ORF522 – Linear and Nonlinear Optimization

8. Linear optimization duality II

Today's agenda

Readings: [Chapter 4, LO][Chapter 11, LP]

- Two-person zero-sum games
- Farkas lemma
- Adding new variables
- Sensitivity analysis

Two-person zero-sum games

Rock paper scissors

Rules

At count to three declare one of: Rock, Paper, or Scissors

Winners

Identical selection is a draw, otherwise:

- Rock beats ("dulls") scissors
- Scissors beats ("cuts") paper
- Paper beats ("covers") rock

Extremely popular: world RPS society, USA RPS league, etc.

Two-person zero-sum game

- Player 1 (P1) chooses a number $i \in \{1, \ldots, m\}$ (one of m actions)
- Player 2 (P2) chooses a number $j \in \{1, \ldots, n\}$ (one of n actions)

Two players make their choice independently

Rule

Player 1 pays A_{ij} to player 2

 $A \in \mathbf{R}^{m \times n}$ is the payoff matrix

Rock, Paper, Scissors

Mixed (randomized) strategies

Deterministic strategies can be systematically defeated

Randomized strategies

- P1 chooses randomly according to distribution x: $x_i = \text{probability that P1 selects action } i$
- P2 chooses randomly according to distribution y: $y_i = probability that P2 selects action <math>j$

Expected payoff (from P1 P2), if they use mixed-strategies x and y,

$$\sum_{i=1}^{m} \sum_{j=1}^{n} x_i y_j A_{ij} = x^T A y$$

Mixed strategies and probability simplex

Probability simplex in \mathbf{R}^k

$$P_k = \{ p \in \mathbf{R}^k \mid p \ge 0, \quad \mathbf{1}^T p = 1 \}$$

Mixed strategy

For a game player, a mixed strategy is a distribution over all possible deterministic strategies.

The set of all mixed strategies is the probability simplex $\longrightarrow x \in P_m$, $y \in P_n$

Optimal mixed strategies

P1: optimal strategy x^* is the solution of

minimize $\max_{j=1,...,n} (A^T x)_j$

subject to $x \in P_m$

P2: optimal strategy y^* is the solution of

$$\begin{array}{ll} \text{maximize} & \min\limits_{x \in P_m} x^T A y \\ \text{subject to} & y \in P_n \end{array}$$

maximize

subject to

$$\min_{i=1,\dots,m} (Ay)_i$$

 $y \in P_n$

Optimal strategies x^* and y^* can be computed using linear optimization

Inner problem over

deterministic

strategies (vertices)

Minmax theorem

Theorem

$$\max_{y \in P_n} \min_{x \in P_m} x^T A y = \min_{x \in P_m} \max_{y \in P_n} x^T A y$$

Proof

The optimal x^* is the solution of

minimize t subject to $A^Tx \leq t\mathbf{1}$ $\mathbf{1}^Tx = 1$ $x \geq 0$

The optimal y^* is the solution of

maximize w subject to $Ay \geq w\mathbf{1}$ $\mathbf{1}^T y = 1$ $y \geq 0$

The two LPs are duals and by strong duality the equality follows.

Nash equilibrium

Theorem

$$\max_{y \in P_n} \min_{x \in P_m} x^T A y = \min_{x \in P_m} \max_{y \in P_n} x^T A y$$

Consequence

The pair of mixed strategies (x^*, y^*) attains the **Nash equilibrium** of the two-person matrix game, i.e.,

$$x^T A y^* \ge x^{*T} A y^* \ge x^{*T} A y, \quad \forall x \in P_m, \ \forall y \in P_n$$

Example

$$A = \begin{bmatrix} 4 & 2 & 0 & -3 \\ -2 & -4 & -3 & 3 \\ -2 & -3 & 4 & 1 \end{bmatrix}$$

$$\min_{i} \max_{j} A_{ij} = 3 > -2 = \max_{j} \min_{i} A_{ij}$$

Optimal mixed strategies

$$x^* = (0.37, 0.33, 0.3), \quad y^* = (0.4, 0, 0.13, 0.47)$$

Expected payoff

$$x^{\star T}Ay^{\star} = 0.2$$

Feasibility of polyhedra

$$P = \{x \mid Ax = b, \quad x \ge 0\}$$

How to show that P is **feasible**?

Easy: we just need to provide an $x \in P$, i.e., a certificate

How to show that P is **infeasible**?

