nonempty, closed, convex, without vertical line

23

## CCP function example

closed convex function

whether convex function f is closed depends on its behavior on the boundary of dom f



## Indicator functions

For  $C \subseteq \mathbb{R}^n$ , define the *indicator function* as

$$\mathcal{I}_C(x) = \begin{cases} 0 & x \in C \\ \infty & x \notin C \end{cases}$$

If C is convex, closed and nonempty, then  $\mathcal{I}_C$  is CCP

#### **Constrained form**

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in C \end{array}$$

#### **Unconstrained form**

minimize 
$$f(x) + \mathcal{I}_C(x)$$

## Convex optimization

## Convex optimization problems

minimize 
$$f(x)$$
 subject to  $g_i(x) \leq 0, \quad i = 1, \dots, m$ 

$$f: \mathbf{R}^n \to \mathbf{R}$$
 Convex objective function

$$g_i: \mathbf{R}^n \to \mathbf{R}$$
 Convex constraints functions

#### Convex feasible set

$$C = \{x \mid g_i(x) \le 0, \quad i = 1, \dots, m\}$$

## Verifying convexity

Basic definition (inequality)

First and second order conditions (gradient, hessian)

Convex calculus (directly construct convex functions)

- Library of basic functions that are convex/concave
- Calculus rules or transformations that preserve convexity

Easy!

Hard!

## Disciplined Convex Programming

#### Convexity by construction

#### General composition rule

 $h(f_1(x), f_2(x), \dots, f_k(x))$  is convex when h is convex and for each i

- h is nondecreasing in argument i and  $f_i$  is convex, or
- h is nonincreasing in argument i and  $f_i$  is concave, or
- $f_i$  is affine

Only sufficient condition

Check your functions at https://dcp.stanford.edu/

More details and examples in ORF523

## Modelling software for convex optimization

Modelling tools simplify the formulation of convex optimization problems

- Construct problems using library of basic functions
- Verify convexity by general composition rule
- Express the problem in input format required by a specific solver

#### **Examples**

- CVX, YALMIP (Matlab)
- CVXPY (Python)
- Convex.jl (Julia)

## Local vs global minima (optimizers)

$$\begin{array}{ll} \text{minimize} & f(x) \\ \text{subject to} & x \in C \end{array}$$

#### Local optimizer x

$$f(y) \geq f(x), \quad \forall y$$
 such that  $||x-y||_2 \leq R$ 



#### Global optimizer x

$$f(y) \ge f(x), \quad \forall y \in C$$

## Optimality and convexity

#### **Theorem**

For a convex optimization problem, any local minimum is a global minimum



## Optimality and convexity

#### **Proof (contradiction)**

Suppose that f is convex and x is a local (not global) minimum for f, i.e.,

$$f(y) \ge f(x)$$
,  $\forall y \text{ such that } ||x - y||_2 \le R$ .

Therefore, there exists a feasible z such that ||z - x|| > R and f(z) < f(x).

Consider 
$$y = (1 - \alpha)x + \alpha z$$
 with  $\alpha = \frac{R}{2\|z - x\|_2}$ .

Then,  $||y - x||_2 = \alpha ||z - x||_2 = R/2 < R$ , and by convexity of the feasible set, y is feasible.



By convexity of f we have  $f(y) \le (1 - \alpha)f(x) + \alpha f(z) < f(x)$ , which contradicts the local optimum definition.

Therefore, x is globally optimal.

"...in fact, the great watershed in optimization isn't between linearity and nonlinearity, but convexity and nonconvexity."

R. Tyrrell Rockafellar, in SIAM Review, 1993

## Introduction to nonlinear optimization

#### Today, we learned to:

- Define nonlinear optimization problems
- Understand convex analysis fundamentals (sets, cones, functions, and gradients)
- Verify convexity and construct convex optimization problems
- Understand the importance of convexity vs nonconvexity in optimization

## Next lecture

• Optimality conditions in nonlinear optimization