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Today’s agenda
Readings [Chapter 2, LO]

* Polyhedra and linear algebra

* Corners: extreme points, vertices, basic feasible solutions
* Constructing basic solutions

e Existence and optimality of extreme points



Polyhedra and linear algebra



Hyperplanes and half spaces

hyperplane halfspace
G={z|a" z="> H={x|a'z<b}

a

u = (b/|a]l)a

- the vector u = (b/||al|?)a satisfies a’ u = b
-z is in hyperplane G if a! (x — u) = 0 (x — u is orthogonal to a)
- x is in halfspace H if a'! (z — u) < 0 (angle Z(x — u,a) > 7/2)



Polyhedron

Definition

P={zl|la; x<b;, i=1,...,m}={x]| Az <b}

* |ntersection of finite number of halfspaces

e Can include equalities




Convex set
Definition
Forany z,y € C' and any a € |0, 1] ar+ (1 —a)yeC

Convex Not convex

Examples
. Rn
» Hyperplanes
- Halfspaces
» Polyhedra



Convex combinations

Convex combination

a1z1 + -+ agxy forany zq,...,z and aq, ..., such that o; > 0, 37 a; = 1

Convex hull

k
conv (' = {Zaixi x; € C, a>0, 110 = 1}

1=1



Linear independence

a nonempty set of vectors {v4,...,vx} is linearly indepdendent if

a1v1 + -+ apv =0

holdsonly fora; = - = a5 =0

Properties

» The coefficients oy, In a linear combination x = ayv; + - - - + v, are unique

* None of the vectors v; Is a linear combination of the other vectors



Geometrical interpretation of linear optimization

minimize ¢!z
subjectto Az <b

Dashed lines (hyperplanes) are level sets ¢! x = o for different o 9



Example of linear optimization

minimize  —x1 — o
subjectto 2z + 29 <3
r1 +4x9 <5

$120, 37220

Optimal solutions tend to be at a “corner” of the feasible set

How do we formalize 1t? 10



Corners of linear optimization



Extreme points

Definition

r € P Is said to be an extreme point of P If
Ay,ze€ P(y#x,z7#x)and a € (0,1) suchthat z = ay + (1 — a)z

12



Extreme points

Convex sets

 Convex sets can have an infinite number of extreme points

 Polyhedra are convex sets with a finite number of extreme points

13



Vertices
Definition
xr € P iIs a vertex If

c such that x is the unigue optimum of

minimize ¢’y
subjectto y e P

14



Basic feasible solution

P={z|ajz<b, i=1,...,m}
Active constraints at 7 Index of all the constraints
Z(x)={ic{l,...,m} | a; & = b;} satisfied as equality

Basic solution 7
* {a; | 1 € Z(x)} has n linearly independent vectors

Basic feasible solution z

S|

cx€EP
* {a; | © € Z(x)} has n linearly independent vectors —

15



Degenerate basic feasible solutions

A solution z is degenerate if |Z(Z)| > n

X

True or False?
Basic Feasible Degenerate \\

16



Equivalence

Theorem

Given a nonempty polyhedron P = {x | Ax < b}

Let z € P

r 1S a vertex <« x Is an extreme point «<— =z is a basic feasible solution

17



Equivalent theorem proof

Vertex — Extreme point

If x is avertex, 3csuchthatclz < cly, Yy e Py #x

Let’'s assume x Is not an extreme point:

y,z Zxsuchthatz = y+ (1 - A)zwith0 < A <1

Since x isavertex, clz < c'yandc'z < ¢!z

Therefore, ¢!z = Aely + (1 - Nl z> Ao+ (1 - Nclz=cla

— contradiction B
18



Equivalent theorem proof

Extreme point — Basic feasible solution (proof by contraposition)

Suppose = € P is not basic feasible solution

{a; | 1 € Z(x)} does not span R”

Jd € R™ perpendicular to all of them: a!d =0, Vi€ Z(x)

{ai |1 € T(a)} .



Equivalent theorem proof

Extreme point — Basic feasible solution (proof by contraposition)

Suppose = € P is not basic feasible solution

{a; | 1 € Z(x)} does not span R”

Jd € R™ perpendicular to all of them: a!d =0, Vi€ Z(x)

Lete >0and definey =x+edand z =z — ed
Fori € Z(x) we have a; y = b; and a; z = b;
Fori ¢ Z(r) we havea; z <b; = a](r+ed) <b;anda; (x—ed) <b;

Hence, y,z € Pand x = Ay + (1 — \)z with A = 0.5.
—> x is not an extreme point B -



Equivalent theorem proof

Extreme point — Basic feasible solution (proof by contraposition)

Suppose = € P is not basic feasible solution

d
i | 1€ 1(x)}

Hence, y,z € Pand x = Ay + (1 — \)z with A = 0.5.
—> x is not an extreme point -



Equivalent theorem proof

Basic feasible solution > Vertex

| eft as exercise

Hint

Define c = — ) ;. 7., @i
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How about nonlinear optimization?

