ORF522 – Linear and Nonlinear Optimization

3. Geometry and polyhedra

Today's agenda

Readings [Chapter 2, LO]

- Polyhedra and linear algebra
- Corners: extreme points, vertices, basic feasible solutions
- Constructing basic solutions
- Existence and optimality of extreme points

Polyhedra and linear algebra

Hyperplanes and half spaces

hyperplane

$$G = \{x \mid a^T x = b\}$$

halfspace

$$H = \{x \mid a^T x \le b\}$$

- the vector $u=(b/\|a\|^2)a$ satisfies $a^Tu=b$
- x is in hyperplane G if $a^T(x-u)=0$ (x-u is orthogonal to a)
- x is in halfspace H if $a^T(x-u) \leq 0$ (angle $\angle(x-u,a) \geq \pi/2$)

Polyhedron

Definition

$$P = \{x \mid a_i^T x \le b_i, \quad i = 1, \dots, m\} = \{x \mid Ax \le b\}$$

- Intersection of finite number of halfspaces
- Can include equalities

Convex set

Definition

For any $x, y \in C$ and any $\alpha \in [0, 1]$

$$\alpha x + (1 - \alpha)y \in C$$

Not convex

Examples

- \mathbf{R}^n
- Hyperplanes
- Halfspaces
- Polyhedra

Convex combinations

Convex combination

$$\alpha_1 x_1 + \cdots + \alpha_k x_k$$
 for any x_1, \ldots, x_k and $\alpha_1, \ldots, \alpha_k$ such that $\alpha_i \geq 0, \sum_{i=1}^k \alpha_i = 1$

Convex hull

$$\operatorname{conv} C = \left\{ \sum_{i=1}^{k} \alpha_i x_i \mid x_i \in C, \ \alpha \ge 0, \ \mathbf{1}^T \alpha = 1 \right\}$$

Linear independence

a nonempty set of vectors $\{v_1,\ldots,v_k\}$ is linearly independent if

$$\alpha_1 v_1 + \dots + \alpha_k v_k = 0$$

holds only for $\alpha_1 = \cdots = \alpha_k = 0$

Properties

- The coefficients α_k in a linear combination $x = \alpha_1 v_1 + \cdots + \alpha_k v_k$ are unique
- None of the vectors v_i is a linear combination of the other vectors

Geometrical interpretation of linear optimization

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$

Example of linear optimization

minimize $-x_1-x_2$ subject to $2x_1+x_2\leq 3$ $x_1+4x_2\leq 5$ $x_1\geq 0,\; x_2\geq 0$

Optimal solutions tend to be at a "corner" of the feasible set

Corners of linear optimization

Extreme points

Definition

 $x \in P$ is said to be an **extreme point** of P if

$$\exists y, z \in P \ (y \neq x, z \neq x)$$
 and $\alpha \in (0,1)$ such that $x = \alpha y + (1-\alpha)z$

Extreme points

Convex sets

- Convex sets can have an infinite number of extreme points
- Polyhedra are convex sets with a finite number of extreme points

Vertices

Definition

 $x \in P$ is a **vertex** if $\exists c$ such that x is the unique optimum of

 $\begin{array}{ll} \text{minimize} & c^T y \\ \text{subject to} & y \in P \end{array}$

Basic feasible solution

$$P = \{x \mid a_i^T x \le b_i, \quad i = 1, \dots, m\}$$

Active constraints at \bar{x}

$$\mathcal{I}(\bar{x}) = \{i \in \{1, \dots, m\} \mid a_i^T \bar{x} = b_i\}$$

Index of all the constraints satisfied as equality

Basic solution \bar{x}

• $\{a_i \mid i \in \mathcal{I}(\bar{x})\}$ has n linearly independent vectors

Basic feasible solution \bar{x}

- $\bar{x} \in P$
- $\{a_i \mid i \in \mathcal{I}(\bar{x})\}$ has n linearly independent vectors

Degenerate basic feasible solutions

A solution \bar{x} is degenerate if $|\mathcal{I}(\bar{x})| > n$

True or False?

