ORF307 – Optimization 6. Constrained least squares ## Today's lecture #### Constrained least squares - Linearly constrained least squares - Solving the constrained least squares problem - Portfolio optimization # Linearly constrained least squares ## Least squares with equality constraints The (linearly) constrained least squares problem is #### Problem data - $m \times n$ matrix A, m-vector b - $p \times n$ matrix C, p-vector d #### **Definitions** x is feasible if Cx = d x^{\star} is a solution if - $Cx^* = d$ - $||Ax^* b||^2 \le ||Ax b||^2$ for any x satisfying Cx = d #### Interpretations - Combine solving linear equations with least squares. - Like a bi-objective least squares with ∞ weight on second objective, $\|Cx-d\|^2$. ## Optimal advertising with budget m demographic groups we want to advertise to $v^{ m des}$ is the m-vector of desired views/impressions n advertising channels (web publishers, radio, print, etc.) s is the n-vector of purchases $m \times n$ matrix A gives demographic reach of channels A_{ij} is the number of views for group i and dollar spent on channel j (1000/\$) Views across demographic groups $$v = As$$ #### Goal minimize $$||As - v^{\text{des}}||^2$$ subject to $\mathbf{1}^T s = B$ ## Optimal advertising with budget #### Results m=10 groups, n=3 channels budget B = 1284desired views vector $v^{\text{des}} = (10^3)1$ > $||As - v^{\text{des}}||^2$ minimize subject to $\mathbf{1}^T s = B$ rescaled least squares spending $s^* = (50, 80, 1154) \longrightarrow RMS 23.85\%$ ## Least norm problem Special case of constrained least squares problem with A=I and b=0 minimize $$||Ax-b||^2$$ minimize $||x||^2$ subject to $Cx=d$ Find the smallest vector that satisfies a set of linear equations ## Force sequence Unit mass on frictionless surface, initially at rest 10-vector f gives the forces applied for one second each Final velocity and position (Newton's laws) $$v^{\text{fin}} = f_1 + f_2 + \dots + f_{10}$$ $$p^{\text{fin}} = (19/2)f_1 + (17/2)f_2 + \dots + (1/2)f_{10}$$ #### Goal Let's find f such that $v^{\rm fin}=0$ and $p^{\rm fin}=1$ ## Least norm force sequence Find f that brings to $p^{fin} = 1$, $v^{fin} = 0$ #### **Bang-bang solution** $$f^{\text{bb}} = (1, -1, 0, \dots, 0)$$ $||f^{\text{bb}}||^2 = 2$ $$||f^{\text{bb}}||^2 = 2$$ #### Least norm solution minimize $||f||^2$ subject to $$\begin{bmatrix} 1 & 1 & \dots & 1 \\ 19/2 & 17/2 & \dots & 1/2 \end{bmatrix} f = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$ 9 $$||f^{\ln}||^2 = 0.012$$ Much cheaper effort! # Solving the constrained least squares problem ## Optimality conditions via calculus minimize $$f(x) = \|Ax - b\|^2$$ minimize $f(x) = \|Ax - b\|^2$ subject to $Cx = d$ subject to $c_i^T x = d_i, \quad i = 1, \dots, p$ #### Lagrangian function $$L(x,z) = f(x) + z_1(c_1^T x - d_1) + \dots + z_p(c_p^T x - d_p)$$ #### **Optimality conditions** $$\frac{\partial L}{\partial x_i}(x^*, z) = 0, \quad i = 1, \dots, n,$$ $$\frac{\partial L}{\partial z_i}(x^*, z) = 0, \quad i = 1, \dots, p$$ ## Optimality conditions via calculus $$L(x,z) = x^T A^T A x - 2(A^T b)^T x + b^T b + z_1(c_1^T x - d_1) + \dots + z_p(c_p^T x - d_p)$$ #### **Optimality conditions** #### **Vector form** $$\frac{\partial L}{\partial z_i}(x^\star,z) = c_i^T x - d_i = 0 \quad \text{(we already knew)} \qquad Cx = d$$ $$\frac{\partial L}{\partial x_i}(x^\star,z) = 2\sum_{j=1}^n (A^TA)_{ij}x_j^\star - 2(A^Tb)_i + \sum_{j=1}^p z_j(c_j)_i = 0 \qquad 2A^TAx^\star - 2A^Tb + C^Tz = 0$$ #### Karush-Kuhn-Tucker (KKT) conditions $$\begin{bmatrix} 2A^TA & C^T \\ C & 0 \end{bmatrix} \begin{bmatrix} x^* \\ z \end{bmatrix} = \begin{bmatrix} 2A^Tb \\ d \end{bmatrix}$$ (square set of $n+p$ linear equations) **Note** KKT equations are extension of normal equations to constrained least squares ## Invertibility of KKT matrix no longer positive definite in general $$\begin{vmatrix} 2A^TA & C^T \\ C & 