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Today'’s lecture

Linear optimization

¢ Some simple examples
* Linear optimization

e Special cases

e Standard form

o« Software and solution methods



Some simple examples



f(z)

Data-fitting example

Fit a linear function f(z) = x1 + =22 to m data points (z;, f;):

Approximation problem Ax ~ b where
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Data-fitting example

Fit a linear function f(z) = x1 + =22 to m data points (z;, f;):

Approximation problem Ax ~ b where

20_ 0

—10

Iz | ¢ - f1
. L1 .
L2
_1 Zm, |~~~ _fm_

Least squares way:

minimize ) (Az —b); = || Az — b|[3

1=1

Good news: solution is in closed form z* = (A1 A)~1 AT
Bad news: solution is very sensitive to outliers!



Data-fitting example

Fit a linear function f(z) = x1 + =22 to m data points (z;, f;):
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10- A different way:

—10- Good news: solution is much more robust to outliers.
—15- Bad news: there is no closed form solution.
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minimize Z Az — b|; = || Az — b||;



Cheapest cat food problem

- Choose quantities z1, ..., z,, of n ingredients each with unit cost c;.
- Each ingredient j has nutritional content a;; for nutrient .

» Require a minimum level b; for each nutrient s.
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minimize > i—1 CjT; & AN
. n . e o BN A

SUbJeCt to ijl CI,ZJQCJ > bi, 1=1...m [Photo of Phoebe, my cat]

r; >0, g=1...n Would you give her
the optimal food ?



Linear optimization



Linear optimization

Linear Programming (LP)

minimize > ., ¢,
. n .

Z?Zldijxj:fi, i:].,...,p

Ingredients

- n decision variables (or optimization variables): =1, ..., z,

- Constant parameters (or problem data) : c¢;, a;;, b;, d;;, fi

» A linear objective function

» A collection of m inequality constraints and p equality constraints



Where does linear optimization appear?

Supply chain management
Assignment problems

Scheduling and routing problems
Finance

Optimal control problems

Network design and network operations
Many other domains...
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A brief history of linear optimization

1940s :
 Foundations and applications in economics and logistics (Kantorovich, Koopmans)

* 1947 : Development of the simplex method by Dantzig

1950s — 70s:
* Applications expand to engineering, OR, computer science...
1975 : Nobel prize in economics for Kantorovich and Koopmans

1980s:
 Development of polynomial time algorithms for LPs
* 1984 : Development of the interior point method by Karmarkar

— Today:
* (Continued algorithm development. Expansion to very large problems.
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Why linear optimization?

“Easy” to solve
* |t is solvable in polynomial time, tractable in practice

o State-of-the-art software can solve LPs with tens of thousands of variables.
We can solve LPs with millions of variables with specific structure.

Extremely versatile
Can model many real-world problems, either exactly or approximately.

Fundamental

* The theory of linear optimization lays the foundation for most optimization
theories

* Underpins solutions for more complicated problems, e.g. integer problems.
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A simple example

Goal find point as far left as possible,
In the unit box X,
and restricted to the line L
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A simple example

Goal find point as far left as possible,

In the unit box X,

and restricted to the line L

tmport cvxpy as cp

X = cp.Vartiable(2)

objective = x[0]

constraints = [-1 <= x[0],
-1 <= X[l])
x[0] + x[1]

prob = cp.Problem(cp.Minimize(objective), constraints)
prob.solve()

x[0] <= 1,
Xx[1l] <= 1,
—_—




Linear optimization

Using vectors

minimize > " ¢, minimize

CTCE

subjectto > 7 a;z; <b;, i=1,...,m — subjectto alz <b,

Z?:ldij$j:fi7 iZl,...,p

c, a;, d; are n-vectors
c=(c1,...,Cn)

a; = (%1,---,@7;77,)

di = (di1,...,din)

d,LTa;' — fi,
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Linear optimization

