ORF522 – Linear and Nonlinear Optimization

6. Numerical linear algebra and simplex implementation

Recap

An iteration of the simplex method

Initialization

- a basic feasible solution x
- a basis matrix $A_B = \begin{bmatrix} A_{B(1)} & \dots, A_{B(m)} \end{bmatrix}$

Iteration steps

- 1. Compute the reduced costs \bar{c}
 - Solve $A_B^T p = c_B$
 - $\bar{c} = c A^T p$
- 2. If $\bar{c} \geq 0$, x optimal. break
- 3. Choose j such that $\bar{c}_j < 0$

- 4. Compute search direction d with $d_j=1$ and $A_Bd_B=-A_j$
- 5. If $d_B \ge 0$, the problem is **unbounded** and the optimal value is $-\infty$. **break**
- 6. Compute step length $\theta^* = \min_{\{i \in B | d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$
- 7. Define y such that $y = x + \theta^* d$
- 8. Get new basis \bar{B} (i exits and j enters)

Today's agenda [Chapter 3, LO] [Chapter 13, NO] [Chapter 8, LP]

- Numerical linear algebra
- Realistic simplex implementation
- Example
- Empirical complexity

Numerical linear algebra

Deeper look at complexity Flop count

floating-point operations: one addition, subtraction, multiplication, division

Estimate complexity of an algorithm

- Express number of flops as a function of problem dimensions
- Simplify and keep only leading terms

Remarks

- Not accurate in modern computers (multicore, GPU, etc.)
- Still rough and widely-used estimate of complexity

Complexity

Basic examples

Vector operations $(x, y \in \mathbf{R}^n)$

- Inner product x^Ty : 2n-1 flops
- Sum x + y or scalar multiplication αx : n flops

Matrix-vector product $(y = Ax \text{ with } A \in \mathbf{R}^{m \times n})$

- m(2n-1) flops
- 2N if A is sparse with N nonzero elements

Matrix-matrix product (C = AB with $A \in \mathbf{R}^{m \times n}, B \in \mathbb{R}^{n \times p}$)

- pm(2n-1) flops
- Less if A and/or B are sparse

How do we solve linear systems in practice?

Idea

$$Ax = b$$

- compute A^{-1}
- multiply $A^{-1}b$

Example

 5000×5000 matrix A and a 5000-vector b

- Solve by computing ${\cal A}^{-1}$
- Solve with numpy.linalg.solve

What's happening inside?

Complexity

Solving linear system

Execution time (cost) of solving Ax = b with $A \in \mathbf{R}^{n \times n}$

General case $O(n^3)$

Much less if A structured (sparse, banded, Toepliz, etc.)

You (almost) never compute A^{-1} explicitly!

- Numerically unstable (divisions)
- You lose structure

Easy linear systems

Diagonal matrix

$$\begin{bmatrix} A_{11} & & & \\ & \ddots & \\ & & A_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} \longrightarrow A_{11}x_1 = b_1$$

$$A_{22}x_2 = b_2$$

$$\vdots$$

$$A_{nn}x_n = b_n$$

Solution

$$x = A^{-1}b = (b_1/A_{11}, \dots, b_n/A_{nn})$$

Complexity

n flops

Easy linear systems

Lower triangular matrix

$$\begin{bmatrix} A_{11} & & & & \\ A_{21} & A_{22} & & & \\ \vdots & & \ddots & \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} \qquad A_{11}x_1 = b_1 \\ A_{21}x_1 + A_{22}x_2 = b_2 \\ \vdots \\ A_{n1}x_1 + A_{n2}x_2 + \dots + A_{nn}x_n = b_n$$

Solution: "forward substitution"

- First equation: $x_1 = b_1/A_{11}$
- Second equation: $x_2 = (b_2 A_{21}x_1)/A_{22}$
- Repeat to get x_3, \ldots, x_n

