ORF522 – Linear and Nonlinear Optimization

7. Linear optimization duality I

Today's agenda [Chapter 4, LO][Chapter 5, LP]

- Obtaining lower bounds
- The dual problem
- Weak and strong duality
- Complementary slackness

A simple example

minimize
$$x_1 + 3x_2$$
 subject to $x_1 + 3x_2 \ge 2$

What is a lower bound on the optimal cost?

A lower bound is 2 because $x_1 + 3x_2 \ge 2$

Another example

minimize
$$x_1 + 3x_2$$
 subject to $x_1 + x_2 \ge 2$ $x_2 \ge 1$

What is a lower bound on the optimal cost?

Let's sum the constraints

$$1 \cdot (x_1 + x_2 \ge 2)$$

$$+ 2 \cdot (x_2 \ge 1)$$

$$= x_1 + 3x_2 \ge 4$$

A lower bound is 4

A more interesting example

minimize
$$x_1+3x_2$$
 subject to $x_1+x_2\geq 2$ $x_2\geq 1$ $x_1-x_2\geq 3$

How can we obtain a lower bound?

Add constraints

$$y_{1} \cdot (x_{1} + x_{2} \ge 2)$$

$$+ y_{2} \cdot (x_{2} \ge 1)$$

$$+ y_{3} \cdot (x_{1} - x_{2} \ge 3)$$

$$= x_{1} + 3x_{2} \ge 2y_{1} + y_{2} + 3y_{3}$$

Match cost coefficients

$$y_1 + y_3 = 1$$

 $y_1 + y_2 - y_3 = 3$
 $y_1, y_2, y_3 \ge 0$

Many options

$$y = (1, 2, 0) \Rightarrow \text{Bound } 4$$

 $y = (0, 4, 1) \Rightarrow \text{Bound } 7$

How can we get the best one?

Bound

A more interesting example — Best lower bound

We can obtain the best lower bound by solving the following problem

maximize
$$2y_1 + y_2 + 3y_3$$

subject to $y_1 + y_3 = 1$
 $y_1 + y_2 - y_3 = 3$
 $y_1, y_2, y_3 \ge 0$

This linear optimization problem is called the dual problem

The dual problem

Lagrangian dual function

Consider the Linear Program

$$p^{\star} = \text{minimize} \quad c^T x$$
 subject to $Ax \leq b$ $Cx = d$

Lagrangian

$$p^{\star} = \text{ minimize } c^Tx \qquad \longrightarrow \qquad L(x,y,z) = c^Tx + y^T(Ax - b) + z^T(Cx - d)$$

Lagrange dual function

$$g(y,z) = \inf_{x} L(x,y,z)$$

Lower bound property

For any
$$y \ge 0$$
 and z , $g(y, z) \le p^*$

Proof. Let \tilde{x} be a feasible point. Then,

$$g(y,z) = \inf_{x} L(x,y,z) \le c^{T} \tilde{x} + y^{T} (A\tilde{x} - b) + z^{T} (C\tilde{x} - d) \le c^{T} \tilde{x}$$

$$\ge 0 \qquad \uparrow \qquad \qquad \downarrow 0$$

$$\implies g(y,z) \le p^{\star}$$

Dual problem

Lagrangian

$$L(x, y, z) = c^{T}x + y^{T}(Ax - b) + z^{T}(Cx - d)$$

Lower bound property

For any $y \ge 0$ and z, $g(y, z) \le p^*$

Lagrange dual function

$$g(y,z) = \inf_{x} L(x,y,z)$$

When $g(y,z) = -\infty$ the bound is *vacuous*.

when is it non-vacuous?

$$g(y,z) = \inf_{x} (c + A^T y + C^T z)^T x - b^T y - d^T z$$

$$= \begin{cases} -b^T y - d^T z & c + A^T y + C^T z = 0 \\ -\infty & \text{otherwise} \end{cases}$$

dual problem find the best lower bound

maximize
$$-b^Ty-d^Tz$$
 subject to
$$c+A^Ty+C^Tz=0$$

$$y\geq 0$$

Primal and dual problems

Primal problem

minimize c^Tx subject to $Ax \leq b$ Cx = d

Dual problem

$$\begin{array}{ll} \text{maximize} & -b^Ty - d^Tz \\ \text{subject to} & c + A^Ty + C^Tz = 0 \\ & y \geq 0 \end{array}$$

Primal variable $x \in \mathbf{R}^n$

Dual variables $y \in \mathbf{R}^m$, $z \in \mathbf{R}^p$

The dual problem carries useful information for the primal problem

Duality is useful also to solve optimization problems

Example from before

minimize
$$x_1+3x_2$$
 subject to $x_1+x_2\geq 2$ $x_2\geq 1$ $x_1-x_2\geq 3$

Inequality form LP

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$$

$$c = (1,3)$$

$$A = \begin{bmatrix} -1 & -1 \\ 0 & -1 \\ -1 & 1 \end{bmatrix}$$

$$b = (-2, -1, -3)$$

Dual

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c = 0 \\ & y \geq 0 \end{array}$$

maximize
$$2y_1 + y_2 + 3y_3$$
 subject to $-y_1 - y_3 = -1$ $-y_1 - y_2 + y_3 = -3$ $y_1, y_2, y_3 \ge 0$

