ORF522 - Linear and Nonlinear Optimization

6. Numerical linear algebra and simplex implementation

Bartolomeo Stellato — Fall 2024

In

An iteration of the simplex method

itialization

* a basic feasible solution z«

* a basis matrix Ap =

AB(l) e ,AB(m)

-

Ilteration steps

1. Compute the reduced costs ¢

» Solve Agp = CRB
cc=c—Alp

2. If ¢ > 0, x optimal. break

3. Choose j such that c; < 0

. Compute step length 6* =

. Compute search direction d with

dj — 1 and ABCZB — —Aj

. If dg > 0, the problem is unbounded

and the optimal value is —oc. break

min
{1€B|d; <0}

L
d;

. Define y such that y = = + 6*d

. Get new basis B (i exits and j enters)

Today’s agenda
[Chapter 3, LO] [Chapter 13, NO] [Chapter 8, LP]

 Numerical linear algebra
» Realistic simplex implementation
 Example

 Empirical complexity

Numerical linear algebra

Deeper look at complexity

Flop count

floating-point operations: one addition, subtraction, multiplication, division

Estimate complexity of an algorithm

» Express number of flops as a function of problem dimensions
- Simplify and keep only leading terms

Remarks

« Not accurate in modern computers (multicore, GPU, etc.)
- Still rough and widely-used estimate of complexity

Complexity

Basic examples

Vector operations (z,y € R")

- Inner product ' y: 2n — 1 flops
« Sum x + y or scalar multiplication ax: n flops

Matrix-vector product (y = Ax with A € R™”*")

* m(2n — 1) flops
» 2N If A is sparse with NV nonzero elements

Matrix-matrix product (C' = AB with A €¢ R™*", B € R"*P)

» pm(2n — 1) flops
» Less if A and/or B are sparse

How do we solve linear systems In practice?

Idea

- compute A7}
Ax =0
- multiply A=1b

Example
5000 x 5000 matrix A and a 5000-vector b

- Solve by computing A~}

» Solve with numpy.linalg.solve

What’s happening inside?

Complexity

Solving linear system

Execution time (cost) of solving Ax = b with A € R™"*"

General case O(n°)

Much less if A structured (sparse, banded, Toepliz, etc.)

You (almost) never compute A~ explicitly!

 Numerically unstable (divisions)
* You lose structure

Easy linear systems

Diagonal matrix

Solution

L — A_lb — (bl/A117 .o

Complexity
n flops

|

A1z = by

Agoxo = b

Annxn — bn

10

Easy linear systems

Lower triangular matrix

Aqq) _xl_ _bl_ A1z = by
Agl AQQ Lo bg A21$1 + A22$2 — b2
n — —_—
An1 - Ana Apn] [Tn_ bn_ Ap1zr + Appxa + ... AppTn = by,
Solution: “forward substitution” Complexity

» First equation: =1 = b1/A11 * First equation: 1 flop (division)
» Second equation: x5 = (by — As121) /Ao « Second equation: 3 flops

* Repeattoget zs,..., 2, » ith step needs 2: — 1 flops

1+3+---+(2n—1) = n* flops
11

example

Easy linear systems

. . r=(231
Permutation matrices T =)
m = (m,...,T,) IS a permutation of (1,2,...,n) l
A n x n permutation matrix P, i £ S -
permutes the vector x 0 1 Of [z T2
Pr=(Tr,,...,Tx,) 0 0 1f |z2| = |23
] 1 0 O L3 L1
Properties } - - -
¢ P.. — L g=m p! l
7’ 0 otherwise 0 0 1] [zo] [z
- P~ = P (inverse permutation) 1 0 0f |za] = |2
: 1
Complexity Y U] L7 R

Solve Px = b: 0 flops (no operations) 5

Summary of easy linear systems

AN
A

A

diagonal
A= diag(al, c e ,an)

lower triangular
Af,;j — (0 for: <]

upper triangular
Az’j =0fori >y

permutation
P;=1if7=m; else0

method

forward
substitution

backward
substitution

Inverse
permutation

flops

13

Sparse matrices

Most real-world problems are sparse

A matrix A is sparse if the majority of its elements is 0

typically < 15% nonzeros

Efficient representations
» Triplet format: (i, j, z;;)
- Compressed Sparse Column format: (¢, z;,;) and p;
- Compressed Sparse Row format: (5, z;;) and p;

14

How do we solve linear systems In practice?
Ax = b

Any idea?

