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Today'’s lecture

Constrained least squares

* Linearly constrained least squares
e Solving the constrained least squares problem

e Portfolio optimization



Linearly constrained least
squares




Least squares with equality constraints

The (linearly) constrained least squares problem is Problem data

minimize  ||[Axz — bl|* * m x n matrix A, m-vector b
subjectto Cx =d » p x n matrix C, p-vector d
/ objective
equality function

constraints

Definitions Interpretations

+ is feasible if Cr = d - Combine solving linear equations
+* is a solution if with least squares.

e Op* = d - Like a bi-objective least squares

o || Az* — b2 < ||Az — b]|? with co weight on second objective,

for any z satisfying C'xz = d |Cz —d]|*. 4



Optimal advertising with budget

m demographic groups vdes is the m-vector

we want to advertise to of desired views/impressions
n advertising channels s IS the n-vector

(web publishers, radio, print, etc.) of purchases

A;; 1s the number of views
—— for group 2 and dollar spent
on channel j (1000/$)

m X n matrix A gives
demographic reach of channels

Views across Goal
demographic groups minimize  ||As — v9es||?
P ) P H | allocated

v = As subjectto 1's=DB <+«— pbudget

5



Optimal advertising with budget

Results
m = 10 groups, n = 3 channels 1=
budget B = 1284 1000

desired views vector v9° = (10°)1

Views

minimize || As — v9s||? 100
subjectto 1's=1B 200

optimal spending s* = (315, 110, 859)

B Scaled least squares
B Optimal constrained least squares

8001

600

Group

— RMS 16.10%

rescaled least squares spending s* = (50,80,1154) ——— RMS 23.85%




Least norm problem

Special case of constrained least squares problem with A =7 and b = 0

minimize  ||Axz — b||? minimize  ||z||?

———

subjectto Cx =d subjectto Cx =d

Find the smallest vector that satisfies a set of linear equations



Force sequence

Unit mass on frictionless f,
surface, initially at rest —». |:|

.« e . e ﬁn o
p1n1t7 Ulnlt _ O D — 1

10-vector f gives the forces applied for one second each
Final velocity and position (Newton’s laws)

vﬁ“=f1+f2+---+f10
p™ = (19/2) f1 + (17/2) fo + - + (1/2) f10

Goal
Let’s find f such that v"™ = 0 and p'"™ =1



Least norm force sequence

Bang-bang
Find f that brings to p'™ =1, "™ =0 .
0.5
Bang-bang solution = 0.0
fPb = (1,—1,0,...,0) ||fbe2 = 2 0.5
—1.01
Least norm solution o
0.8
o o

minimize || f| _ R
. 1 1 A | O .
subject to f = -4
19/2 17/2 ... 1/2 1| oo

0.0- |

0.0 5.0

| ™2 =0.012  Much cheaper effort!

Time

| east norm

0.050

0.0251

0.0001

—0.0251

—0.0501

1.0-

0.81

0.6

0.41

0.2

0.01

0.0

5.0
Time




Solving the constrained least
sguares problem



Optimality conditions via calculus

minimize  f(x) = ||Axz — b]|? minimize  f(z) = ||Az — b||7

———

subjectto Cz =d subjectto clzx=d;, i1=1,...,p

Lagrangian function
L(x,2) = f(x) + z21(c; ¢ — dy) + - + Zp(ch — dp)

Optimality conditions
OL
8:67;

(x",2) =0, 1=1,...,n,

0L
@Zi

(x",2) =0, 2=1,...,p

11



Optimality conditions via calculus
L(z,2) =2 A" Az —2(A"b) 2+ b b+ 21(cix —dy) + - + zp(cgat — dy)

a7 Optlmallty conditions Vector form
5 (z*,2)=cixz—d; =0  (we already knew) Cr =d
oL

n p
(2*,2) =2) (ATA)jal —2(ATb)i + > zi(c;)i =0 2A" Az* —2A"b+CM 2 =0

j=1 j=1

8:137;

Karush-Kuhn-Tucker (KKT) conditions
2ATA CT| |z* 2ATD (square set of n + p

C 0 2 d linear equations)

Note KKT equations are extension of normal equations

to constrained least squares 12



Invertibility of KKT matrix

no longer positive 2AA CT| |z*| 247D
— —

definite in general C 0 Z d

The KKT matrix is invertible if and only if
» (' has linearly independent rows —— p<n (Ciswide)

A . . Al .
has linearly independent columns — m+p>n ( IS tall)
¢ (true when A has linearly indep. cols) ¢