0 \end{vmatrix} \begin{vmatrix} x^* \\ z \end{vmatrix} = \begin{vmatrix} 2A^Tb \\ d \end{vmatrix}$$ The KKT matrix is invertible if and only if $$p \le n$$ (C is wide) • The sum of the properties o $$m+p \ge n$$ $\left(\begin{bmatrix} A \\ C \end{bmatrix}$ is tall $\right)$ Complexity (with $p \le n \le m$) - Factor + solve: $2mn^2 + (2/3)(n+p)^3 + 2(n+p)^2 \approx 2mn^2$ - Solve given a new b (prefactored): $2mn + 2(n+p)^2 \approx 2mn$ same as unconstrained ## **Optimality from KKT solution** For x^* and z^* such that $$2A^T A x^* + C^T z^* = 2A^T b, \quad Cx^* = d$$ Given a feasible x and z, we can write the objective (just as least squares) $$||Ax - b||^2 = ||(Ax - Ax^*) + (Ax^* - b)||^2$$ $$= ||A(x - x^*)||^2 + ||Ax^* - b||^2 + 2(x - x^*)^T A^T (Ax^* - b)$$ We can expand last term, using $2A^T(Ax^*-b)=-C^Tz^*$ and $Cx=Cx^*=d$ $$2(x - x^*)^T A^T (Ax^* - b) = -(x - x^*)^T C^T z^* = -(C(x - x^*))^T z^* = 0$$ $$||Ax - b||^2 = ||A(x - x^*)||^2 + ||Ax^* - b||^2 \ge ||Ax^* - b||^2$$ x^* is optimal ## Portfolio optimization ## Portfolio allocation weights We want to invest V dollars in n different assets (stocks, bonds, ...) over periods $t=1,\ldots,T$ #### Portfolio allocation weights n-vector w gives the fraction of our total portfolio held in each asset #### **Properties** - Vw_j dollar value hold in asset j - $\mathbf{1}^T w = 1$ (normalized) - $w_j < 0$ means short positions (you borrow) (must be returned at time T) ## Leverage, long-only portfolios, and cash #### Leverage $$L = |w_1| + \cdots + |w_n| = ||w||_1$$ L=1 when all weights are nonnegative ("long only portfolio") #### **Uniform portfolio** $$w = 1/n$$ #### Risk free asset We often assume asset n is "risk-free" (e.g., cash) if $w = e_n$, it means the portfolio is all cash ## Return over a period #### **Asset returns** \tilde{r}_t is the (fractional) return of each asset over period t #### Portfolio return $$r_t = \tilde{r}_t^T w$$ It is the (fractional) return for the entire portfolio over period t example: $\tilde{r}_t = (0.01, -0.023, 0.02)$ (often expressed as percentage) ## Total portfolio value after a period $$V_{t+1} = V_t + V_t \tilde{r}_t^T w = V_t (1 + r_t)$$ ## Return matrix Hold constant portfolio with weights \boldsymbol{w} over T periods #### **Columns interpretation** Column j is time series of asset j returns #### **Rows interpretation** Row t is \tilde{r}_t is the asset return vector over period t R is the $T \times n$ matrix of asset returns R_{tj} is the return of asset j in period t $$R = \begin{bmatrix} AAPL & GOOG & MMM & US \$ \\ 0.00219 & 0.0006 & -0.00113 & 0.00005 \\ 0.00744 & -0.00894 & -0.00019 & 0.00005 \\ 0.01488 & -0.00215 & 0.00433 & 0.00005 \end{bmatrix}$$ Mar 1, 2016 Mar 2, 2016 **Note.** If nth asset risk-free, the last column of R is $\mu^{\rm rf}$ 1, where $\mu^{\rm rf}$ is the risk-free per-period interest reate #### Portfolio returns (time series) $$r = Rw$$ (T-vector) ## Returns over multiple periods r is time series T-vector of portfolio returns #### average return (or just return) $$\mathbf{avg}(r) = \mathbf{1}^T r / T$$ #### risk (standard deviation) $$\operatorname{std}(r) = ||r - \operatorname{avg}(r)\mathbf{1}||/\sqrt{T}$$ #### Total portfolio value $$V_{T+1} = V_1(1+r_1)\cdots(1+r_T)$$ $pprox V_1 + V_1(r_1+\cdots+r_T)$ $pprox V_1 + T\mathbf{avg}(r)V_1$ (for $|r_t|$ small, e.g., ≤ 0.01 ignore higher order terms) For high portfolio value we need large avg(r) ### Annualized return and risk Mean return and and risk are often expressed in annualized form (per year) Given P trading periods per year (i.e., 250 days) annualized return = Pavg(r), annualized risk = $\sqrt{P}std(r)$ ## Portfolio optimization How shall we choose the portfolio weight vector w? #### Goals High (mean) return $\mathbf{avg}(r)$ Low risk std(r) #### **Data** - We know realized asset returns but not future ones - Optimization. We choose w that would have