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Today'’s lecture
[Chapter 2-4 and 6, CO][Chapter 1, LSCOMO][Chapter A and B, FCA]

* Nonlinear optimization

 Convex analysis review: sets and functions

e Convex optimization



What if the problem is no longer linear?



Nonlinear optimization

minimize  f(x)
subjectto g¢g;(x) <0, i=1,...,m

r = (21,...,Z,) Variables
JR" =R Nonlinear objective function

gi - R" = R Nonlinear constraints functions

Feasible set
C=A{x]gi(x) <0, +1=1,...,m}



Small example

minimize  0.5x% + 0.25x3
subjectto et —2 —25 <0
(1 — 1)2 + 25 —3 <0
1 > 0
o > 1

Contour plot has curves
(no longer lines)

Feasible set is
no longer a polyhedron



Integer optimization

It’s still nonlinear optimization

minimize  f(x) L0
subjectto z € Z
0.9
N D W S0 W S W S Y G G
. n —0.97
minimize  f(x)
subject to sin(wx) =0 I,




Portfolio optimization

We have a total of n assets

x; IS fraction of money invested in asset ¢ Returns
p; 1S the relative price change of asset ¢ pla

p random variable: mean pu, covariance .

Portfolio optimization

maximize | plx — yal Sx+—Risk

7
Expected subjectto 1'z =1
return
z =0 Risk-aversion ,

parameter



We cannot solve most nonlinear
optimization problems




Convex analysis review
Sets



Convex set
Definition
Forany z,y € C' and any a € |0, 1]

Convex
Examples
° Rn
Intersection . H 'planes
of convex sets Is ype P
convex ° Hyperspheres

» Polyhedra

ar+ (1—a)yeC

Not convex

Examples

» Cardinality constraint card(z) < k
AL
* Any disjoint set
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Convex combinations

Convex combination

a1z1 + -+ agxy forany zq,...,z and aq, ..., such that o; > 0, 37 a; = 1

Convex hull

k
conVC’—{Zaia’;ixiEC, o, >0, 21=1,...,k, 1Ta—1}
i=1
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Cones

Cone 2€(C =— txecC forall ¢t>0

Convex cone (a cone that is also convex)
$1,LUQEC —>  t1x1 + toxo € C for all t1,t9 > 0

Examples

Nonnegative orthant R” = {z € R" | 2z > 0}

Norm-cone {(x,t)| ||x| <t} (if 2-norm, second-order cone)

Positive semidefinite cone S} ={X €S"| 2" Xz>0, forall zeR"}
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Conic combinations

Conic combination
oa1xr1 + - +agxg forany x4, ..., 2 and a4, ..., o such that a; > 0

Conic hull

k
{ZO@QZ‘@f@EC, a; > 0, Zl,,k}
1=1
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Supporting hyperplanes

Given a set (' point = at the boundary of C
a hyperplane {z | a’ z = a’ z} is a supporting hyperplane if

o' (y—x) <0, YyeC
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Normal cone

For any set C' and point x € ', we define

Ne(x)={g|g" (y—=z) <0, forallyeC}

N¢(z) is always convex
Proof For g1, g> € N¢o(x),

(t1g1 +t2g2)" (y —z) = t1gy (y — ) + tagy (y — ) <0 for all ¢1,t5 > 0

How does it relate to supporting hyperplanes??
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Convex analysis review
Functions



Convex functions

Extended-value functions map R’ to the extended real line R U {+o00}
Effective domainof f: dom f={x e R" | f(x) < oo}

Convex function
Forevery z,y € R", a € |0, 1]

flar + (1 —a)y) < af(z)+ (1 —a)f(y)

Concave function
f i1s concave if and only if — f Is convex
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Gradient

Derivative

If f(z): R™ — R™ continuously differentiable, we define
Df(x)ijzﬁg;(j), i=1...m j=1....n

Gradient Example

If f:R"™ — R, we define f(x)=(1/2)z" Px +q' z
Vf(z) = Df(x)" Vf(z) =Pz +q

First-order approximation

f(y) =~ f(x) +Vf(z) (y — )

(affine function of y)
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Hessian

Hessian matrix (second derivative)
If f(x): R™ — R second-order differentiable, we define

0* .
vzf(m)’b] — ax{a(ija 1,0 =1,...,n
Example
f(x)=(1/2)z" Pz +q'
Vf(z) =P

Second-order approximation

fly) = f(x) + V(@) (y— )+ (1/2)(y — 2)" V2 f(2)(y — )
(quadratic function of y)
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Convex conditions

First-order )

Let f be a continuous differentiable function, then
it is convex if and only if dom f is convex and

f(y) > f(x) + V()" (y — )

forall z,y € domf

Second-order
If f Is twice differentiable, then f is convex if

and only if dom f is convex and
Vi f(z) =0

forall x € domf

20



Convex domain requirement

10

f(z) = 1/a?

domf ={rxr e R |z # 0} o

V2f(x) > 0 forall z € domf

Non convex!