Complexity

- First equation: 1 flop (division)
- Second equation: 3 flops
- ith step needs 2i-1 flops

$$1 + 3 + \dots + (2n - 1) = n^2$$
 flops

Easy linear systems

Permutation matrices

 $\pi = (\pi_1, \dots, \pi_n)$ is a permutation of $(1, 2, \dots, n)$

A $n \times n$ permutation matrix P, permutes the vector x

$$Px = (x_{\pi_1}, \dots, x_{\pi_n})$$

Properties

- $P_{ij} = \begin{cases} 1 & j = \pi_i \\ 0 & \text{otherwise} \end{cases}$
- $P^{-1} = P^T$ (inverse permutation)

Complexity

Solve Px = b: 0 flops (no operations)

example

$$\begin{array}{ccccc}
\pi = (2, 3, 1) \\
P \\
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = \begin{bmatrix}
x_2 \\
x_3 \\
x_1
\end{bmatrix} \\
P^{-1} \\
\begin{bmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
x_2 \\
x_3 \\
x_1
\end{bmatrix} = \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} \\
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}$$

Summary of easy linear systems

|--|

diagonal

$$A = \mathbf{diag}(a_1, \dots, a_n)$$

$$x_i = b_i/a_i$$

n

lower triangular

$$A_{ij} = 0 \text{ for } i < j$$

forward substitution

 n^2

upper triangular

$$A_{ij} = 0 \text{ for } i > j$$

backward substitution

 n^2

permutation

$$P_{ij} = 1 \text{ if } j = \pi_i \text{ else } 0$$

inverse permutation

0

Sparse matrices

Most real-world problems are sparse

A matrix A is **sparse** if the majority of its elements is 0

typically <15% nonzeros

Efficient representations

- Triplet format: (i, j, x_{ij})
- Compressed Sparse Column format: (i, x_{ij}) and p_j
- Compressed Sparse Row format: (j, x_{ij}) and p_i

How do we solve linear systems in practice?

$$Ax = b$$

Any idea?

We know how to solve special ones

Let's use that!

The factor-solve method for solving Ax=b

1. Factor A as a product of simple matrices:

$$A = A_1 A_2 \cdots A_k, \longrightarrow A_1 A_2, \ldots A_k x = b$$

(A_i diagonal, upper/lower triangular, permutation, etc)

2. Compute $x = A^{-1}b = A_k^{-1} \cdots A_1^{-1}b$ by solving k "easy" systems

$$A_1 x_1 = b$$

$$A_2 x_2 = x_1$$

•

$$A_k x = x_{k-1}$$

Note: step 2 is much cheaper than step 1

Multiple right-hand sides

You now have factored A and you want to solve d linear systems with different righ-hand side m-vectors b_i

$$Ax = b_1$$
 $Ax = b_2$... $Ax = b_d$

Factorization-caching procedure

- 1. Factor $A = A_1, \ldots, A_k$ only once (expensive)
- 2. Solve all linear systems using the same factorization (cheap)

Solve many "at the price of one"

(Sparse) LU factorization

Every nonsingular matrix A can be factored as

$$A = P_r L U P_c \qquad \longrightarrow \qquad P_r^T A P_c^T = L U$$

 P_r, P_c permutation, L lower triangular, U upper triangular

Permutations

- Reorder rows P_r and columns P_c of A to (heuristically) get sparser L, U
- P_r, P_c depend on sparsity pattern and values of A

Cost

- If A dense, typically $O(n^3)$ but usually much less
- It depends on the number of nonzeros in A, sparsity pattern, etc.

