ORF522 – Linear and Nonlinear Optimization

1. Introduction

What is this course about?

The mathematics behind making optimal decisions

Finance

Variables

Amounts invested in each asset

Constraints

Budget, investment per asset, minimum return, etc.

Objective

Maximize profit, minus risk

Optimal control

Variables

Inputs: thrust, flaps, etc.

Constraints

System limitations, obstacles, etc.

Objective

Minimize distance to target and fuel consumption

Machine learning

Variables

Model parameters

Constraints

Prior information, parameter limits

Objective

Minimize prediction error, plus regularization

Mathematical optimization

minimize
$$f(x)$$
 subject to $g_i(x) \leq 0, \quad i = 1, \dots, m$

$$x = (x_1, \dots, x_n)$$
 Variables

$$f: \mathbf{R}^n \to \mathbf{R}$$
 Objective function

$$g_i: \mathbf{R}^n \to \mathbf{R}$$
 Constraint functions

 x^* Solution/Optimal point $f(x^*)$ Optimal value

Most optimization problems cannot be solved

Solving optimization problems

General case ——— Very hard!

Compromises

- Long computation times
- Not finding the solution (in practice it may not matter)

Exceptions

- Linear optimization
- Convex optimization

Can be solved very efficiently and reliably

Meet your teaching staff

Instructor

Bartolomeo Stellato

I am a Professor at ORFE. I obtained my PhD from Oxford and I was a postdoc at MIT.

email: <u>bstellato@princeton.edu</u>

office hours: Thu 2pm—4pm EST, Sherred 123

website: stellato.io

Assistant in instruction

Yanjun Liu

PhD student at ORFE.

email: yanjun.liu@princeton.edu

office hours: Mon 4:30pm — 6:30pm EST, Sherrerd 003

Meet your classmates!

Name? Year?

Where are you from?

What is your department?

What do you want to use optimization for?

Today's agenda

- Optimization problems
- History of optimization
- Course contents and information
- A glance into modern optimization

Linear optimization

minimize
$$c^Tx$$
 subject to $a_i^Tx \leq b_i, \quad i=1,\ldots,m$

No analytical formula (99% of the time there will be none in this course!)

Efficient algorithms and software we can solve problems with several thousands of variables and constraints

Extensive theory (duality, degeneracy, sensitivity)

Linear optimization

Example: resource allocation

maximize
$$\sum_{i=1}^n c_i x_i$$
 subject to $\sum_{i=1}^n a_{ji} x_i \leq b_j, \quad j=1,\ldots,m$ $x_i \geq 0, \quad i=1,\ldots,n$

- c_i : profit per unit of product i shipped
- b_i : units of raw material j on hand
- a_{ji} : units of raw material j required to produce on unit of product i

Nonlinear optimization

```
minimize f(x) subject to g_i(x) \leq 0, \quad i = 1, \dots, m
```

Hard to solve in general

- multiple local minima
- discrete variables $x \in \mathbb{Z}^n$
- hard to certify optimality

Convex optimization

convex functions

nonnegative (upward) curvature

minimize
$$f(x)$$
 subject to $g_i(x) \leq 0, \quad i = 1, \dots, m$

All local minima are global!

Efficient algorithms and software

Extensive theory (convex analysis and conic optimization) [ORF523]

Used to solve non convex problems

Prehistory of optimization

Calculus of variations

Fermat/Newton

minimize $f(x), x \in \mathbf{R}$

$$\frac{\mathrm{d}f(x)}{\mathrm{d}x} = 0$$

Euler

minimize $f(x), x \in \mathbf{R}^n$

 $\nabla f(x) = 0$

Lagrange

minimize f(x)

subject to g(x) = 0

1670

1755

1797

Time

History of optimization

			Algorithms	Age of computers	
Origin of linear optimization (Kantorovich, Koopmans, von Neumann)	Simp algorit (Dant	thm methods		Large-scale optimization	
1930s	194	7 1984		2000s	
Applications					
Operations Research Economics		Engineering Statistics	Machine learning Image processing Communication systems Embedded intelligent systems		
			1990s	2000s	▶ 17

Technological innovations

Lots of data

easy storage and transmission

Massive computations

computers are super fast

High-level programming languages

easy to do complex stuff

What is happening today?