To memorize

Ways to get the dual

- Derive dual function directly
- Transform the problem in inequality form LP and dualize

Sanity-checks and signs convention

- Consider constraints as $g(x) \le 0$ or g(x) = 0
- Each dual variable is associated to a primal constraint
- z free for primal equalities and $y \ge 0$ for primal inequalities

Dual of an LP in standard form

```
\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}
```

Dual of the dual

Theorem

If we transform the primal into its dual and then transform the dual to its dual, we obtain a problem equivalent to the original problem. In other words, the dual of the dual is the primal.

Exercise

Derive dual and dualize again

Primal			Dual	
minimize	$c^T x$	maximize	$-b^T y - d^T z$	
subject to	$Ax \leq b$	subject to	$A^T y + C^T z + c = 0$	
	Cx = d		$y \ge 0$	

Theorem

If we transform a linear optimization problem to another form (inequality form, standard form, inequality and equality form), the dual of the two problems will be equivalent.

Weak and strong duality

Optimal objective values

Primal

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax < b \end{array}$

 p^{\star} is the primal optimal value

Primal infeasible: $p^* = +\infty$ Primal unbounded: $p^* = -\infty$

Dual

 $\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c = 0 \\ & y \geq 0 \end{array}$

 d^{\star} is the dual optimal value

Dual infeasible: $d^* = -\infty$

Dual unbounded: $d^* = +\infty$

Weak duality

Theorem

If x, y satisfy:

- x is a feasible solution to the primal problem
- y is a feasible solution to the dual problem

$$-b^T y \le c^T x$$

Proof

We know that $Ax \leq b$, $A^Ty + c = 0$ and $y \geq 0$. Therefore,

$$0 \le y^{T}(b - Ax) = b^{T}y - y^{T}Ax = c^{T}x + b^{T}y$$

Remark

- Any dual feasible y gives a **lower bound** on the primal optimal value
- ullet Any primal feasible x gives an **upper bound** on the dual optimal value
- $c^T x + b^T y$ is the duality gap

Weak duality

Corollaries

Unboundedness vs feasibility

- Primal unbounded $(p^* = -\infty) \Rightarrow$ dual infeasible $(d^* = -\infty)$
- Dual unbounded $(d^* = +\infty) \Rightarrow$ primal infeasible $(p^* = +\infty)$

Optimality condition

If x, y satisfy:

- x is a feasible solution to the primal problem
- y is a feasible solution to the dual problem
- The duality gap is zero, *i.e.*, $c^Tx + b^Ty = 0$

Then x and y are optimal solutions to the primal and dual problem respectively

Strong duality

Theorem

If a linear optimization problem has an optimal solution, so does its dual, and the optimal value of primal and dual are equal

$$d^{\star} = p^{\star}$$

Strong duality

Constructive proof

Given a primal optimal solution x^* we will construct a dual optimal solution y^*

Apply simplex to problem in standard form

minimize
$$c^Tx$$
 • optimal basis B subject to $Ax=b$ • optimal solution x^\star with $A_Bx_B^\star=b$ • reduced costs $\bar{c}=c-A^TA_B^{-T}c_B\geq 0$

Define y^* such that $y^* = -A_B^{-T} c_B$. Therefore, $A^T y^* + c \ge 0$ (y^* dual feasible).

$$-b^T y^* = -b^T (-A_B^{-T} c_B) = c_B^T (A_B^{-1} b) = c_B^T x_B^* = c^T x^*$$

By weak duality theorem corollary, y^* is an optimal solution of the dual. Therefore, $d^* = p^*$.

Exception to strong duality

Primal

 $\begin{array}{ll} \text{minimize} & x \\ \text{subject to} & 0 \cdot x < -1 \end{array}$

Optimal value is $p^* = +\infty$

Dual

maximize y subject to $0 \cdot y + 1 = 0$ $y \ge 0$

Optimal value is $d^{\star} = -\infty$

Both primal and dual infeasible

Relationship between primal and dual

	$p^{\star} = +\infty$	p^{\star} finite	$p^{\star} = -\infty$
$d^{\star} = +\infty$	primal inf. dual unb.		
d^\star finite		optimal values equal	
$d^{\star} = -\infty$	exception		primal unb. dual inf

- Upper-right excluded by weak duality
- (1,1) and (3,3) proven by weak duality
- (3,1) and (2,2) proven by strong duality

Example

Production problem

maximize subject to $x_1 \leq 100$

$$x_1 + 2x_2$$
 — Profits

$$x_1 \le 100$$

$$2x_2 \leq 200$$

$$x_1 + x_2 \le 150$$

$$x_1, x_2 \ge 0$$

$$c = (-1, -2)$$

1. Transform in inequality form

minimize
$$c^T x$$
 subject to $Ax \leq b$

Resources

$$b = (100, 200, 150, 0, 0)$$

maximize
$$-b^Ty$$
 subject to $A^Ty+c=0$ $y\geq 0$

Production problem

The dual

minimize
$$100y_1 + 200y_2 + 150y_3$$
 subject to $y_1 + y_3 \ge 1$ $2y_2 + y_3 \ge 2$ $y_1, y_2, y_3 \ge 0$