Polyhedral sets

* Extreme points ol
e \ertices -

» Basic feasible solutions equivalent

extreme point
(but not vertex)

.

equivalence

Nonpolyhedral sets — Py

23



Constructing basic solutions



Standard form polyhedra

Definition Standard form polyhedron
Standard form LP P={x| Az =b, x > 0}
minimize clo L

subjectto Az =0
X Z 0 \
Assumption

A e R™*" has full row rank m < n T

Interpretation

P lives in (n — m)-dimensional subspace
25



Example of basic feasible solutions on standard form polyhedra

P={x|x14+x2+2x3=1, x>0}

* a,b, c: basic-feasible solutions

b - d: equality constraint not active

C * e: only 2 active constraints

20



Basic solutions
Standard form polyhedra

P={{x|Ax=0b, z > 0} with A € R™*"™ has full row rank m < n

Theorem
x IS a basic solution if and only if
e Ax =10
» There exist indices B(1),..., B(m) such that

— columns Ap(1),..., Apuy) are linearly independent
- x; =0fori# B(1),..., B(m)

x 1S a basic feasible solution if = is a basic solution and =z > (

27



Intuition: from geometry to standard form

minimize ¢! (xt —27)
minimize ¢’z _ B minimize ¢’z

subjectto Ar <b —— subjectto |A —A I| |z | =b — subjectto A

Variables: n =2n +m
(Equality) constraints: m = m — active

We need n — m = 2n

- = —— ] . T ~ '
For a basic solution active inequalities = z; = 0 (non basic)

Which corresponds to m inequalities inactive = z; > 0 (basic)
28



Constructing basic solution

1. Choose any m independent columns of A: Ag(1y,..., Apm)
2. Letx;, =0foralli# B(1),...,B(m)
3. Solve Ax = b for the remaining (1), .., TB(m)
Basis Basis columns Basic variables
matrix - i i
| | | TBQ)
AB — AB(l) AB(Q) c e AB(m) ] LB — —— Solve ABCEB =%
. | . ZB(m)_

If t5 > 0, then z Is a basic feasible solution
29



Finding a basic solution

1
ﬂ
S | 1| 2
T

/.

Ap(3)
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-
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Existence and optimality of
extreme points



Existence of extreme points

Example

No extreme points Extreme points

Why?

32



Existence of extreme points

Characterization

A polyhedron P contains a line if
x € P and a nonzero vector d such that x + A\d € P,V € R.

Theorem
Given a polyhedron P = {x | a; x <b;, i=1,...,m}, the following are equivalent

» P does not contain a line
» P has at least one extreme point
» n of the a; vectors are linearly independent

Corollary
Every nonempty bounded polyhedron has
at least one basic feasible solution 33



Optimality of extreme points

minimize clx
subjectto Ax <9

Theorem

i P has at least one extreme point
» There exists an optimal solution z*

Then, there exists an optimal solution which is an extreme point of P

We only need to search between extreme points
34



Proof of optimality of extreme points

Theorem

» P has at least one extreme point

LI There exists an optimal solution x*

Then, there exists an optimal solution which is an extreme point of P

Let v be the optimal value of the problem
Let X = {z | v =c'z, Az < b} be the set of optimal solutions
We havethat() # X C P — X containsnoline — X has an extreme point z*

Claim: z* is an extreme point of P
Suppose not. Then Jy,w € P with y,w # x* suchthat z* = Ay + (1 — AMwand 0 < X\ < 1.
Then, we can write the optimal value as v = cl'z* = Ay + (1 — \)cl w.

Because of optimality, we have that ¢!y > v and ¢! w > .
Then, the last equality is achieved when ¢’y = v and ¢! w = v, and y, w € X.
—> ¥ Is not an extreme point of X (contradiction). B

35



How to search among basic feasible solutions?

Idea
List all the basic feasible solutions, compare objective values and pick the best one.

Intractable!

If n = 1000 and m = 100, we have 10'*3 combinations!
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Conceptual algorithm

e Start at corner

* Visit neighboring corner that
Improves the objective

37



Geometry of linear optimization

Today, we learned to:

* Apply geometric and algebraic properties of polyhedra to characterize the
“corners” of the feasible region.

 Construct basic feasible solutions by solving a linear system.

 Recognize existence and optimality of extreme points.
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Next lecture

The simplex method

e |terations
 Convergence

o Complexity
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