ORF307 — Optimization 14. Duality II

Recap

Optimal objective values

Primal

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax < b \end{array}$

 p^{\star} is the primal optimal value

Primal infeasible: $p^* = +\infty$ Primal unbounded: $p^* = -\infty$

Dual

 $\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c = 0 \\ & y \geq 0 \end{array}$

 d^{\star} is the dual optimal value

Dual infeasible: $d^* = -\infty$

Dual unbounded: $d^* = +\infty$

Weak duality

Theorem

If x, y satisfy:

- x is a feasible solution to the primal problem
- y is a feasible solution to the dual problem

$-b^T y \le c^T x$

Proof

We know that $Ax \leq b$, $A^Ty + c = 0$ and $y \geq 0$. Therefore,

$$0 \le y^{T}(b - Ax) = b^{T}y - y^{T}Ax = c^{T}x + b^{T}y$$

Remark

- Any dual feasible y gives a lower bound on the primal optimal value
- ullet Any primal feasible x gives an **upper bound** on the dual optimal value
- $c^T x + b^T y$ is the duality gap

Weak duality

Corollaries

Unboundedness vs feasibility

- Primal unbounded $(p^* = -\infty) \Rightarrow$ dual infeasible $(d^* = -\infty)$
- Dual unbounded $(d^* = +\infty) \Rightarrow$ primal infeasible $(p^* = +\infty)$

Optimality condition

If x, y satisfy:

- x is a feasible solution to the primal problem
- y is a feasible solution to the dual problem
- The duality gap is zero, *i.e.*, $c^Tx + b^Ty = 0$

Then x and y are **optimal solutions** to the primal and dual problem respectively

Strong duality

Theorem

If a linear optimization problem has an optimal solution, so does its dual, and the optimal value of primal and dual are equal

$$d^{\star} = p^{\star}$$

Relationship between primal and dual

	$p^{\star} = +\infty$	p^\star finite	$p^{\star} = -\infty$
$d^{\star} = +\infty$	primal inf. dual unb.		
d^\star finite		optimal values equal	
$d^{\star} = -\infty$	exception		primal unb. dual inf

- Upper-right excluded by weak duality
- (1,1) and (3,3) proven by weak duality
- (3,1) and (2,2) proven by strong duality

Today's agenda More on duality

- Two-person zero-sum games
- Farkas lemma
- Complementary slackness
- KKT conditions

Two-person games

Rock paper scissors

Rules

At count to three declare one of: Rock, Paper, or Scissors

Winners

Identical selection is a draw, otherwise:

- Rock beats ("dulls") scissors
- Scissors beats ("cuts") paper
- Paper beats ("covers") rock

Extremely popular: world RPS society, USA RPS league, etc.

Two-person zero-sum game

- Player 1 (P1) chooses a number $i \in \{1, \ldots, m\}$ (one of m actions)
- Player 2 (P2) chooses a number $j \in \{1, \ldots, n\}$ (one of n actions)

Two players make their choice independently

Rule

Player 1 pays A_{ij} to player 2

 $A \in \mathbf{R}^{m \times n}$ is the payoff matrix

Rock, Paper, Scissors

Mixed (randomized) strategies

Deterministic strategies can be systematically defeated

Randomized strategies

- P1 chooses randomly according to distribution x: $x_i = \text{probability that P1 selects action } i$
- P2 chooses randomly according to distribution y: $y_i = \text{probability that P2 selects action } j$

Expected payoff (from P1 P2), if they use mixed-strategies x and y,

$$\sum_{i=1}^{m} \sum_{j=1}^{n} x_i y_j A_{ij} = x^T A y$$

Mixed strategies and probability simplex

Probability simplex in \mathbf{R}^k

$$P_k = \{ p \in \mathbf{R}^k \mid p \ge 0, \quad \mathbf{1}^T p = 1 \}$$

Mixed strategy

For a game player, a mixed strategy is a distribution over all possible deterministic strategies.

The set of all mixed strategies is the probability simplex $\longrightarrow x \in P_m$, $y \in P_n$

Optimal mixed strategies

P1: optimal strategy x^* is the solution of

minimize

subject to $x \in P_m$

$$\max_{j=1,\dots,n} (A^T x)_j$$

$$x \in P_{m}$$

Inner problem over deterministic strategies (vertices)

P2: optimal strategy y^* is the solution of

$$\begin{array}{ll} \text{maximize} & \min\limits_{x \in P_m} x^T A y \\ \text{subject to} & y \in P_n \end{array}$$

maximize

subject to

$$\min_{i=1,\dots,m} (Ay)_i$$

$$y \in P_n$$

Optimal strategies x^* and y^* can be computed using linear optimization

Minmax theorem

Theorem

$$\max_{y \in P_n} \min_{x \in P_m} x^T A y = \min_{x \in P_m} \max_{y \in P_n} x^T A y$$

Proof

The optimal x^* is the solution of

minimize
$$t$$
 subject to $A^Tx \leq t\mathbf{1}$
$$\mathbf{1}^Tx = 1$$

$$x \geq 0$$

The optimal y^* is the solution of

maximize
$$w$$
 subject to $Ay \geq w\mathbf{1}$
$$\mathbf{1}^T y = 1$$

$$y \geq 0$$

The two LPs are duals and by strong duality the equality follows.

