ORF307 – Optimization

16. Network optimization

Recap

Primal and dual basic feasible solutions

Primal problem

Dual problem

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x > 0 \end{array}$$

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c \geq 0 \end{array}$$

Given a **basis** matrix A_B

Primal feasible: $Ax = b, x \ge 0 \implies x_B = A_B^{-1}b \ge 0$

$$Ax = b, x \ge 0$$

$$\Rightarrow$$

$$x_B = A_B^{-1}b \ge 0$$

Reduced costs

Dual feasible: $A^Ty + c \ge 0$. Set $y = -A_B^{-T}c_B$. Dual feasible if $\overline{c} = c + A^Ty \ge 0$

Zero duality gap: $c^T x + b^T y = c_B^T x_B - b^T A_B^{-T} c_B = c_B x_B - c_B^T A_B^{-1} b = 0$

Optimal value function

$$p^{\star}(u) = \min\{c^{T}x \mid Ax = b + u, \ x \ge 0\}$$

Assumption: $p^*(0)$ is finite

Properties

- $p^{\star}(u) > -\infty$ everywhere (from global lower bound)
- $p^{\star}(u)$ is piecewise-linear on its domain

Optimal value function is piecewise linear

Proof

$p^{\star}(u) = \min\{c^T x \mid Ax = b + u, \ x \ge 0\}$

Dual feasible set

$$D = \{ y \mid A^T y + c \ge 0 \}$$

Assumption: $p^*(0)$ is finite

If
$$p^{\star}(u)$$
 finite
$$p^{\star}(u) = \max_{y \in D} -(b+u)^T y = \max_{k=1,...,r} -y_k^T u - b^T y_k$$

 y_1, \ldots, y_r are the extreme points of D

Derivative of the optimal value function

Modified optimal solution

$$x_B^*(u) = A_B^{-1}(b+u) = x_B^* + A_B^{-1}u$$

 $y^*(u) = y^*$

Optimal value function

$$p^{\star}(u) = c^{T}x^{\star}(u)$$

$$= c^{T}x^{\star} + c_{B}^{T}A_{B}^{-1}u$$

$$= p^{\star}(0) - y^{\star T}u \qquad \text{(affine for small } u\text{)}$$

Local derivative

$$\nabla p^{\star}(u) = -y^{\star}$$
 (y* are the shadow prices)

Today's lecture

Network optimization

- Network flows
- Minimum cost network flow problem
- Network flow solutions
- Examples: maximum flow, shortest path, assignment

Network flows

Networks

- Electrical and power networks
- Road networks
- Airline routes
- Printed circuit boards
- Social networks

Network modelling

A **network** (or *directed graph*, or *digraph*) is a set of m nodes and n directed arcs

- Arcs are ordered pairs of nodes (a, b) (leaves a, enters b)
- **Assumption** there is at most one arc from node a to node b
- There are no loops (arcs from a to a)

Arc-node incidence matrix

 $m \times n$ matrix A with entries

$$A_{ij} = \begin{cases} 1 & \text{if arc } j \text{ starts at node } i \\ -1 & \text{if arc } j \text{ ends at node } i \end{cases}$$
 otherwise

Note Each column has one -1 and one 1

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & -1 \\ -1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & -1 & -1 & -1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \end{bmatrix}$$

Network flow

flow vector $x \in \mathbf{R}^n$

 x_j : flow (of material, traffic, information, electricity, etc) through arc j

total flow leaving node i

$$\sum_{j=1}^{n} A_{ij} x_j = (Ax)_i$$

External supply

supply vector $b \in \mathbf{R}^m$

- b_i is the external supply at node i (if $b_i < 0$, it represents demand)
- We must have $\mathbf{1}^T b = 0$ (total supply = total demand)

Balance equations

$$\sum_{j=1}^{n} A_{ij} x_j = \underbrace{(Ax)_i}_{j=1} = b_i, \text{ for all } i$$
 Total leaving Supply flow

$$Ax = b$$

Minimum cost network flow problem

Minimum cost network flow problem

minimize
$$c^Tx$$
 subject to $Ax = b$
$$0 \le x \le u$$

- c_i is unit cost of flow through arc i
- Flow x_i must be nonnegative
- u_i is the maximum flow capacity of arc i
- Many network optimization problems are just special cases

Example

Transportation

Goal ship $x \in \mathbb{R}^n$ to satisfy demand

(arc costs shown) All capacities 20

$$C = (5, 6, 8, 4, 3, 9, 3, 6)$$

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ -1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & -1 & 0 & -1 & -1 & 0 \end{bmatrix}$$

$$b = (7, 11, 18, 12, -10, -23, -15)$$

 $u = 20 1$

Minimum cost network flow

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & 0 \leq x \leq u \end{array}$$

$$x^* = (7, 0, 3, 0, 8, 18, 5, 7)$$

Example

Airline passenger routing

- United Airlines has 5 flights per day from BOS to NY (10am, 12pm, 2pm, 4pm, 6pm)
- Flight capacities
 (100, 100, 100, 150, 150)
- Costs: \$50/hour of delay
- Last option: 9pm flight with other company (additional cost \$75)
- Today's reservations (110, 118, 103, 161, 140)

Airline passenger routing

Network flow formulation

minimize $c^T x$

subject to Ax = b

 $0 \le x \le u$

Decisions

 x_j : passengers flowing on arc j

Costs

 c_j : cost of moving passenger on arc j

- Between flights: \$50/hour
- To 9pm flight: \$75 additional
- To NY: \$0 (as scheduled)

Supplies

 b_i reserved passengers for flight i

- 9pm flight: $b_i = 0$
- NY supply: total reserved passeng.