We know how to solve special ones

Let’s use that!

15

The factor-solve method for solving Ax = b

1. Factor A as a product of simple matrices:
A:A1A2°°°Ak, BE— AlAQ,...AkCIZ:b

(A; diagonal, upper/lower triangular, permutation, etc)

All‘l =%

— Aoxzo =11

2. Compute z = A~ lb=A_"-. . AT'D
by solving £ “easy” systems

At = Tp—1

Note: step 2 Is much cheaper than step 1 6

Multiple right-hand sides

You now have factored A and you want to solve d linear systems
with different righ-hand side m-vectors b;

AZE:bl A$:b2 A.CE:bd

Factorization-caching procedure

1. Factor A = A4,..., A, only once (expensive)
2. Solve all linear systems using the same factorization (cheap)

Solve many “at the price of one”

17

(Sparse) LU factorization

Every nonsingular matrix A can be factored as
A=P.LUP, —— Pl'AP' =LU
P,., P. permutation, L lower triangular, U upper triangular

Permutations

- Reorder rows P, and columns P. of A to (heuristically) get sparser L, U
» P.. P. depend on sparsity pattern and values of A

Cost

- If A dense, typically O(n?) but usually much less
» |t depends on the number of nonzeros in A, sparsity pattern, etc.

18

(Sparse) LU solution

Az =b, = P.LUP.xz =Db

Iterations

1. Permutation: Solve P,.z; = b (0 flops)

2. Forward substitution: Solve Lzy = z; (n* flops)
3. Backward substitution: Solve Uzs = 25 (n* flops)
4. Permutation: Solve P.x = z3 (0 flops)

Cost
Factor + Solve ~ O(n?)
Just solve (prefactored) ~ O(n?)

19

(Sparse) Cholesky factorization

Every positive definite matrix A can be factored as
A=PLL"P* — P'AP=LL"

P permutation, L lower triangular

Permutations

» Reorder rows/cols of A with P to (heuristically) get sparser L
» P depends only on sparsity pattern of A (unlike LU factorization)
* |f Aisdense, wecanset P =1

Cost
- If A dense, typically O(n°) but usually much less
» |t depends on the number of nonzeros in A, sparsity pattern, etc.
» Typically 50% faster than LU (need to find only one matrix)

20

(Sparse) Cholesky solution

Ar=b, = PLL'P'xz=10

Iterations

1. Permutation: Solve Pz, = b (0 flops)

2. Forward substitution: Solve Lzy = z; (n* flops)

3. Backward substitution: Solve L' z5 = z5 (n? flops)
4. Permutation: Solve P!z = z5 (0 flops)

Cost
Factor + Solve ~ O(n?)
Just solve (prefactored) ~ O(n?)

21

“Realistic” simplex implementation

Complexity of a single simplex iteration

1. Compute the reduced costs ¢ 4. Compute search direction d with

d: =1and Agdg = — A
. Solve ALp = cp / o /

cc=c—A'p 5. If dg > 0, the problem is unbounded

_ and the optimal value is —oc. break
2. If ¢ > 0, x optimal. break

:/I’/’.
- 3 6. Compute step length 6* = | :
3. Choose j such that ¢; < 0 pu P 1eng ficB|d <0} (di)

/. Define y such that y = « + 6*d

8. Get new basis B (i exits and j enters)

Bottleneck
“same” two linear systems
23

Linear system solutions

Very similar linear LU factorization Easy linear systems
systems O(n?) flops O(n?) flops
ALp = cp P'UYLYP'p = cp