L
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Function epigraph and sublevel sets

function epigraph
epi f ={(z,t) |z € dom f, f(x) <t}

epi f

sublevel sets
Co ={x €dom f | f(x) < af
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Closed convex proper functions

A function f is called CCP if it is

closed epl f IS a closed set
If not otherwise

convex flax+ (1 —a)y) <af(x)+(1—a)f(y), ac|0,1] EERTEEIu:

functions to be CCP

proper dom f Is nonempty and f = —oo never

Properties

f Is convex <= epi f IS convex
f is convex = (', is convex Yo (converse not true, e.g., f(x) = —e”)

For proper f, f isclosed «<— all sublevel sets closed (f lower semicontinuous)

fis CCP «<— epi f is nonempty, closed, convex, without vertical line -



CCP function example

whether convex function f is closed depends on its behavior

on the boundary of dom f

AN |
|
|

|

|

|

|

|

AN J \

r S 7

closed convex function convex but not closed
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Indicator functions

For C' C R"™, define the indicator function as

S

If C' is convex, closed and nonempty, then Z- is CCP

Constrained form Unconstrained form
minimize  f(x)

minimize T
subjectto x € C f(2) +Zo(x)
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Convex optimization



Convex optimization problems

minimize  f(x)

subjectto g¢g;(x) <0, 2=1,...,m
f:R"—=R Convex obijective function
gi : R" = R Convex constraints functions

Convex feasible set
C={{x]gi(x) <0, i=1,...,m}
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Verifying convexity

Basic definition (inequality)

First and second order conditions (gradient, hessian)

Convex calculus (directly construct convex functions)

* Library of basic functions that are convex/concave
» (Calculus rules or transformations that preserve convexity

—_—

—_—

Hard!

Easy!
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Disciplined Convex Programming

Convexity by construction

General composition rule

h(fi(x), fa(x),..., fu(x)) is convex when h is convex and for each i
Only sufficient
* h IS nondecreasing in argument ¢ and f; IS convex, or condition
* h IS honincreasing in argument ¢ and f; IS concave, or
» f; Is affine

Check your functions at https://dcp.stanford. edu/
More details and examples in ORF523
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Modelling software for convex optimization

Modelling tools simplify the formulation of convex optimization problems
* Construct problems using library of basic functions
* Verify convexity by general composition rule

* EXpress the problem in input format required by a specific solver

Examples

o CVX, YALMIP (Matlab)
 CVXPY (Python)
e Convex.jl (Julia)
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Local vs global minima (optimizers)

minimize  f(x)
subjectto xz e C

Local optimizer «
f(y) > f(x), Yy Global optimizer x

such that ||z — y|[s < R fly) > f(z), VyeC

31



Optimality and convexity

Theorem

For a convex optimization problem, any local minimum is a global minimum

Global optimizer x
fly) = f(z), Vyel

Local optimizer «

fly) = f(z), Yy
such that ||z — y|ls < R
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Optimality and convexity
Proof (contradiction)

Suppose that f is convex and z is a local (not global) minimum for f, i.e.,
f(y) > f(z), Vysuchthat |z —y|2 < R.

Therefore, there exists a feasible z such that ||z — z|| > R and f(z) < f(x).

R
2|z — x||o R
Then, |ly — |2 = a|lz — 2| = R/2 < R, and
by convexity of the feasible set, vy is feasible.

Consider y = (1 — a)x + az with a =

Y

By convexity of f we have f(y) < (1 —a)f(z) + af(z) < f(x),
which contradicts the local optimum definition.

Therefore, z is globally optimal.
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"...In fact, the great watershed in optimization
Isn't between linearity and nonlinearity, but
convexity and nonconvexity."

R. Tyrrell Rockafellar, in SIAM Review, 1993
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Introduction to nonlinear optimization

Today, we learned to:
 Define nonlinear optimization problems

 Understand convex analysis fundamentals (sets, cones, functions, and
gradients)

* Verify convexity and construct convex optimization problems

 Understand the importance of convexity vs nonconvexity in optimization
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Next lecture

* Optimality conditions in nonlinear optimization
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