Nash equilibrium

Theorem

$$\max_{y \in P_n} \min_{x \in P_m} x^T A y = \min_{x \in P_m} \max_{y \in P_n} x^T A y$$

Consequence

The pair of mixed strategies (x^*, y^*) attains the **Nash equilibrium** of the two-person matrix game, i.e.,

$$x^T A y^* \ge x^{*T} A y^* \ge x^{*T} A y, \quad \forall x \in P_m, \ \forall y \in P_n$$

Example

$$A = \begin{bmatrix} 4 & 2 & 0 & -3 \\ -2 & -4 & -3 & 3 \\ -2 & -3 & 4 & 1 \end{bmatrix}$$

Optimal deterministic strategies

$$\min_{i} \max_{j} A_{ij} = 3 > -2 = \max_{j} \min_{i} A_{ij}$$

Optimal mixed strategies

$$x^* = (0.37, 0.33, 0.3), \quad y^* = (0.4, 0, 0.13, 0.47)$$

Expected payoff

$$x^{\star T}Ay^{\star} = 0.2$$

Feasibility of polyhedra

$$P = \{x \mid Ax = b, \quad x \ge 0\}$$

How to show that P is **feasible**?

Easy: we just need to provide an $x \in P$, i.e., a certificate

How to show that P is **infeasible**?

Theorem

Given A and b, exactly one of the following statements is true:

- 1. There exists an x with Ax = b, $x \ge 0$
- 2. There exists a y with $A^Ty \ge 0$, $b^Ty < 0$

Geometric interpretation

1. First alternative

There exists an x with Ax = b, $x \ge 0$

$$b = \sum_{i=1}^{n} x_i A_i, \quad x_i \ge 0, \ i = 1, \dots, n$$

b is in the cone generated by the columns of $\cal A$

2. Second alternative

There exists a y with $A^Ty \ge 0$, $b^Ty < 0$

$$y^T A_i \ge 0, \quad i = 1, \dots, m, \qquad y^T b < 0$$

The hyperplane $y^Tz=0$ separates b from A_1,\ldots,A_n

There exists x with Ax = b, $x \ge 0$

OR

There exists y with $A^Ty \ge 0$, $b^Ty < 0$

Proof

1 and 2 cannot be both true (easy)

$$x \ge 0$$
, $Ax = b$ and $y^T A \ge 0$

$$y^T b = y^T A x \ge 0$$

There exists x with Ax = b, $x \ge 0$

OR

There exists y with $A^Ty \ge 0$, $b^Ty < 0$

Proof

1 and 2 cannot be both false (duality)

Primal

minimize (

subject to Ax = b

$$x \ge 0$$

Dual

 $\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y \geq 0 \end{array}$

y=0 always feasible

Strong duality holds

$$d^* \neq -\infty, \quad p^* = d^*$$

There exists x with Ax = b, $x \ge 0$

OR

There exists y with $A^Ty \ge 0$, $b^Ty < 0$

Proof

1 and 2 cannot be both false (duality)

Primal		Dual	
minimize subject to		maximize subject to	

Alternative 1: primal feasible $p^* = d^* = 0$

 $b^T y \ge 0$ for all y such that $A^T y \ge 0$

There exists x with Ax = b, $x \ge 0$

OR

There exists y with $A^Ty \ge 0$, $b^Ty < 0$

Proof

1 and 2 cannot be both false (duality)

Primal		Dual	
minimize subject to		maximize subject to	

Alternative 2: primal infeasible $p^* = d^* = +\infty$

There exists y such that $A^Ty \geq 0$ and $b^Ty < 0$

y is an infeasibility certificate

Many variations

There exists x with Ax = b, $x \ge 0$

OR

There exists y with $A^T y \ge 0$, $b^T y < 0$

There exists x with $Ax \leq b$, $x \geq 0$

OR

There exists y with $A^Ty \ge 0$, $b^Ty < 0$, $y \ge 0$

There exists x with $Ax \leq b$

OR

There exists y with $A^Ty=0,\ b^Ty<0,\ y\geq 0$

Complementary slackness

Optimality conditions

Primal

minimize $c^T x$ subject to $Ax \leq b$

Dual

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c = 0 \\ & y \geq 0 \end{array}$$

x and y are primal and dual optimal if and only if

- x is primal feasible: $Ax \leq b$
- y is dual feasible: $A^Ty + c = 0$ and $y \ge 0$
- The duality gap is zero: $c^T x + b^T y = 0$

Can we relate x and y (not only the objective)?