	Basic	Feasible	Degenerate
\boldsymbol{x}			
y			
z			

Equivalence

Theorem

Given a nonempty polyhedron $P = \{x \mid Ax \leq b\}$

Let $x \in P$

x is a vertex $\iff x$ is an extreme point $\iff x$ is a basic feasible solution

Vertex \Longrightarrow **Extreme point**

If x is a vertex, $\exists c$ such that $c^T x < c^T y$, $\forall y \in P, y \neq x$

Let's assume x is not an extreme point:

$$\exists y,z\neq x \text{ such that } x=\lambda y+(1-\lambda)z \text{ with } 0<\lambda<1$$

Since x is a vertex, $c^Tx < c^Ty$ and $c^Tx < c^Tz$

Therefore,
$$c^Tx=\lambda c^Ty+(1-\lambda)c^Tz>\lambda c^Tx+(1-\lambda)c^Tx=c^Tx$$

contradiction

Extreme point \Longrightarrow Basic feasible solution

(proof by contraposition)

Suppose $x \in P$ is not basic feasible solution

 $\{a_i \mid i \in \mathcal{I}(x)\}\ \text{does not span }\mathbf{R}^n$

 $\exists d \in \mathbf{R}^n$ perpendicular to all of them: $a_i^T d = 0$, $\forall i \in \mathcal{I}(x)$

Extreme point \Longrightarrow Basic feasible solution

(proof by contraposition)

Suppose $x \in P$ is not basic feasible solution

$$\{a_i \mid i \in \mathcal{I}(x)\}\ \text{does not span }\mathbf{R}^n$$

 $\exists d \in \mathbf{R}^n$ perpendicular to all of them: $a_i^T d = 0$, $\forall i \in \mathcal{I}(x)$

Let $\epsilon > 0$ and define $y = x + \epsilon d$ and $z = x - \epsilon d$

For $i \in \mathcal{I}(x)$ we have $a_i^T y = b_i$ and $a_i^T z = b_i$

For $i \notin \mathcal{I}(x)$ we have $a_i^T x < b_i \implies a_i^T (x + \epsilon d) < b_i$ and $a_i^T (x - \epsilon d) < b_i$

Hence, $y, z \in P$ and $x = \lambda y + (1 - \lambda)z$ with $\lambda = 0.5$.

 $\implies x$ is not an extreme point

Extreme point \Longrightarrow Basic feasible solution

(proof by contraposition)

Suppose $x \in P$ is not basic feasible solution

Hence, $y, z \in P$ and $x = \lambda y + (1 - \lambda)z$ with $\lambda = 0.5$.

 $\implies x$ is not an extreme point

Basic feasible solution \implies Vertex

Left as exercise

Hint

Define
$$c = -\sum_{i \in \mathcal{I}(x)} a_i$$

How about nonlinear optimization?

Polyhedral sets

- Extreme points
- Vertices
- Basic feasible solutions

all equivalent extreme point (but not vertex)

Nonpolyhedral sets — equivalence fails!

Constructing basic solutions

Standard form polyhedra

Definition

Standard form LP

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$

Assumption

 $A \in \mathbf{R}^{m \times n}$ has full row rank $m \leq n$

Interpretation

P lives in (n-m)-dimensional subspace

Standard form polyhedron

$$P = \{x \mid Ax = b, \ x \ge 0\}$$

Example of basic feasible solutions on standard form polyhedra

$$P = \{x \mid x_1 + x_2 + x_3 = 1, \quad x \ge 0\}$$

- a, b, c: basic-feasible solutions
- d: equality constraint not active
- e: only 2 active constraints

Basic solutions

Standard form polyhedra

$$P = \{x \mid Ax = b, x \ge 0\}$$

with

 $A \in \mathbf{R}^{m \times n}$ has full row rank $m \leq n$

Theorem

x is a **basic solution** if and only if

- Ax = b
- There exist indices $B(1), \ldots, B(m)$ such that
 - columns $A_{B(1)}, \ldots, A_{B(m)}$ are linearly independent
 - $x_i = 0$ for $i \neq B(1), \dots, B(m)$

x is a basic feasible solution if x is a basic solution and x > 0

Intuition: from geometry to standard form

Variables: $\tilde{n} = 2n + m$

(Equality) constraints: $\tilde{m} = m \Longrightarrow \text{active}$

We need $\tilde{n} - \tilde{m} = 2n$ active inequalities $\Rightarrow \tilde{x}_i = 0$ (non basic)