Interpretation

- · Sell all your resources at a fair (minimum) price
- Selling must be more convenient than producing:
 - Product 1 (price 1, needs $1 \times$ resource 1 and 3): $y_1 + y_3 \ge 1$
 - Product 2 (price 2, needs $2 \times$ resource 2 and $1 \times$ resource 3): $2y_2 + y_3 \ge 2$

Complementary slackness

Optimality conditions

Primal

minimize $c^T x$ subject to $Ax \leq b$

Dual

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c = 0 \\ & y \geq 0 \end{array}$$

x and y are primal and dual optimal if and only if

- x is primal feasible: $Ax \leq b$
- y is dual feasible: $A^Ty + c = 0$ and $y \ge 0$
- The duality gap is zero: $c^T x + b^T y = 0$

Can we relate x and y (not only the objective)?

Complementary slackness

Primal

minimize $c^T x$ subject to $Ax \leq b$

Dual

maximize $-b^Ty$ subject to $A^Ty+c=0$ $y\geq 0$

Theorem

Primal, dual feasible x, y are optimal if and only if

$$y_i(b_i - a_i^T x) = 0, \quad i = 1, \dots, m$$

i.e., at optimum, b - Ax and y have a complementary sparsity pattern:

$$y_i > 0 \implies a_i^T x = b_i$$

$$a_i^T x < b_i \implies y_i = 0$$

Complementary slackness

Primal

minimize $c^T x$ subject to $Ax \leq b$

Dual

maximize
$$-b^Ty$$
 subject to $A^Ty+c=0$ $y\geq 0$

Proof

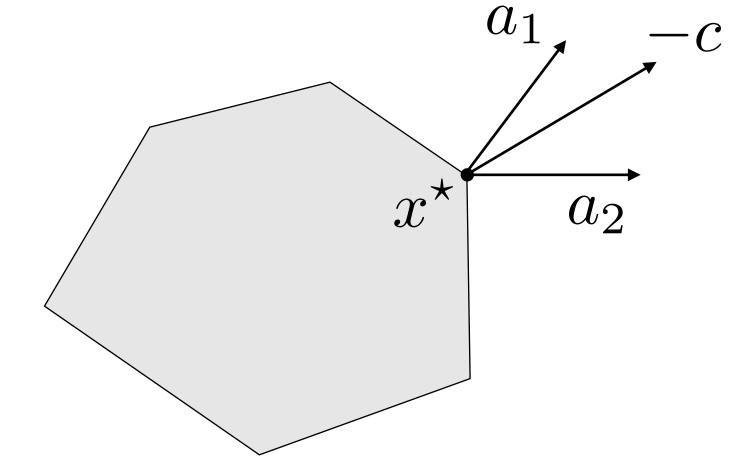
The duality gap at primal feasible x and dual feasible y can be written as

$$c^{T}x + b^{T}y = (-A^{T}y)^{T}x + b^{T}y = (b - Ax)^{T}y = \sum_{i=1}^{T} y_{i}(b_{i} - a_{i}^{T}x) = 0$$

Since all the elements of the sum are nonnegative, they must all be 0

Geometric interpretation

Example in ${f R}^2$



Two active constraints at optimum: $a_1^T x^* = b_1, \quad a_2^T x^* = b_2$

Optimal dual solution *y* satisfies:

$$A^T y + c = 0, \quad y \ge 0, \quad y_i = 0 \text{ for } i \ne \{1, 2\}$$

In other words, $-c = a_1y_1 + a_2y_2$ with $y_1, y_2 \ge 0$

Geometric interpretation: -c lies in the cone generated by a_1 and a_2

Example

minimize
$$-4x_1 - 5x_2$$

subject to
$$\begin{bmatrix} -1 & 0 \\ 2 & 1 \\ 0 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 0 \\ 3 \\ 0 \\ 3 \end{bmatrix}$$

Let's **show** that feasible x = (1, 1) is optimal

Second and fourth constraints are active at $x \longrightarrow y = (0, y_2, 0, y_4)$

$$A^T y = -c \quad \Rightarrow \quad \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} y_2 \\ y_4 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix} \qquad \text{and} \qquad \quad y_2 \ge 0, \quad y_4 \ge 0$$

y=(0,1,0,2) satisfies these conditions and proves that x is optimal

Complementary slackness is useful to recover y^* from x^*

Linear optimization duality

Today, we learned to:

- Dualize linear optimization problems
- Prove weak and strong duality conditions
- Geometrically link primal and dual solutions with complementary slackness

Next lecture

More on duality:

- Game theoretic interpretation
- Alternative systems
- Adding new variables
- Sensitivity analysis