Complementary slackness

Primal

minimize $c^T x$ subject to $Ax \leq b$

Dual

maximize $-b^Ty$ subject to $A^Ty+c=0$ $y\geq 0$

Theorem

Primal, dual feasible x, y are optimal if and only if

$$y_i(b_i - a_i^T x) = 0, \quad i = 1, \dots, m$$

i.e., at optimum, b - Ax and y have a complementary sparsity pattern:

$$y_i > 0 \implies a_i^T x = b_i$$

$$a_i^T x < b_i \implies y_i = 0$$

Complementary slackness

Primal

minimize $c^T x$ subject to $Ax \leq b$

Dual

maximize
$$-b^Ty$$
 subject to $A^Ty+c=0$ $y\geq 0$

Proof

The duality gap at primal feasible x and dual feasible y can be written as

$$c^{T}x + b^{T}y = (-A^{T}y)^{T}x + b^{T}y = (b - Ax)^{T}y = \sum_{i=1}^{T} y_{i}(b_{i} - a_{i}^{T}x) = 0$$

Since all the elements of the sum are nonnegative, they must all be 0

Example

minimize
$$-4x_1 - 5x_2$$

subject to
$$\begin{bmatrix} -1 & 0 \\ 2 & 1 \\ 0 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \le \begin{bmatrix} 0 \\ 3 \\ 0 \\ 3 \end{bmatrix}$$

Let's **show** that feasible x = (1, 1) is optimal

Second and fourth constraints are active at $x \longrightarrow y = (0, y_2, 0, y_4)$

$$A^T y = -c \quad \Rightarrow \quad \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} y_2 \\ y_4 \end{bmatrix} = \begin{bmatrix} 4 \\ 5 \end{bmatrix} \qquad \text{and} \qquad \quad y_2 \ge 0, \quad y_4 \ge 0$$

y=(0,1,0,2) satisfies these conditions and proves that x is optimal

Complementary slackness is useful to recover y^* from x^*

Geometric interpretation

Example in ${f R}^2$

Two active constraints at optimum: $a_1^T x^* = b_1, \quad a_2^T x^* = b_2$

Optimal dual solution y satisfies:

$$A^T y + c = 0, \quad y \ge 0, \quad y_i = 0 \text{ for } i \ne \{1, 2\}$$

In other words, $-c = a_1y_1 + a_2y_2$ with $y_1, y_2 \ge 0$

KKT Conditions

Lagrangian and duality

Primal

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax \leq b \end{array}$

Dual function

$$g(y) = \underset{x}{\mathsf{minimize}} \left(c^T x + y^T (Ax - b) \right)$$

$$= -b^T y + \underset{x}{\mathsf{minimize}} \left(c + A^T y \right)^T x$$

$$= \begin{cases} -b^T y & \mathsf{if } c + A^T y = 0 \\ -\infty & \mathsf{otherwise} \end{cases}$$

Dual

 $\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c = 0 \\ & y \geq 0 \end{array}$

Lagrangian

$$L(x,y) = c^T x + y^T (Ax - b)$$

$$\nabla_x L(x, y) = c + A^T y = 0$$

Karush-Kuhn-Tucker conditions

Optimality conditions for linear optimization

Primal

 $\begin{array}{ll} \text{minimize} & c^T x \\ \text{subject to} & Ax < b \end{array}$

Dual

$$\begin{array}{ll} \text{maximize} & -b^T y \\ \text{subject to} & A^T y + c = 0 \\ & y \geq 0 \end{array}$$

Primal feasibility

$$Ax \leq b$$

Dual feasibility

$$\nabla_x L(x,y) = A^T y + c = 0 \quad \text{and} \quad y \ge 0$$

Complementary slackness

$$y_i(Ax - b)_i = 0, \quad i = 1, \dots, m$$

Karush-Kuhn-Tucker conditions

Solving linear optimization problems

Primal

minimize $c^T x$

subject to $Ax \leq b$

Dual

maximize $-b^T y$

subject to $A^Ty + c = 0$

$$y \ge 0$$

We can solve our optimization problem by solving a system of equations

$$\nabla_x L(x,y) = A^T y + c = 0$$

$$b - Ax \ge 0$$

$$y \ge 0$$

$$y^T(b - Ax) = 0$$

Linear optimization duality

Today, we learned to:

- Interpret linear optimization duality using game theory
- Prove Farkas lemma using duality
- Geometrically link primal and dual solutions with complementary slackness
- Derive KKT optimality conditions

References

- Bertsimas and Tsitsiklis: Introduction to Linear Optimization
 - Chapter 4: Duality theory
- R. Vanderbei: Linear Programming Foundations and Extensions
 - Chapter 11: Game Theory

Next lecture

Sensitivity analysis