Huge scale optimization

Massive data

Massive computations

Real-time optimization

Fast real-time requirements

Low-cost computing platforms

Renewed interest in old methods (70s)

- Subgradient methods
- Proximal algorithms

- Cheap iterations
- Simple implementation

Contents of this course

Linear optimization

- Modeling and applications
- Geometry
- Simplex method
- Duality and sensitivity analysis

Large-scale convex optimization

- Modeling and applications
- Optimality conditions
- First-order methods
- Operator-splitting algorithms
- Acceleration schemes
- Computer-aided analysis

Nonconvex and stochastic optimization

- Sequential convex programming
- Branch and bound algorithms
- Robust optimization
- Distributionally robust optimization

Course information

Grading

- 30% Homeworks
 5 bi-weekly homeworks with coding component. Collaborations are encouraged!
- 30% Midterm
 90 minutes written exam in class. No collaborations.

40% Final
 Take-home assignment with coding component. No collaborations.

Course information

Course website

https://stellato.io/teaching/orf522

Prerequisites

 Good knowledge of linear algebra and calculus.

For a refresher, read Appendices A & C of [CO] Boyd, Vandenberghe: *Convex Optimization* (available **online**).

Familiarity with Python.

Course information Main books

Linear optimization

- [LP] R. J. Vanderbei: Linear Programming: Foundations & Extensions (available on SpringerLink)
- [LO] D. Bertsimas, J. Tsitsiklis: Introduction to Linear Optimization (available Princeton Controlled Digital Lending)

Large-scale convex optimization

- [NO] J. Nocedal, S. J. Wright: *Numerical Optimization* (available on **SpringerLink**)
- [CO] S. Boyd, L. Vandenberghe: *Convex Optimization* (available for **free**)
- [FMO] A. Beck: First-order methods in optimization (available on SIAM)
- [LSMO] E. K. Ryu and W. Yin: Large-Scale Convex Optimization via Monotone Operators (available for free)

Software (open-source)

Numerical computations

Numerical computations on *numpy* and *scipy*.

CVXPY

```
\begin{array}{ccc} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}
```

Learning goals

 Model your favorite decision-making problems as mathematical optimization problems.

 Apply the most appropriate optimization tools when faced with a concrete problem.

• Implement optimization algorithms and prove their convergence.

Glance into modern optimization

Huge scale optimization

Dataset with billions of datapoints (x^i, y^i) ——— Goal: Design predictor $\hat{y}^i = g_{\theta}(x^i)$

Optimization problem

Loss Regularizer

minimize
$$\mathcal{L}(\theta) + \lambda r(\theta) = \sum_{i=1}^{n} \ell(\hat{y}^i, y^i) + \lambda r(\theta)$$

Many examples

- Support vector machines
- Regularized regression
- Neural networks

Large-scale computing

- Parallel
- Distributed

How large are the largest problems we can solve? (how many variables?)

Glance into modern optimization

Real-time optimization

Dynamical system: $x_{t+1} = Ax_t + Bu_t$

 $x_t \in \mathbf{R}^n$: state $u_t \in \mathbf{R}^m$: input

Goal: track trajectory minimize
$$\sum_{t=0}^{T} \|x_t - x_t^{\text{des}}\|$$

Constraints: inputs $||u|| \le U$, states $a \le x_t \le b$

Solve and repeat.....

How fast can we solve these problems?

1-norm
$$\longrightarrow$$
 ???
∞-norm \longrightarrow ???

Next lecture Linear optimization

- Definitions
- Modelling
- Formulations
- Examples