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Today’s agenda
Readings: [Chapter 4, LO][Chapter 11, LP]

* [wO-person zero-sum games
 Farkas lemma
 Adding new variables

e Sensitivity analysis



Two-person zero-sum games



Rock paper scissors

Rules
At count to three declare one of: Rock, Paper, or Scissors

Winners

|dentical selection is a draw, otherwise:
 Rock beats (“dulls”) scissors

e Scissors beats (“cuts”) paper
 Paper beats (“covers”) rock

Extremely popular: world RPS society, USA RPS league, etc.



Two-person zero-sum game

» Player 1 (P1) chooses a number i € {1,...,m} (one of m actions)
* Player 2 (P2) chooses a number j € {1,...,n} (one of n actions)

Two players make their choice independently

Rule Rock, Paper, Scissors
R P S ]
Player 1 pays A;; to player 2 R| O 1 -1
A e R™*" is the payoff matrix A=P|-1 0 1
S| 1 -1 0




Mixed (randomized) strategies

Deterministic strategies can be systematically defeated

Randomized strategies
* P1 chooses randomly according to distribution x:

x; = probablility that P1 selects action 2

» P2 chooses randomly according to distribution v:
y; = probabillity that P2 selects action j

Expected payoff (from P1 P2), if they use mixed-strategies x and v,

Z Z miyinj — QZ‘TAy

i=1 j=1



Mixed strategies and probability simplex

Probability simplex in R
P,={peR"[p>0, 17p=1}

Mixed strategy

For a game player, a mixed strategy is a distribution over all possible
deterministic strategies.

The set of all mixed strategies is the probability simplex — x € F,,, vy € P,



Optimal mixed strategies

P1: optimal strategy =* Is the solution of

minimize  max x" Ay minimize  max (ATz),
ye Py - j=1,....,n
subjectto x € P, subjectto  z € Py "\

Inner problem over
deterministic
strategies (vertices)

P2: optimal strategy y* is the solution of /
maximize xfg]ijﬂ r' Ay maximize min (Ay);
| ™ 1=1,....m

subjectto y € P, subjectto y € P,

Optimal strategies z* and y* can be computed using linear optimization



Minmax theorem

Theorem
max min ' Ay = min max z’ Ay
ye P, xeP,, ze P, ye P,
Proof
The optimal =* is the solution of The optimal y* is the solution of
minimize t maximize w
subjectto A'lz <t1 subjectto Ay > wl
11 =1 11y =1
x>0 y > 0

The two LPs are duals and by strong duality the equality follows. [ o



Nash equilibrium

Theorem

max min ' Ay = min max z’ Ay
ye P, xeP,, ze P, ye P,

Consequence

The pair of mixed strategies (z*, y*) attains the Nash equilibrium of the two-
person matrix game, i.e.,

vl Ay* > ot Ay* > o*T Ay, Vax € P, Yy € P,
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42 0 -3
A=|-2 —4 -3 3
-2 -3 4 1

minmax A4;; = 3 > —2 = maxmin 4,
() 9 9 ()

Optimal mixed strategies
r* = (0.37,0.33,0.3), y* = (0.4,0,0.13,0.47)

Expected payoff
o Ayt = 0.2



Farkas lemma



Feasibility of polyhedra

P={x|Ax=0b, x>0}

How to show that P is feasible?
Easy: we just need to provide an x € P, I.e., a certificate

How to show that P is infeasible?
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Farkas lemma

Theorem
Given A and b, exactly one of the following statements is true:

1. There existsan x with Ax = b, x > 0

2. There exists a y with ATy > 0, b''y < 0
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Farkas lemma

Geometric interpretation

1. First alternative
There exists an x with Az = b6, x > 0

n
b:ZZEfLAZ, CCZ'>O,Z.:1,...,TL
1=1

b IS In the cone generated by the
columns of A

2. Second alternative
There exists a y with A%y > 0, b1y < 0

ylA; >0, i=1,...,m, ylb <0

The hyperplane y! z = 0
separates b from Aq,..., A,
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Farkas lemma

There exists x with Az = b, > 0 OR There exists y with A7y > 0, bly < 0

Proof

1 and 2 cannot be both true (easy)

r>0,Ar=bandy' A > 0 — ylb =yl Az > 0

16



Farkas lemma
There exists = with Az =b, = > 0 OR There exists y with ATy >0, b'y < 0

Proof
1 and 2 cannot be both false (duality)

Primal Dual
minimize 0
subjectto Az =0

r > 0

maximize —bly
subjectto Aly >0

T Strong duality holds

y = 0 always feasible d* # —oco, p"=d"
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Farkas lemma
There exists = with Az =b, = > 0 OR There exists y with ATy >0, b'y < 0

Proof
1 and 2 cannot be both false (duality)

Primal Dual
minimize 0
subjectto Az =0

r > 0

maximize —b'y
subjectto Aly >0

Alternative 1: primal feasible p* = d* = 0

b1y > 0 for all y such that A*y > 0
18



Farkas lemma
There exists = with Az =b, = > 0 OR There exists y with ATy >0, b'y < 0

Proof
1 and 2 cannot be both false (duality)

