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Constructing a basic solution
Two equalities (m =2,n = 3)
minimize ¢!z
subjectto z; +x3 =1
(1/2)x1 + a2 + (1/2)x3 =1
T1,T2,T3 > (

L2
n —m = 1 Inequalities have to be tight: z; =0
Set 1 = 0 and solve
372 p— — p—
1/2 1 1/2 1 1 1/2| |x3 1
- = _IS_ I — - - — — -

($2,$3) — (05, 1)



Constructing basic solution

1. Choose any m independent columns of A: Ag(1y,..., Apm)
2. Letx;, =0foralli# B(1),...,B(m)
3. Solve Ax = b for the remaining (1), .., TB(m)

Basis Basis columns Basic variables

matrix r - i i

| | | B()
AB — AB(l) AB(Q) Co AB(m) y LB = — Solve ABCCB = b

- | | ZB(m).

If t5 > 0, then z Is a basic feasible solution



Standard form polyhedra

Standard form LP Standard form polyhedron
minimize c'x P={x| Az =0, z > 0}
subjectto Az =10

r > 0 3

Assumption
A € R™*"™ has full row rank m <n

Interpretation
P is an (n — m)-dimensional surface



Standard form polyhedra

Visualization
P={x|Az=b, x >0}, n—m=2

Three dimensions Higher dimensions
L3
Y N
\

/ N

N -
=\ °
03




Equivalence

Theorem

Given a nonempty polyhedron P = {x | Ax < b}

Let z € P

r 1S a vertex <« x Is an extreme point «<— =z is a basic feasible solution



Optimality of extreme points

minimize clx
subjectto Ax <9

i P has at least one extreme point
» There exists an optimal solution =*

Then, there exists an optimal solution which is an extreme point of P

We only need to search between extreme points



Conceptual algorithm

e Start at corner

* Visit neighboring corner that
Improves the objective




Today’s agenda

The simplex method

- [terate between neighboring basic solutions
- Optimality conditions
- Simplex iterations
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The simplex method

George Dantzig
Top 10 algorithms of the 20th century i

’ - .
i’ : s
’ - 4 P e
. '

1946: Metropolis algorithm
1947: Simplex method
1950: Krylov subspace method

1951: The decompositional approach to matrix computations
1957: The Fortran optimizing compiler

1959: QR algorithm

1962: Quicksort

1965: Fast Fourier transform

1977 Integer relation detection

1987: Fast multipole method

[SIAM News (2000)] 11



Neighboring basic solutions



Neighboring solutions

Two basic solutions are neighboring if their

basic indices differ by exactly one variable

Example

xl_ b
9 To —d
0 rg| = | —1
4 | |24 14
T5
B=1{1,3,4}

0.1
3.0

—1.7
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Feasible directions

Conditions Given a basis matrix Ap =

Ap)

P={z|Ax=b, z>0) we have basic feasible solution z:

°* Ip solves ABZE‘B =5

» x; =0, Vi # B(1),...,B(m)

Let x € P, a vector d Is a feasible direction at «
if 460 > 0 for which z + 6d € P

Feasible direction d
* Alx +0d) =b=—= Ad =0
e v+ 60d >0

AB(m)_
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P={x|Ax=0b, x >0}

Feasible directions Feasible direction d

Computation + Alx +0d) =b=—= Ad =0
e x+60d >0

Nonbasic indices (z; = 0)
* d; =1 — Add j to basis B

Basic indices (rp > 0)

Ad=0=) Aid;=Apdg+A;=0=>dp solves Apdp=—A,

1—=1
Non-negativity (hon-degenerate assumption)

» Non-basic variables: x; = 0. Nonnegative direction d; > 0
- Basic variables: x5 > 0. Therefore 460 > 0 such that x5 + 6dg > 0
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Feasible directions

Example

P=Ax|xz1+204+23=2, x>0}

r = (2,0,0) B = {1}

Basicindex j =3 —— d=(—-1,0,1)

d; =1
ABdB — —Aj —> dB = —1
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How does the cost change?

Cost improvement
cl(x+0d) —c'z = 0c'd

N

New cost Old cost

We call ¢; the reduced cost of
(introducing) variable z; in the basis

;i =c d= E cid; =c; +cgdp =c; —cgAgz A,
j=1

17



Reduced costs
Interpretation

Change in objective/marginal cost of adding z; to the basis

— 1

/ \

Cost per-unit increase Cost to change other variables

- compensating for x
of variable ; to enF:‘orce Axg =3 :

- ¢; > 0: adding z; will increase the objective (bad)
- ¢; < 0: adding z,; will decrease the objective (good)

Reduced costs for basic variables is O

CB(@) — CB(@) — CBA 1AB(@) — CB(@) — CB(A 1AB)

= CB(i) — CRei = CB(i) — ¢B(i) = U 18



Vector of reduced costs

Reduced costs Full vector in one shot?