—— Ap = P, LUP.
ABdB — —Aj v PTLUPCdB — —AjCB

Factorization Is expensive

Do we need to recompute it at every iteration?
24

Basis update

o O =

o DN

Index update

* j enters (x; becomes 6%)
» ¢ = B(/{) exists (x; becomes 0)

N DN

=N DN

o DN

= O O

o O =

o = O

T

o O O

b—‘OOI

o O O

Example
B=1{4,1,6} —

O DO

T

|
o O O

Basis matrix change

Ag = Ap + (A; — A)e,

B=1{4,1,2}

¢ 2 enters
* 6 = B(3) exists

o O O

;
0
1_

25

Basis update

Rank-1 update
A = Ap + (A; — Aye,

Forrest-Tomlin update O(m?)
« Given: A = LU))
» Goal: compute Az = LRU (same L, lower tri. R, upper tri. U)
1. L' A =U+ (LA, —Uep)el =U
2. LU factorization U = RU via elimination (O(m?))

Remarks

» Implemented in modern sparse solvers
« Accumulates errors (we need to refactor B from scratch once in a while)
- Many more algorithms: Block-LU, Bartels-Golub-Reid, etc. 26

Realistic (revised) simplex method

Initialization
* a basic feasible solution z]
* abasismatrix Agp = Ay ..., AB@m)

Iteration steps Per-iteration cost O(m?)

1. Compute the reduced costs ¢
5. It dg > 0, the problem is unbounded

+ Solve App = cp (O(m?)) and the optimal value is —oco. break
cc=c—Alp
N : L
2. If ¢ > 0, = optimal. break 6. Compute step length 07 = min_ (d.)
3. Choose j such that ¢; <0 7. Define y such that y = = + 6*d
4. Compute search direction. d with g @Get new basis Ap = Ap + (A, — A;)el
d; =1and Agdg = —A; (O(m?)) rank-1 factor update (i exits and j enters) ((O(m?))|,,

Inequality form

minimize —10x1 — 1229 — 125

subjectto x1 + 2z9 + 223 < 20
201 + 0 + 223 < 20
201 + 229 + 3 < 20

L1,L2,L3 2 0

Standard form

minimize —10x7 — 1225 — 125
o
— — xQ — —
1 2 2 1 0 0 20
: L3
subjectto (2 1 2 0 1 O = |20
e
2 2 10 0 1] | 20
i 1|, <Y
L6 29

Example
Start

Initialize
r = (0,0,0, 20, 20, 20)

minimize
subject to

Ap = |0

CTZE

Axr =0
r >0

c=(—10,-12,-12,0,0,0)

1 2 2 1 0 0
A=12 1 2 0 1 0

2 2 10 0 1
b = (20, 20, 20)

z3

30

Current point

x = (0,0,0,20, 20, 20)
uEe):gimele cw =0
Basis: {4,5,6}
I 0 O
Ap=1(0 1 O
0 0 1

Reduced costs ¢ = ¢
Solve Abp=cg = p=cg=0
c=c— Alp=c

Direction d = (1,0,0,—-1,-2,-2), j=1
Solve ABdB — —Aj — dp = (—1, —2, —2)

Step 6* =10, =5

0* = min (—x,;/d;) = min{20, 10, 10
{iﬁlgo}(z;/d;) = min{ h

New z < x + 6*d = (10,0, 0, 10,0, 0)

c=(—10,—-12,-12,0,0,0)

1 2 2 1 0 0
A=12 1 2 0 1 0
2 2 10 0 1
b = (20,20, 20)
L3
L1

31

Current point

Examp|e v = (10, 0,0, 10,0, 0)
lteration 2 c o =—100
Basis: {4,1,6}
1 1 0
Ag=10 2 0
0 2 1