(Sparse) LU solution

$$Ax = b, \Rightarrow P_r L U P_c x = b$$

Iterations

- 1. Permutation: Solve $P_r z_1 = b$ (0 flops)
- 2. Forward substitution: Solve $Lz_2 = z_1$ (n^2 flops)
- 3. Backward substitution: Solve $Uz_3 = z_2$ (n^2 flops)
- 4. Permutation: Solve $P_c x = z_3$ (0 flops)

Cost

Factor + Solve $\sim O(n^3)$ Just solve (prefactored) $\sim O(n^2)$

(Sparse) Cholesky factorization

Every positive definite matrix A can be factored as

$$A = PLL^T P^T \longrightarrow P^T AP = LL^T$$

P permutation, L lower triangular

Permutations

- Reorder rows/cols of A with P to (heuristically) get sparser L
- P depends only on sparsity pattern of A (unlike LU factorization)
- If A is dense, we can set P = I

Cost

- If A dense, typically $O(n^3)$ but usually much less
- It depends on the number of nonzeros in A, sparsity pattern, etc.
- Typically 50% faster than LU (need to find only one matrix)

(Sparse) Cholesky solution

$$Ax = b, \Rightarrow PLL^T P^T x = b$$

Iterations

- 1. Permutation: Solve $Pz_1 = b$ (0 flops)
- 2. Forward substitution: Solve $Lz_2 = z_1$ (n^2 flops)
- 3. Backward substitution: Solve $L^T z_3 = z_2$ (n^2 flops)
- 4. Permutation: Solve $P^Tx = z_3$ (0 flops)

Cost

Factor + Solve $\sim O(n^3)$ Just solve (prefactored) $\sim O(n^2)$

"Realistic" simplex implementation

Complexity of a single simplex iteration

- 1. Compute the reduced costs \bar{c}
 - Solve $A_B^T p = c_B$
 - $\bar{c} = c A^T p$
- 2. If $\bar{c} \geq 0$, x optimal. break
- 3. Choose j such that $\bar{c}_i < 0$

- 4. Compute search direction d with $d_j = 1$ and $A_B d_B = -A_j$
- 5. If $d_B \ge 0$, the problem is **unbounded** and the optimal value is $-\infty$. **break**
- 6. Compute step length $\theta^{\star} = \min_{\{i \in B \mid d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$
- 7. Define y such that $y = x + \theta^* d$
- 8. Get new basis \bar{B} (i exits and j enters)

Bottleneck

"same" two linear systems

Linear system solutions

Very similar linear systems

$$LU$$
 factorization $O(n^3)$ flops

Easy linear systems $O(n^2)$ flops

$$A_B^T p = c_B$$

$$A_B d_B = -A_j$$

$$A_B = P_r L U P_c \longrightarrow$$

$$P_c^T U^T L^T P_r^T p = c_B$$
$$P_r L U P_c d_B = -A_j c_B$$

Factorization is expensive

Do we need to recompute it at every iteration?

Basis update

Index update

- j enters $(x_j$ becomes θ^*)
- $i = B(\ell)$ exists (x_i becomes 0)

$$A_{\bar{B}} = A_B + (A_j - A_i)e_{\ell}^T$$

$$A = \begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{array}{c} B = \{4, 1, 6\} & \rightarrow & \bar{B} = \{4, 1, 2\} \\ & \bullet & 2 \text{ enters} \\ & \bullet & 6 = B(3) \text{ exists} \end{array}$$

Example

$$B = \{4, 1, 6\} \rightarrow \bar{B} = \{4, 1, 2\}$$

$$A_{B} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 2 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 2 & 1 \\ 0 & 2 & 2 \end{bmatrix}$$

Basis update

Rank-1 update

$$A_{\bar{B}} = A_B + (A_j - A_i)e_{\ell}^T$$

Forrest-Tomlin update $O(m^2)$

- Given: $A_B = LU$
- Goal: compute $A_{ar{B}}=LRar{U}$ (same L, lower tri. R, upper tri. $ar{U}$)

1.
$$L^{-1}A_{\bar{B}} = U + (L^{-1}A_j - Ue_\ell)e_\ell^T = \hat{U}$$

2. LU factorization $\hat{U}=R\bar{U}$ via elimination ($O(m^2)$)

Remarks

- Implemented in modern sparse solvers
- Accumulates errors (we need to refactor B from scratch once in a while)
- · Many more algorithms: Block-LU, Bartels-Golub-Reid, etc.