Capacities

 u_j maximum passengers over arc j

- Between flights: $u_j = \infty$
- To NY: u_i = flight capacity

Network flow solutions

Remove arc capacities

Goal: create equivalent network without arc capacities

Remove arc capacities

Idea: slack variables

$$x_j \le u_j \quad \Rightarrow \quad x_j + s_j = u_j, \ s_j \ge 0$$

 $\cdots + x_j \dots = b_p$

 $x_i + s_j = u_j$

 $\cdots - x_j \ldots = b_q \qquad) x_j = u_j - s_j$

Network structure lost no longer one -1 and one 1 per column

Network structure
$$\cdots - s_j = b_p$$
 recovered $\cdots - x_j \ldots = b_q$ (new node and new arc) $x_j + s_j = u_j$

Nodes/arcs interpretation

Equivalent uncapacitated network flow

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$

- A still an arc-node incidence matrix
- Can we say something about the extreme points?

Total unimodularity

A matrix is **totally unimodular** if all its minors are -1,0 or 1 (minor is the determinant of a square submatrix of A)

example: a node-arc incidence matrix of a directed graph

$$A = \begin{bmatrix} 1 & 0 & -1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 & -1 & 0 \\ -1 & -1 & 0 & 1 & 0 & -1 \end{bmatrix}$$

properties

- the entries of A_{ij} (i.e., its minors of order 1) are -1, 0, or 1
- The inverse of any nonsingular square submatrix of A has entries +1, -1, or 0

Integrality theorem

Given a polyhedron

$$P = \{x \in \mathbf{R}^n \mid Ax = b, \quad x \ge 0\}$$

where

- \bullet A is totally unimodular
- ullet b is an integer vector

all the extreme points of P are integer vectors.

Proof

- All extreme points are basic feasible solutions with $x_B=A_B^{-1}b$ and $x_i=0,\ i\neq B$
- A_B^{-1} has integer components because of total unimodularity of A
- b has also integer components
- Therefore, also x is integral

Implications for network and combinatorial optimization

Minimum cost network flow

$$\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax = b \\ & 0 \leq x \leq u \end{array}$$

If b and u are integral solutions x^{\star} are integral

Integer linear programs

minimize
$$c^Tx$$
 subject to $Ax = b$
$$0 \le x \le u$$

$$x \in \mathbf{Z}^n$$

Very difficult in general (more on this in a few weeks)

If A totally unimodular and b,u integral, we can relax integrality and solve a fast LP instead

Examples

Maximum flow problem

Goal maximize flow from node 1 (source) to node m (sink) through the network

maximize

subject to
$$Ax = te$$

$$0 \le x \le u$$

$$e = (1, 0, \dots, 0, -1)$$

Maximum flow as minimum cost flow

minimize
$$-t$$
 subject to $\begin{bmatrix} A & -e \end{bmatrix} \begin{bmatrix} x \\ t \end{bmatrix} = 0$

$$0 \le \begin{bmatrix} x \\ t \end{bmatrix} \le \begin{bmatrix} u \\ \infty \end{bmatrix}$$

Maximum flow example

First flow

Second flow

(arc capacities shown)

Third flow

Total flow: 19

Shortest path problem

Goal Find the shortest path between nodes 1 and m

paths can be represented as vectors $x \in \{0,1\}^n$

Formulation

minimize
$$c^T x$$

subject to
$$Ax = e$$

$$x \in \{0, 1\}^n$$

- c_j is the "length" of arc j
- $e = (1, 0, \dots, 0, -1)$
- Variables are binary (include or not arc in path)

Shortest path as minimum cost flow

minimize c^Tx subject to Ax = e $x \in \{0,1\}^n$

Relaxation

minimize $c^T x$ subject to Ax = e

Extreme points satisfy $x_i \in \{0, 1\}$

Example (arc costs shown)

$$c = (11, 8, 10, 12, 4, 11, 7, 15, 4)$$

 $x^* = (0, 1, 0, 0, 0, 1, 0, 0, 1)$
 $c^T x^* = 24$

Assignment problem

Goal match N persons to N tasks

- Each person assigned to one task, each task to one person
- C_{ij} Cost of matching person i to task j

LP formulation

$$\begin{array}{c} \underset{i,j=1}{\mathsf{minimize}} & \sum_{i,j=1}^{N} C_{ij} X_{ij} \\ & N \end{array}$$

subject to
$$\sum_{i=1}^{N} X_{ij} = 1, \quad j = 1, \ldots, N$$

$$\sum_{j=1}^{N} X_{ij} = 1, \quad i = 1, \dots, N$$
 $X_{ij} \in \{0, 1\}$

How do you define the network?

Task assignment as minimum cost network flow

$$c = (5, 6, 2, 8, 1, 3, 4, 3, 9)$$

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ -1 & 0 & 0 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 & -1 & 0 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 & -1 & 0 & 0 & -1 \end{bmatrix}$$

$$b = (1, 1, 1, -1, -1, -1)$$

Minimum cost network flow

minimize $c^T x$ subject to Ax = b

Extreme points satisfy $x_i \in \{0, 1\}$

 $0 \le x \le 1$

Optimal solution

$$x^* = (0, 0, 1, 0, 1, 0, 0, 0, 1)$$

 $c^T x^* = 7$

Network optimization

Today, we learned to:

- Model flows across networks
- Formulate minimum cost network flow problems
- Analyze network flow problem solutions (integrality theorem)
- Formulate maximum-flow, shortest path, and assignment problems as minimum cost network flows

References

- D. Bertsimas and J. Tsitsiklis: Introduction to Linear Optimization
 - Chapter 7: Network flow problems

- R. Vanderbei: Linear Programming
 - Chapter 14: Network Flow Problems
 - Chapter 15: Applications

Next lecture

Interior point algorithms