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Primal and dual basic feasible solutions

Primal problem Dual problem
minimize clx maximize —bTy
subjectto Az = subjectto ATy + ¢ >0

xr > 0

Given a basis matrix Ag

_ _ i Reduced costs
Primal feasible: Az =0, t >0 = xp=A502>0 /

Dual feasible: A"y +c¢>0. Sety= Ay  cp. Dualfeasibleifc =c+ ATy >0
Zero duality gap: ¢!z + by = chB — bTAchB — CpXp — ch];lb — 0

T

(by construction)



Optimal value function
p*(vw) =min{c' z | Az =b+u, x >0}
Assumption: p*(0) is finite

Properties

* p*(u) > —oo everywhere (from global lower bound)

» p*(u) is piecewise-linear on its domain



Optimal value function is piecewise linear

Proof
Dual feasible set

p*(u) = min{c'z | Az =b+u, x> 0} D={y|A'y+c>0}

Assumption: p*(0) is finite

If p*(u) finite

X0\ _ (b T, _ 0Ty — T
pr(u) =max—(b+u)y = max —ygu-—b y

v1,...,Y, are the extreme points of D



Derivative of the optimal value function

Modified optimal solution
v (u) = A (b+u) = 2% + Ag'u
y (u) =y

Optimal value function

p*(u) = c z*(u)

=c'a* + cg ALl u

= p*(0) — y*Tu (affine for small u)

Local derivative

Vp*(u) = —y* (y* are the shadow prices)



Today'’s lecture

Network optimization

e Network flows
 Minimum cost network flow problem
e Network flow solutions

 Examples: maximum flow, shortest path, assignment



Network flows




Networks

* Electrical and power networks
 Road networks

* Airline routes

* Printed circuit boards

e Social networks
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Network modelling

A network (or directed graph, or digraph)
IS a set of m nodes and n directed arcs

» Arcs are ordered pairs of nodes (a, b)
(leaves a, enters b)

» Assumption there is at most one arc
from node a to node b

» There are no loops (arcs from a to a)
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Arc-node incidence matrix

m X n matrix A with entries

1 If arc 7 starts at node

Aij — —1
0 otherwise

Note Each column has
one —1 and one 1

If arc j ends at node 1

—1

o O = O O

o = O O

o O O O =




Network flow

flow vector r € R"®

z ;. flow (of material, traffic, information, electricity, etc)
through arc j

total flow leaving node ¢

> Aijzj = (Ax);
j=1
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External supply

supply vector b € R™

» b; IS the external supply at node ¢
(if b; < O, it represents demand)
» We must have 1715 = 0

(total supply = total demand)

Balance equations

ZAZJQJJ — — b;, foralli

7=1 / \

Total leaving Supply
flow

Axr =0
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Minimum cost network flow problem



Minimum cost network flow problem

minimize c¢lx
subjectto Ax =10
0<zxx<u

* ¢; Is unit cost of flow through arc :
* Flow x; must be nonnegative
» u; I1s the maximum flow capacity of arc ¢

» Many network optimization problems are just special cases
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c=(5,6,8,4,3,9,3,6)

1 1 0 0 0 0 0

Example C 0 1 1 1 0 o
Transportation o 0 0 0 0 1 0
A=10 0 0 0 0 0 1

Goal ship x € R" to satisfy demand 10 -1 0 0 0 0
Supply Demand 0 -1 0 -1 0 -1 -1

0 0 0O 0 -1 0 0

b= (7,11,18,12,—-10,—23, —15)
u=201

Minimum cost network flow

minimize ¢!z

subjectto Az =0
0<zx<u

(arc costs shown)
All capacities 20 r* = (7,0,3,0,8,18,5,7) 16

o O = O O O




Example

Airline passenger routing

* United Airlines has 5 flights per day
from BOS to NY
(10am, 12pm, 2pm, 4pm, 6pm)

* Flight capacities
(100, 100, 100, 150, 150)

e Costs: $50/hour of delay

e |ast option: 9pm flight with other
company (additional cost $75)

 [oday’s reservations
(110, 118, 103, 161, 140)




Airline passenger routing

Network

10am

/ \
& 4\
pm
'@
Network flow formulation
minimize ¢!z

subjectto Az =10
0<x<u

Decisions
z ;. passengers flowing on arc j

Costs
c;: cost of moving passenger on arc j

+ Between flights: $50/hour
» To 9pm flight: $75 additional
* To NY: $0 (as scheduled)

Supplies
b; reserved passengers for flight ;

* 9pm flight: ; =0
* NY supply: - total reserved passeng.