Realistic (revised) simplex method

Initialization

- a basic feasible solution x
- a basis matrix $A_B = \begin{vmatrix} A_{B(1)} & \dots, A_{B(m)} \end{vmatrix}$

Iteration steps

Per-iteration cost $O(m^2)$

- 1. Compute the reduced costs \bar{c}
 - Solve $A_B^T p = c_B (O(m^2))$
 - $\bar{c} = c A^T p$
- 2. If $\bar{c} \geq 0$, x optimal. break
- 3. Choose j such that $\bar{c}_i < 0$
- 4. Compute search direction. d with $d_i = 1 \text{ and } A_B d_B = -A_i (O(m^2))$

- 5. If $d_B \geq 0$, the problem is unbounded and the optimal value is $-\infty$. break
- 6. Compute step length $\theta^* = \min_{\{i \in B | d_i < 0\}} \left(-\frac{x_i}{d_i} \right)$
- 7. Define y such that $y = x + \theta^* d$
- 8. Get new basis $A_{\bar{B}} = A_B + (A_i A_i)e_{\ell}^T$ rank-1 factor update (i exits and j enters) ($(O(m^2))$)

Example

Inequality form

Example

minimize $-10x_1-12x_2-12x_3$ subject to $x_1+2x_2+2x_3\leq 20$ $2x_1+x_2+2x_3\leq 20$ $2x_1+2x_2+x_3\leq 20$ $x_1,x_2,x_3\geq 0$

Standard form

minimize
$$-10x_1 - 12x_2 - 12x_3$$

 $x \ge 0$

subject to
$$\begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 20 \\ 20 \\ 20 \end{bmatrix}$$

Example Start

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$

Initialize
$$x = (0, 0, 0, 20, 20, 20) \qquad A_B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$\begin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \end{bmatrix}$$

$$A = egin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \ 2 & 1 & 2 & 0 & 1 & 0 \ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

Current point

$$x = (0, 0, 0, 20, 20, 20)$$

 $c^T x = 0$

Basis: $\{4, 5, 6\}$

$$A_B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Reduced costs $\bar{c} = c$

Solve
$$A_B^T p = c_B \Rightarrow p = c_B = 0$$

 $\bar{c} = c - A^T p = c$

Direction
$$d = (1, 0, 0, -1, -2, -2), \quad j = 1$$

Solve $A_B d_B = -A_j \implies d_B = (-1, -2, -2)$

Step
$$\theta^{\star} = 10, \quad i = 5$$

$$\theta^{\star} = \min_{\{i \mid d_i < 0\}} (-x_i/d_i) = \min\{20, 10, 10\}$$
 New $x \leftarrow x + \theta^{\star}d = (10, 0, 0, 10, 0, 0)$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = egin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \ 2 & 1 & 2 & 0 & 1 & 0 \ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

Current point

$$x = (10, 0, 0, 10, 0, 0)$$

 $c^T x = -100$

Basis: $\{4, 1, 6\}$

$$A_B = egin{bmatrix} 1 & 1 & 0 \ 0 & 2 & 0 \ 0 & 2 & 1 \end{bmatrix}$$

Reduced costs
$$\bar{c} = (0, -7, -2, 0, 5, 0)$$

Solve $A_B^T p = c_B \implies p = (0, -5, 0)$
 $\bar{c} = c - A^T p = (0, -7, -2, 0, 5, 0)$