Reduced costs ¢ = (0,—7,—2,0,5,0)
Solve Akp=cg = p=(0,-5,0)
c=c—A'p=(0,-7,-2,0,5,0)

Direction d = (-0.5,1,0,—1.5,0,—1), j =2
Solve Agdp = —Aj = dp = (—1.5, —0.9, —1)

Step 0" =0, =6

0* = . — 4 dz — ml 666, 20, 0
min (—;/d;) = min }

New z < x + 6*d = (10,0, 0, 10,0, 0)

c=(—10,—-12,-12,0,0,0)

1 2 2 1 0 0
A=12 1 2 0 1 0
2 2 10 0 1
b = (20,20, 20)
L3
L1

32

Current point c = (-10,-12,-12,0,0,0)

Example z = (10,0,0,10,0,0) o o 1 0
Iteration N _
eration 3 Basis: {4, 1,2} A 2 1 2 0 1 0
19 22100 1
Ar=10 2 1 b = (20, 20, 20)
0 2 2
Reduced costs ¢ = (0,0,—9,0, —2,7)
Solve ALp=cg = p=1(0,2,-7) T3
c=c—A'p=1(0,0,-9,0,—2,7)
Direction d = (—1.5,1,1,—-2.5,0,0), 45 =3
Solve ABdB — —Aj — dp = (—2.5, —1.5, 1)
T

Step 0" =4, i=14
0* = j —x;/d;) = min{4, 6.67
{iﬁlf@(z;/d;) = min{ h
New x < = + 60*d = (4,4,4,0,0,0) T1

Current point

Example v = (4,4,4,0,0,0)
lteration 4 c v =150
Basis: {3,1,2}
2 1 2
A =12 2 1
1 2 2

Reduced costs ¢ = (0,0,0,3.6,1.6,1.6)
Solve Akp=cg = p=(-3.6,-1.6,—1.6)
c=c—A"p=1(0,0,0,3.6,1.6,1.6)

Optimal
— ¥ =(4,4,4,0,0,0)

Ol
[V
-

c=(—10,—-12,-12,0,0,0)

1 2 2

A=12 1 9

2 2 1

b = (20, 20, 20)
L3

1 0 0
0 1 0

0 0 1

34

Simplex tableau implementation

Can we solve LPs by hand?

Minus
cost

Basic
variables

— —CRIp C1 ¢, <+—— Reduced costs
zp(1) \ |

— A A, AL A,
zp(1) \ |

People did it before computers were invented!

Nobody does it anymore...

35

Empirical complexity

Example with real solver
GLPK (open-source)

Code

numpy as np
CVXpPYy as Ccp

Output

.array([-10, -12, -12])
.array([[1l, 2
[2, 1

[2, 2
2

r 21,
r 21,
r 111)
0, 207)

GLPK Simplex Optimizer, v4.65
6 rows, 3 columns, 12 non-zeros

s 0: obj = 0.000000000e+00 1inf

& 3: obj = -1.360000000e+02 1inf
OPTIMAL LP SOLUTION FOUND

np.array([20,
len(c)

cp.Variable(n)
problem = cp.Problem(cp.Minimize(c @ x),
[A @ x <= b, x >= 0])
problem.solve(solver=cp.GLPK, verbose=True)

0.000e+00
0.000e+00

37

(3)
(0)

Average simplex complexity

Random LPs minimize clx n variables
subjectto Az <b 3n constraints
Iterations: O(n) Time: O(nn?) = O(n?)
8000- | —— Cubic polynomial

-------- Square polynomial

@)
-
-
-

40001

Number of iterations

DO
-
-]
-

0 250 500 750 1000 0 250 500 750
mn n

1000

38

Numerical linear algebra and simplex implementation

Today, we learned to:

* ldentify the pros and cons of different methods to solve a linear system
* Derive the computational complexity of the factor-solve method
 Implement a “realistic” version of the simplex method

 Empirically analyze the average complexity of the simplex method

39

Next lecture

* Linear optimization duality

40