worked well in the past - True goal. Hope it will work well in the future (just like data fitting) ## Portfolio optimization #### Minimize risk given a target return Chose n-vector w to solve Solutions w are Pareto optimal #### Our question what would have been the best constant allocation w, had we known future returns? ## Example allocations Annual return 1% (risk-free asset has 1% return) $$w = (0.00, 0.00, 0.00, \dots, 0.00, 0.00, 1.00)$$ #### Annual return 13% $$w = (0.02, -0.07, -0.05, \dots, -0.03, 0.06, 0.56)$$ #### Annual return 25% $$w = (0.05, -0.143, -0.09, \dots, -0.07, 0.12, 0.12)$$ Asking for higher annual returns yields - More invested in risky, but high return assets - Larger short positions ("leveraging") ## Portfolio optimization #### As constrained least squares minimize $$\|Rw - \rho \mathbf{1}\|^2$$ subject to $$\begin{bmatrix} \mathbf{1}^T \\ \mu^T \end{bmatrix} w = \begin{bmatrix} 1 \\ \rho \end{bmatrix}$$ μ is the n-vector of average returns per asset $$\mathbf{avg}(r) = (1/T)\mathbf{1}^{T}(Rw)$$ $$= (1/T)(R^{T}\mathbf{1})^{T}w = \mu^{T}w$$ #### Solution via KKT linear system $$egin{bmatrix} 2R^TR & \mathbf{1} & \mu \ \mathbf{1}^T & 0 & 0 \ \mu^T & 0 & 0 \end{bmatrix} egin{bmatrix} w \ z_1 \ z_2 \end{bmatrix} = egin{bmatrix} 2 ho T\mu \ 1 \ ho \end{bmatrix}$$ ## Optimal portfolios #### Rewrite right-hand side $$\begin{bmatrix} 2\rho T\mu \\ 1 \\ \rho \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \rho \begin{bmatrix} 2T\mu \\ 0 \\ 0 \end{bmatrix}$$ #### Two fund theorem Optimal portfolio w is an affine function of ρ $$\begin{bmatrix} w \\ z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 2R^TR & \mathbf{1} & \mu \\ \mathbf{1}^T & 0 & 0 \\ \mu^T & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \rho \begin{bmatrix} 2R^TR & \mathbf{1} & \mu \\ \mathbf{1}^T & 0 & 0 \\ \mu^T & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 2T\mu \\ 0 \\ 1 \end{bmatrix}$$ We can rewrite the first n-components as the combination of two portfolios (funds) ## Example #### 20 assets over 2000 days (past) - Optimal portfolios on a straight line - Line starts at risk-free portfolio ($\rho = 0$) - 1/n much better than single portfolios ## The big assumption #### Future returns will look like past ones - You are warned this is false, every time you invest - It is often reasonable - During crisis, market shifts, other big events not true If assumption holds (even approximately), a good w on past returns leads to good future (unknown) returns #### **Example** - Pick w based on last 2 years of returns - Use w during next 6 months ## Total portfolio value | | Return | | Risk | | | |-------------------|--------|------|-------|------|----------| | | Train | Test | Train | Test | Leverage | | Risk-free (1%) | 0.01 | 0.01 | 0.00 | 0.00 | 1.00 | | 10% | 0.10 | 0.08 | 0.09 | 0.07 | 1.96 | | 20% | 0.20 | 0.15 | 0.18 | 0.15 | 3.03 | | 40% | 0.40 | 0.30 | 0.37 | 0.31 | 5.48 | | 1/n | 0.10 | 0.21 | 0.23 | 0.13 | 1.00 | ## Build your quantitative hedge fund #### Rolling portfolio optimization For each period t, find weight w_t using L past returns r_{t-1}, \dots, r_{t-L} #### **Variations** - Update w every K periods (monthly, quarterly, ...) - Add secondary objective $\lambda \|w_t w_{t-1}\|^2$ to discourage turnover, reduce transaction cost - Add logic to detect when the future is likely to not look like the past - Add "signals" that predict future return of assets (Twitter sentiment analysis) ## Constrained least squares #### Today, we learned to: - Formulate (linearly) and solve constrained least squares problems - Solve portfolio allocations problems - Understand the difference between past and future returns (be careful!) ### References - S. Boyd, L. Vandenberghe: Introduction to Applied Linear Algebra Vectors, Matrices, and Least Squares - Chapter 16 and 17: constrained least squares ## Next lecture Linear optimization