Which corresponds to m inequalities inactive $\Rightarrow \tilde{x}_i > 0$ (basic)

Constructing basic solution

- 1. Choose any m independent columns of A: $A_{B(1)}, \ldots, A_{B(m)}$
- 2. Let $x_i = 0$ for all $i \neq B(1), ..., B(m)$
- 3. Solve Ax = b for the remaining $x_{B(1)}, \ldots, x_{B(m)}$

Basis Basis columns Basic variables matrix
$$A_B = \begin{bmatrix} & & & & \\ & A_{B(1)} & A_{B(2)} & \dots & A_{B(m)} \\ & & & & \end{bmatrix}, \quad x_B = \begin{bmatrix} x_{B(1)} \\ \vdots \\ x_{B(m)} \end{bmatrix} \longrightarrow \text{Solve } A_B x_B = b$$

If $x_B \ge 0$, then x is a basic feasible solution

Finding a basic solution

$$\begin{bmatrix} 1 \\ -1 \\ 6 \end{bmatrix}$$

$$x_B = \begin{bmatrix} x_2 \\ x_4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \ge 0$$
 $\begin{bmatrix} x_5 \end{bmatrix}$

Existence and optimality of extreme points

Existence of extreme points

Example

No extreme points

Extreme points

Why?

Existence of extreme points

Characterization

A polyhedron P contains a line if

 $\exists x \in P \text{ and a nonzero vector } d \text{ such that } x + \lambda d \in P, \forall \lambda \in \mathbf{R}.$

Theorem

Given a polyhedron $P = \{x \mid a_i^T x \leq b_i, i = 1, ..., m\}$, the following are equivalent

- P does not contain a line
- P has at least one extreme point
- n of the a_i vectors are linearly independent

Corollary

Every nonempty bounded polyhedron has at least one basic feasible solution

Optimality of extreme points

minimize subject to Ax < b

Theorem

• P has at least one extreme point • There exists an optimal solution x^\star

Then, there exists an optimal solution which is an extreme point of P

We only need to search between extreme points

Proof of optimality of extreme points

Theorem

- If P has at least one extreme point There exists an optimal solution x^\star

Then, there exists an optimal solution which is an **extreme point** of ${\cal P}$

Let v be the optimal value of the problem

Let $X = \{x \mid v = c^T x, Ax \leq b\}$ be the set of optimal solutions

We have that $\emptyset \neq X \subseteq P \implies X$ contains no line $\implies X$ has an extreme point x^\star

Claim: x^* is an extreme point of P

Suppose not. Then $\exists y, w \in P$ with $y, w \neq x^*$ such that $x^* = \lambda y + (1 - \lambda)w$ and $0 < \lambda < 1$.

Then, we can write the optimal value as $v = c^T x^* = \lambda c^T y + (1 - \lambda)c^T w$.

Because of optimality, we have that $c^T y \geq v$ and $c^T w \geq v$.

Then, the last equality is achieved when $c^T y = v$ and $c^T w = v$, and $y, w \in X$.

 $\implies x^*$ is not an extreme point of X (contradiction).

How to search among basic feasible solutions?

Idea

List all the basic feasible solutions, compare objective values and pick the best one.

Intractable!

If n = 1000 and m = 100, we have 10^{143} combinations!

Conceptual algorithm

- Start at corner
- Visit neighboring corner that improves the objective

Geometry of linear optimization

Today, we learned to:

- Apply geometric and algebraic properties of polyhedra to characterize the "corners" of the feasible region.
- Construct basic feasible solutions by solving a linear system.
- Recognize existence and optimality of extreme points.

Next lecture The simplex method

- Iterations
- Convergence
- Complexity