Using matrices

minimize Y ", ¢z minimize ¢’z
SUbjeCt {0 2?21 AL <b;, 1=1,....m —> SubjeCt to Ax <b
Z?Zldzj‘/ﬁ]:f@? Zzlaap DQZ‘If

A'is m x n-matrix with elements a;; and rows a;
D is p x n-matrix with elements d;; and rows d;

All (in)equalities are elementwise
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Optimization terminology

minimize ¢l
subjectto Az <b
Dx=f

z is feasible if it satisfies the constraints Ax < band Dx = f

The feasible set is the set of all feasible points
r* is optimal if it is feasible and ¢! z* < ¢! x for all feasible x

The optimal value is p* = ¢! z*
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Special cases



What can go wrong? "

Problem might be “too hard”

minimize
subjectto —1<z; <1 s
—1 <z, <1
r1 + xo = —1
T < —2
Remarks
» The feasible set is empty.

» The problem is therefore infeasible.
* Define the optimal value as p* = +oc.
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What can go wrong?

Problem might be “too easy”

minimize  xi

subjectto —t<ux; <1
Tty =—1t
Remarks

« The value of ¢! z is unbounded below
on the feasible set.
» Define the optimal value as p* = —oc.
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What can go “a little bit” wrong?

More than one optimizer

minimize =1 + x-

subjectto —-1<zx; <1

—1 <z <1
T1 + To = —1
Remarks
* The optimal value is p* = —1

- There is more than one z* that achieves p* = ¢! x*
* The optimizer iIs non-unique
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Feasibility problems

The constraints satisfiability problem

find y i i minimize
subjectto Az < b IS a special case of |
—_— subject to
Dx = f
Remarks

- p* = 0 if constraints are feasible (consistent).
Every feasible z is optimal
* p* = oo otherwise

0
Ax < b
Dx = f
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Standard form



Standard form
Definition

minimize L r e Minimization
subjectto Az =b * Equality constraints

r >0  Nonnegative variables

 Matrix notation for theory

o Standard form for algorithms
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Standard form

Transformation tricks

Change objective
If “maximize”, use —c instead of c and change to “minimize”.

Eliminate inequality constraints
If Ax < b, define s and write Ax +s =050, s > 0.
If Ax > b, define s and write Ax — s =0b, s > 0.

s are the slack variables

Change variable signs
If z; <0, define y;, = —x;.

Eliminate “free” variables_ |
If ; unconstrained, define z; = =" — x;, with z;” > 0 and z; > 0.

1
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Standard form

Transformation example
minimize
subject to

2$1
L1

3331

minimize  2x; + 4

subjectto  x; + a3
3r1 + QQE;_
L1, 33;7

+ 4z

+ 12 2>3

+ 2x9 =14
> ()

— 4dx,

_ 372_ _

— 225

373—3
= 14
$3ZO
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Software




Solvers for linear programs

Algorithms and theory are very mature:

o Simplex methods, interior-point methods, first order methods etc

Software is widely available:
* (Can solve problems up to several million variables
 Widely used in industry and academic research

Examples

 Commercial solvers : Mosek, CPLEX, Gurobi, Matlab (linprog)
* Free solvers : GLPK, CLP, SCS, OSQP
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Modelling tools for linear programs

Modelling tools simplify the formulation of LPs (and other problems)
* Accept optimization problem in common notation (max, || - ||1,.. ")
 Recognize problems that can be converted to LPs

 Automatically convert to input format required by a specific LP solver

Examples

« AMPL, GAMS

e CVX, YALMIP (Matlab)

« CVXPY, Pyomo (Python)
e JuMP,jl, Convex.jl (Julia)



Simple example revisited

Goal find point as far left as possible,
In the unit box X,
and restricted to the line L

tmport cvxpy as cp

X = cp.Varitable(2)

objective = x[0]

constraints = [ cp.norm(Xx,

prob = cp.Problem(cp.Minimize(objective), constraints)
prob.solve()
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Next time

Piecewise linear optimization

* Optimization problems with norms and max functions

¢« Some applications
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