_ T 1—1 _ = _
Cj—Cj—CBAB Aj C—(Cl,...,Cn)

|Isolate basis B-related components p

(they are the same across ;) Obtain p by solving linear system

o A—INT T

Note: (M—1)1 = (M*)~!
for any square invertible M

Computing reduced cost vector

1. Solve Agp = CRB
2. c=c— A'p 1



Optimality conditions




Optimality conditions

Theorem

Let £ be a basic feasible solution associated with basis B
Let ¢ be the vector of reduced costs.

If ¢ > 0, then z Is optimal

Remark
This is a stopping criterion for the simplex algorithm.

If the neighboring solutions do not improve the cost, we are done
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Optimality conditions

Proof

For a basic feasible solution x with basis B the reduced costs are ¢ > 0.

Consider any feasible solution y and defined =y — «

Since z and y are feasible, then Ax = Ay = b and Ad = 0
Ad=Apdp + Y Aid;=0 = dp=-)Y Ag'Aid,
i€N i€N

The change in objective is

CTd — ngB -+ Z Cidi — Z(CZ — C%AglAz)dz — Z Eidi

ieN ieN ieN
Sincey>0andx; =0, 1€ N,thend;, =y, —x; > 0,1 N

crd=c'(y—2)>0 = cly>c

N are the
nonbasic indices
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Simplex iterations



Stepsize

What happens if some ¢; < 07

We can decrease the cost by bringing z; into the basis

How far can we go?

0" =max{f |0 >0and x + 0d > 0}

Unbounded

If d > 0, then 6 = oco. The LP I1s unbounded.
Bounded

If d; < 0 for some 7, then 0" = min

{2|d; <0}

(

d 1s the 7-th basic direction

— 1111l
di {t€B|d; <0} d@

(SinCe d; >0, 2 % B)

24



Moving to a new basis

Next feasible solution
x + 07d

L B (#)
dp(0)

Let B(¢) € {B(1),...,B(m)} be the index such that §* = . Then,

$B(g) —|— H*dB(g) — O
New solution

* T () becomes 0 (exits)
- x,; becomes 6* (enters)

New basis

AB — _AB(l) .« o AB(g_D A] AB(€—|—1) .« .. AB(m)_



An iteration of the simplex method

Initialization
* a basic feasible solution z ]
* abasismatrix Agp = Ay ..., AB@m)

Ilteration steps

1. Compute the reduced costs ¢ 4. Compute search direction d with

d: =1and Agdp = — A
. Solve ATp = cp / o /

cc=c—A'p 5. If dg > 0, the problem is unbounded

_ and the optimal value is —oc. break
2. If ¢ > 0, x optimal. break

-
- - 6. Compute step length 0* = ' -
3. Choose j such that ¢; < 0 pu P ieng fieBld, <0 ( di)

/. Define y such that y = « + 6*d

8. Get new basis B (i exits and j enters) 6



Example

P={x|x14+x2+2x3=2, x>0}

r = (2,0,0) B ={1}

Basicindex j =3 —— d=(-1,0,1)
d; =1
ABdB — —Aj — dp = —1
L1

Stepsize 0* = = 2
dq

New solution y =z +6"d = (0,0,2) B = {3}
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Finite convergence

Assume that

» P={x| Az =b,x > 0} not empty
» Every basic feasible solution non degenerate

Then

» The simplex method terminates after a finite number of iterations
» At termination we either have one of the following

- an optimal basis B
- adirection d such that Ad =0, d > 0, ¢’ d < 0 and the optimal cost is —cc
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Finite convergence
Proof sketch

At each Iteration the algorithm improves

» by a positive amount 6*
- along the direction d such that ¢! d < 0

Therefore
» The cost strictly decreases

* No basic feasible solution can be visited twice

Since there is a finite number of basic feasible solutions
The algorithm must eventually terminate
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The simplex method

Today, we learned to:

» |terate between basic feasible solutions

e Verify optimality and unboundedness conditions
* Apply a single iteration of the simplex method

* Prove finite convergence of the simplex method in the non-degenerate case

30
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Next lecture

* Finding initial basic feasible solution
 Degeneracy

o Complexity
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