Direction
$$d = (-0.5, 1, 0, -1.5, 0, -1), \quad j = 2$$

Solve $A_B d_B = -A_j \quad \Rightarrow \quad d_B = (-1.5, -0.5, -1)$

Step
$$\theta^{\star} = 0$$
, $i = 6$ $\theta^{\star} = \min_{\{i \mid d_i < 0\}} (-x_i/d_i) = \min\{6.66, 20, 0\}$ New $x \leftarrow x + \theta^{\star}d = (10, 0, 0, 10, 0, 0)$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = egin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \ 2 & 1 & 2 & 0 & 1 & 0 \ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

Current point

$$x = (10, 0, 0, 10, 0, 0)$$

 $c^T x = -100$

Basis: $\{4, 1, 2\}$

$$A_B = egin{bmatrix} 1 & 1 & 2 \ 0 & 2 & 1 \ 0 & 2 & 2 \end{bmatrix}$$

Reduced costs
$$\bar{c} = (0, 0, -9, 0, -2, 7)$$

Solve
$$A_B^T p = c_B \quad \Rightarrow \quad p = (0, 2, -7)$$

$$\bar{c} = c - A^T p = (0, 0, -9, 0, -2, 7)$$

Direction d = (-1.5, 1, 1, -2.5, 0, 0), j = 3Solve $A_B d_B = -A_j \Rightarrow d_B = (-2.5, -1.5, 1)$

Step
$$\theta^{\star} = 4$$
, $i = 4$ $\theta^{\star} = \min_{\{i \mid d_i < 0\}} (-x_i/d_i) = \min\{4, 6.67\}$ New $x \leftarrow x + \theta^{\star}d = (4, 4, 4, 0, 0, 0)$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = egin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \ 2 & 1 & 2 & 0 & 1 & 0 \ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

Current point

$$x = (4, 4, 4, 0, 0, 0)$$

 $c^T x = -136$

Basis: $\{3, 1, 2\}$

$$A_B = egin{bmatrix} 2 & 1 & 2 \ 2 & 2 & 1 \ 1 & 2 & 2 \end{bmatrix}$$

Reduced costs $\bar{c} = (0, 0, 0, 3.6, 1.6, 1.6)$ Solve $A_B^T p = c_B \Rightarrow p = (-3.6, -1.6, -1.6)$ $\bar{c} = c - A^T p = (0, 0, 0, 3.6, 1.6, 1.6)$

$$\overline{c} \geq 0 \longrightarrow x^* = (4, 4, 4, 0, 0, 0)$$

$$c = (-10, -12, -12, 0, 0, 0)$$

$$A = egin{bmatrix} 1 & 2 & 2 & 1 & 0 & 0 \ 2 & 1 & 2 & 0 & 1 & 0 \ 2 & 2 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$b = (20, 20, 20)$$

Simplex tableau implementation

Can we solve LPs by hand?

People did it before computers were invented!

Nobody does it anymore...

Empirical complexity

Example with real solver

GLPK (open-source)

Code

```
import numpy as np
import cvxpy as cp
c = np.array([-10, -12, -12])
A = np.array([[1, 2, 2],
              [2, 1, 2],
              [2, 2, 1]])
b = np.array([20, 20, 20])
n = len(c)
x = cp.Variable(n)
problem = cp.Problem(cp.Minimize(c @ x),
                     [A@x \le b, x \ge 0])
problem.solve(solver=cp.GLPK, verbose=True)
```

Output

```
GLPK Simplex Optimizer, v4.65
6 rows, 3 columns, 12 non-zeros
* 0: obj = 0.000000000e+00 inf = 0.000e+00 (3)
* 3: obj = -1.360000000e+02 inf = 0.000e+00 (0)
OPTIMAL LP SOLUTION FOUND
```

Average simplex complexity

Random LPs

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$

n variables 3n constraints

Numerical linear algebra and simplex implementation

Today, we learned to:

- Identify the pros and cons of different methods to solve a linear system
- Derive the computational complexity of the factor-solve method
- Implement a "realistic" version of the simplex method
- Empirically analyze the average complexity of the simplex method

Next lecture

Linear optimization duality