Theorem

Given A and b, exactly one of the following statements is true:

- 1. There exists an x with Ax = b, $x \ge 0$
- 2. There exists a y with $A^Ty \ge 0$, $b^Ty < 0$

Geometric interpretation

1. First alternative

There exists an x with Ax = b, $x \ge 0$

$$b = \sum_{i=1}^{n} x_i A_i, \quad x_i \ge 0, \ i = 1, \dots, n$$

b is in the cone generated by the columns of $\cal A$

2. Second alternative

There exists a y with $A^Ty \ge 0$, $b^Ty < 0$

$$y^T A_i \ge 0, \quad i = 1, \dots, m, \qquad y^T b < 0$$

The hyperplane $y^Tz=0$ separates b from A_1,\ldots,A_n

There exists x with Ax = b, $x \ge 0$

OR

There exists y with $A^Ty \ge 0$, $b^Ty < 0$

Proof

1 and 2 cannot be both true (easy)

$$x \ge 0$$
, $Ax = b$ and $y^T A \ge 0$

$$y^T b = y^T A x \ge 0$$

There exists x with Ax = b, $x \ge 0$

OR

There exists y with $A^Ty \ge 0$, $b^Ty < 0$

Proof

1 and 2 cannot be both false (duality)

Primal

minimize 0

subject to Ax = b

 $x \ge 0$

Dual

 $\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y \geq 0 \end{array}$

y=0 always feasible

Strong duality holds

$$d^* \neq -\infty, \quad p^* = d^*$$

There exists x with Ax = b, $x \ge 0$

OR

There exists y with $A^Ty \ge 0$, $b^Ty < 0$

Proof

1 and 2 cannot be both false (duality)

Primal		Dual	
minimize subject to		maximize subject to	

Alternative 1: primal feasible $p^* = d^* = 0$

 $b^T y \ge 0$ for all y such that $A^T y \ge 0$

There exists x with Ax = b, $x \ge 0$

OR

There exists y with $A^Ty \ge 0$, $b^Ty < 0$

Proof

1 and 2 cannot be both false (duality)

Primal		Dual	
minimize subject to		maximize subject to	

Alternative 2: primal infeasible $p^* = d^* = +\infty$

There exists y such that $A^Ty \geq 0$ and $b^Ty < 0$

y is an infeasibility certificate

Many variations

There exists x with Ax = b, $x \ge 0$

OR

There exists y with $A^T y \ge 0$, $b^T y < 0$

There exists x with $Ax \leq b$, $x \geq 0$

OR

There exists y with $A^Ty \ge 0$, $b^Ty < 0$, $y \ge 0$

There exists x with $Ax \leq b$

OR

There exists y with $A^Ty=0,\ b^Ty<0,\ y\geq 0$

$$\begin{array}{lll} \text{minimize} & c^Tx & \text{minimize} & c^Tx + c_{n+1}x_{n+1} \\ \text{subject to} & Ax = b & \longrightarrow & \text{subject to} & Ax + A_{n+1}x_{n+1} = b \\ & x \geq 0 & & x, x_{n+1} \geq 0 \end{array}$$

Solution x^*, y^*

Solution $(x^*, 0), y^*$ optimal for the new problem?

Optimality conditions

Is y^* still dual feasible?

$$A_{n+1}^T y^* + c_{n+1} \ge 0$$

Yes Otherwise

 $(x^{\star},0)$ still **optimal** for new problem

Primal simplex

Example

minimize

$$-60x_1 - 30x_2 - 20x_3$$

subject to
$$8x_1 + 6x_2 + x_3 \le 48$$

$$4x_1 + 2x_2 + 1.5x_3 \le 20$$

$$2x_1 + 1.5x_2 + 0.5x_3 \le 8$$

-profit

material production quality control

$$x \ge 0$$

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x > 0 \end{array}$$

$$c = (-60, -30, -20, 0, 0, 0)$$

$$A = \begin{bmatrix} 8 & 6 & 1 & 1 & 0 & 0 \\ 4 & 2 & 1.5 & 0 & 1 & 0 \\ 2 & 1.5 & 0.5 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (48, 20, 8)$$

$$x^* = (2, 0, 8, 24, 0, 0), \quad y^* = (0, 10, 10), \quad c^T x^* = -280, \quad \text{basis } \{1, 3, 4\}$$

$$y^* = (0, 10, 10)$$

$$c^T x^* = -280$$

Example: add new product?

minimize
$$c^Tx + c_{n+1}x_{n+1}$$
 subject to $Ax + A_{n+1}x_{n+1} = b$
$$x, x_{n+1} \ge 0$$

$$c = (-60, -30, -20, 0, 0, 0, -15)$$

$$A = \begin{bmatrix} 8 & 6 & 1 & 1 & 0 & 0 & 1 \\ 4 & 2 & 1.5 & 0 & 1 & 0 & 1 \\ 2 & 1.5 & 0.5 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$b = (48, 20, 8)$$

Previous solution

$$x^* = (2, 0, 8, 24, 0, 0), \quad y^* = (0, 10, 10), \quad c^T x^* = -280, \quad \text{basis } \{1, 3, 4\}$$

Still optimal

$$A_{n+1}^T y^* + c_{n+1} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 10 \\ 10 \end{bmatrix} - 15 = 5 \ge 0$$

Shall we add a new product?