Capacities
w; Maximum passengers over arc j

 Between flights: u; = o

» To NY: u; = flight capacity
18



Network flow solutions




Remove arc capacities

Goal: create equivalent network without arc capacities

minimize ¢’z minimize 6~Ti ~ Standard form
subjectto Ax =10 —_— subjectto Ax =b LP with arc-node
0< 1< u >0 iIncidence matrix

20



$j<Uj m—

e T XL =
Network structure lost -
no longer one —1 R R
and one 1 per column T+ 8; = u,

Network structure
recovered

(hew node and new arc)

Remove arc capacities

ldea: slack variables

Nodes/arcs
Interpretation

N
O—0O
b, b,
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Equivalent uncapacitated network flow

minimize 'z

subjectto Az =0
r > 0

» A still an arc-node incidence matrix
« Can we say something about the extreme points?
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Total unimodularity

A matrix is totally unimodular if all its minors are —1,0 or 1
(minor is the determinant of a square submatrix of A)

example: a node-arc incidence n o o 1 0 1 0
matrix of a directed graph o 1 0 -1 -1 0

properties

- the entries of A;; (i.e., its minors of order 1) are —1,0, or 1
» The inverse of any nonsingular square submatrix
of A has entries +1, —1, or
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Integrality theorem
Given a polyhedron P={zceR"|Az =0, x>0}

where
» A Is totally unimodular all the extreme points of P
* b IS an Integer vector are integer vectors.

Proof

» All extreme points are basic feasible solutions
with xg = Az'band z; =0, i # B
- A" has integer components because of total unimodularity of A
* b has also integer components
 Therefore, also z Is integral B
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Implications for network and combinatorial optimization

Minimum cost network flow
T

minimize c¢'«x _
hiectto Ar — b If b and u are integral
SUbJect 10 Ar = solutions =* are integral
0<x<u
Integer linear programs Very difficult in general

(more on this in a few weeks)

minimize ¢z

subjectto Az =0
0<zx<u
x e 4"

If A totally unimodular

and b, u Integral, we can

relax integrality and solve

a fast LP instead 25



Examples



Maximum flow problem

Goal maximize flow from node 1 (source)
to node m (sink) through the network

/\@

subject to A:C — te e=(1,0,...,0,—1)
0<x<u
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Maximum flow as minimum cost flow

oY i

p
\ Artificial arc n + 1

minimize  —t
: i 1 XL
subjectto |A —e¢ T 0
L _u_
)< <




(arc capacities shown)
12
11 / ‘ 15

a 1w o Tm

First flow 1

Maximum flow example

11

11

Third flow

4/11

Second flow

11/12

4/11

Total flow: 19
11 29




Shortest path problem

Goal Find the shortest path between nodes 1 and m

/<> - paths can be represented
\/\ as vectors z € {0,1}"

Formulation . ¢; is the “length” of arc j
minimize ¢!z » ¢e=(1,0,...,0,—1)
subjectto Az = e - Variables are binary

r € {0,11" (include or not arc in path)
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Shortest path as minimum cost flow

Relaxation
minimize c¢lx minimize c¢lx
subjectto Az =ce¢ — subjectto Az =ce¢

r e {0,1}" 0<zx<1

Extreme points
satisfy x; € {0,1}

Example (arc costs shown)

c=(11,8,10,12,4,11,7,15,4)
z* =(0,1,0,0,0,1,0,0,1)

=924
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Assignment problem

Goal match N persons to N tasks

» Each person assigned to one task, each task to one person

- (;; Cost of matching person ¢ to task

LP formulation

N
minimize Z Cii X

2,=1

N
SUbjeCttO ZXij:l’ ]:1,,N
1=1

N
» Xij=1, i=1,...,N
j=1

X;; €10,1}

How do you define
the network?
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Task assignment as
minimum cost network flow

Person

(arc costs shown)

c=(5,6,2,8,1,3,4,3,9)

1 1 0 0 0 0
0 0 1 1 1 0
0 0 0 0 0 1
0 0O -1 0 0 -1
-1 0 0O -1 0 0

0O -1 0 0O -1 0

b=(1,1,1,—-1,—1,—1)
Minimum cost network flow

minimize ¢z

subjectto Az =0

Extreme points

satisfy x; € {0,1}

D0<xr<I1

Optimal solution
v* =(0,0,1,0,1,0,0,0,1)
cla* =17

o = O O

33
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Network optimization

Today, we learned to:

Model flows across networks
Formulate minimum cost network flow problems
Analyze network flow problem solutions (integrality theorem)

Formulate maximum-flow, shortest path, and assignment problems as
minimum cost network flows

34
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Next lecture

* |nterior point algorithms
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