Primal Dual
minimize 0

| maximize —bly
subjectto Az =0

subjectto Aly >0

r > 0
Alternative 2: primal infeasible p* = d* = +o¢
y IS an
There exists y such that Ay > 0and b'y < 0 infeasibility

certificate 19



Farkas lemma

Many variations

There exists x with Ax =b, x > 0
OR

There exists y with A7y > 0, bl'y < 0

There exists x with Ax < b, x > 0

OR
There exists y with A7y >0, bly <0, y > 0

There exists  with Ax < b

OR
There exists y with A7y =0, bly <0, y > 0
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Adding new variables



Adding new variables

minimize ¢’z minimize  c'x + cpp1Tnid
subjectto Arxr=b —> subjectto Ax+ A, 1Tn11 =0
xr > 0 Ly Ln+1 > 0

Solution x*, y*

Solution (z*,0), y* optimal for the new problem?
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Adding new variables

Optimality conditions

minimize ¢z 4+ cp12041
subjectto Ax + A, 117,41 =b ——— Solution (*,0) is still primal feasible
Ly L1 > 0

Is y* still dual feasible?

AZ+1?J* + Cny1 2= 0

Yes Otherwise

(x*,0) still optimal for new problem Primal simplex
23



Adding new variables

Example

minimize  —60x; — 3022 — 20x3 -profit

subjectto 8x; + 6x9 + x3 < 48 material

minimize
subject to

r* = (2,0,8,24,0,0),

dr1 + 229 + 1.523 <20  production
2x1 + 1.o22 + 0.523 < 8  quality control

r > 0
c = (—60, —-30,—-20,0,0,0)
clr 8 6 1 1 0 0
Axr = b A=14 2 15 0 1 0
x > 0 2 15 05 0 0 T

b = (48, 20, 8)

y* = (0,10,10), c'z* = —280, basis {1,3,4}
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minimize clz 4+ cp12041

SUbjeCt to Ax + An—l—lxn—l—l =%
Ly L1 > 0

Previous solution

Adding new variables

Example: add new product?

¢ = (—60, —30, —20,0,0,0, —15)

s 6 1 1 0 0 1
A=14 2 15 0 1 0 1

2 15 05 0 0 1 1
b = (48, 20, 8)

r* =(2,0,8,24,0,0), v*=(0,10,10), cla*= —280, basis{1,3,4}

Still optimal

AZ 1y* —|—Cn_|_1 =11 1 1 10
' 110

—10=952>0

Shall we add a
new product?
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Sensitivity analysis



Information from primal-dual solution

Goal: extract information from x*,y* about their sensitivity with respect to
changes in problem data

Modified LP
minimize ¢!z
subjectto Az =0+ u

r >0

Optimal cost p* (u)
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Global sensitivity

Dual of modified LP
maximize —(b+u)'y
subjectto ATy +c¢ >0

Global lower bound

Given y* a dual optimal solution for u = 0, then

p*(u) > —(b+u)"y*
=p*(0) —u'y*

It holds for any u

(from weak duality and
dual feasibility)
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Global sensitivity

Example

Take u = td with d € R™ fixed
minimize c¢lx
subjectto Ax =b+td

r > 0

p*(td) is the optimal value as a function of ¢

Sensitivity information (assuming d* y* > 0)

» ¢t < 0 the optimal value increases
* t > 0 the optimal value decreases (hot so much if ¢ is small)
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Optimal value function
p*(vw) =min{c' z | Az =b+u, x >0}

Assumption: p*(0) is finite

Properties
* p*(u) > —oo everywhere (from global lower bound)

* p*(u) is piecewise-linear on its domain
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Optimal value function is piecewise linear

Proof
Dual feasible set

p*(u) = min{c'z | Az =b+u, x> 0} D={y|A'y+c>0}

Assumption: p*(0) is finite

If p*(u) finite

X () — (b T, _ T —pT
pr(u) =max—(b+u)y = max —y,u-—b y

v1,...,Y, are the extreme points of D
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Local sensitivity

uw In neighborhood of the origin

Original LP Optimal solution
minimize ¢’z Primal ri=0, i¢B
subjectto Ar=6 ——m TR = Aélb

r >0 Dual y* = —Ag5" cp
Modified LP Modified dual
minimize ¢’z maximize —(b+u)"y
subjectto Az = b+ u subjectto ATy +c >0
x > 0

Modified optimal solution
rp(u) = A (b+u) = 2 + A5l u
y (u) =y

Optimal basis
does not change
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Derivative of the optimal value function

Modified optimal solution
v (u) = A (b+u) = 2% + Ag'u
y (u) =y

Optimal value function

p*(u) = ¢ z*(u)
=c'a* + cg ALl u

= p*(0) — y*Tu (affine for small u)

Local derivative

5’1?8 iu) — (y* are the shadow prices)
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Sensitivity example

minimize  —60x; — 3022 — 20x3 -profit
subjectto 8z + 6x2 + x3 < 48 material
dr1 + 220 + 1.523 < 20  production

221 + L.oxo + 0.023 <8 quality control
xr > 0

r* =(2,0,8,24,0,0), v*=(0,10,10), cla*= —280, basis{1,3,4}
What does y5; = 10 mean?

Let’s increase the quality control budget by 1, i.e., u = (0,0, 1)
p*(10) = p*(0) — y* 'u = —280 — 10 = —290
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Linear optimization duality

Today, we learned to:

* Interpret linear optimization duality using game theory

* Prove Farkas lemma using duality

 Understand how the solution changes if we add new variables to the problem

* Analyze sensitivity of the cost with respect to changes in the data
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Next lecture

* Nonlinear optimization

36