Sensitivity analysis

Information from primal-dual solution

Goal: extract information from x^*, y^* about their sensitivity with respect to changes in problem data

Modified LP

$$\begin{array}{ll} \text{minimize} & c^Tx \\ \text{subject to} & Ax = b+u \\ & x > 0 \end{array}$$

Optimal cost $p^*(u)$

Global sensitivity

Dual of modified LP

$$\begin{array}{ll} \text{maximize} & -(b+u)^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Global lower bound

Given y^* a dual optimal solution for u=0, then

$$p^{\star}(u) \ge -(b+u)^T y^{\star}$$
 (from weak duality and $= p^{\star}(0) - u^T y^{\star}$ dual feasibility)

It holds for any u

Global sensitivity

Example

Take u=td with $d\in\mathbf{R}^m$ fixed minimize c^Tx subject to Ax=b+td $x\geq 0$

 $p^{\star}(td)$ is the optimal value as a function of t

Sensitivity information (assuming $d^T y^* \ge 0$)

- t < 0 the optimal value increases
- t>0 the optimal value decreases (not so much if t is small)

Optimal value function

$$p^{\star}(u) = \min\{c^T x \mid Ax = b + u, \ x \ge 0\}$$

Assumption: $p^*(0)$ is finite

Properties

- $p^{\star}(u) > -\infty$ everywhere (from global lower bound)
- $p^{\star}(u)$ is piecewise-linear on its domain

Optimal value function is piecewise linear

Proof

$$p^{\star}(u) = \min\{c^T x \mid Ax = b + u, \ x \ge 0\}$$

Dual feasible set

$$D = \{ y \mid A^T y + c \ge 0 \}$$

Assumption: $p^{\star}(0)$ is finite

If
$$p^{\star}(u)$$
 finite
$$p^{\star}(u) = \max_{y \in D} -(b+u)^T y = \max_{k=1,...,r} -y_k^T u - b^T y_k$$

 y_1, \ldots, y_r are the extreme points of D

Local sensitivity

u in neighborhood of the origin

Original LP

minimize $c^T x$

subject to Ax = b

$$x \ge 0$$

Optimal solution

Primal $x_i = 0, \quad i \notin B \\ x_B^\star = A_B^{-1} b$

$$x_B^{\star} = A_B^{-1}b$$

Dual $y^* = -A_B^{-T} c_B$

Modified LP

minimize $c^{T}x$

subject to Ax = b + u

$$c^Tx$$

$$Ax = b + u$$

$$x \ge 0$$

Modified dual

maximize $-(b+u)^T y$

subject to $A^Ty + c > 0$

Optimal basis does not change

Modified optimal solution

$$x_B^*(u) = A_B^{-1}(b+u) = x_B^* + A_B^{-1}u$$

 $y^*(u) = y^*$

Derivative of the optimal value function

Modified optimal solution

$$x_B^*(u) = A_B^{-1}(b+u) = x_B^* + A_B^{-1}u$$

 $y^*(u) = y^*$

Optimal value function

$$p^{\star}(u) = c^{T}x^{\star}(u)$$

$$= c^{T}x^{\star} + c_{B}^{T}A_{B}^{-1}u$$

$$= p^{\star}(0) - y^{\star T}u \qquad \text{(affine for small } u\text{)}$$

Local derivative

$$\frac{\partial p^{\star}(u)}{\partial u} = -y^{\star} \qquad (y^{\star} \text{ are the shadow prices})$$

Sensitivity example

minimize
$$-60x_1-30x_2-20x_3 \qquad \text{-profit}$$
 subject to
$$8x_1+6x_2+x_3\leq 48 \qquad \text{material}$$

$$4x_1+2x_2+1.5x_3\leq 20 \qquad \text{production}$$

$$2x_1+1.5x_2+0.5x_3\leq 8 \qquad \text{quality control}$$

$$x\geq 0$$

$$x^* = (2, 0, 8, 24, 0, 0), \quad y^* = (0, 10, 10), \quad c^T x^* = -280, \quad \text{basis } \{1, 3, 4\}$$

What does $y_3^* = 10$ mean?

Let's increase the quality control budget by 1, i.e., u = (0, 0, 1)

$$p^{\star}(10) = p^{\star}(0) - y^{\star T}u = -280 - 10 = -290$$

Linear optimization duality

Today, we learned to:

- Interpret linear optimization duality using game theory
- Prove Farkas lemma using duality
- Understand how the solution changes if we add new variables to the problem
- Analyze sensitivity of the cost with respect to changes in the data

Next lecture

Nonlinear optimization