Complexity (with p < n < m)
- Factor + solve: 2mn? + (2/3)(n + p)® + 2(n + p)* ~ 2mn~? Same as

+ Solve given a new b (prefactored): 2mn + 2(n + p)? ~ 2mn unconstralne?s



Optimality from KKT solution

For ™ and z* such that
2A" Ax* + C1 2 =24%h, Cz*=d

Given a feasible x and z, we can write the objective (just as least squares)
|Az — bl = [|(Az — Az™) + (Az™ — b)||*
= [[A(z — 2)|I° + [|Az* = b||* + 2(z — 2*)" A" (Az™ — b)

We can expand last term, using 24 (Az* —b) = —C*2* and Cx = Cz* = d

2Wx — ) AT (Ax* —b) = —(x—2*)' C* 2" = —(C(z — z%))' 2* =0

|Az — bl = [|[A(z — 2")[|* + [|Az* — b||* > || Az — b|®
r* 1S optimal 14



Portfolio optimization



Portfolio allocation weights

We want to invest V' dollars in n different assets (stocks, bonds, ...)
over periodst=1,...,T

Portfolio allocation weights
n-vector w gives the fraction of our total portfolio held in each asset

Properties

* Vw; dollar value hold in asset

+ 17w =1 (normalized)

- w; < 0 means short positions (you borrow)
(must be returned at time 7))

» Example: w = (—0.2,0.0,1.2)

i N

Short position Don’t hold any Hold 1.2V
of 0.2V on asset 1 of asset 2 In asset 3

16



Leverage, long-only portfolios, and cash

Leverage

L =|wi|+ -+ |wy| = ||Jw|:
L =1 when all weights are nonnegative (“long only portfolio”)

Uniform portfolio
w=1/n

Risk free asset
We often assume asset n is "risk-free” (e.g., cash)

if w = e,,, It means the portfolio is all cash

17



Return over a period

Asset returns

7, is the (fractional) return example: 7; = (0.01, —0.023,0.02)
of each asset over period ¢ (often expressed as percentage)

Portfolio return _
T Total portfolio value

re =Ty w after a period

It is the (fractional) return Vigr = Ve + Virs w = V(1 4 1)
for the entire portfolio over period ¢




Ris the T' x n matrix of asset returns

Return matrix R:; 1s the return of asset j in period ¢

'AAPL GOOG MMM Uss$
0.00219  0.0006 —0.00113 0.00005| Mar 1, 2016

R = [0.00744 —0.00894 —0.00019 0.00005| Mar2,2016
0.01488 —0.00215  0.00433  0.00005| Mar 3, 2016

Hold constant portfolio
with weights w over 1’ periods

Note. If nth asset risk-free,
the last column of R is u™'1,
where 1™ is the risk-free
per-period interest reate

Columns interpretation

Column 5 is time series
of asset j returns

Rows interpretation
Row t IS 7, IS the asset

return vector over period ¢

Portfolio returns (time series)

r = Rw (T'-vector) 9



Returns over multiple periods

r 1S time series T'-vector of portfolio returns

average return risk
(or just return) (standard deviation)
avg(r) = 17r/T std(r) = ||r — avg(r)1||/VT

Total portfolio value
VT_|_1 — V1(1 -+ Tl) .o (1 -+ TT)
~Vi+Vi(ri + - +rr)
= Vi +Tavg(r)V;

(for |r;| small, e.g., < 0.01
ignore higher order terms)

For high portfolio value we need large avg(r) 20



Annualized return and risk

Mean return and and risk are often expressed In
annualized form (per year)

Given P trading periods per year (i.e., 250 days)

annualized return = Pavg(r), annualized risk = \FPstd(r)

21



Portfolio optimization

How shall we choose the portfolio weight vector w?

Goals

High (mean) return Low risk
avg(r) std(r)

Data

- We know realized asset returns but not future ones
- Optimization. We choose w that would have worked well in the past
* True goal. Hope it will work well in the future (just like data fitting)

22



Portfolio optimization

Minimize risk given a target return
Chose n-vector w to solve

minimize  std(Rw)* = (1/T)||Rw — p1]|

subjectto 17w =1 T (past) target
mean return
avg(Rw) = p
\ (past) portfolio

returns time series

Solutions w are Pareto optimal

Our question
what would have been the best constant allocation w,
had we known future returns? 23



Example allocations

Annual return 1% (risk-free asset has 1% return)
w = (0.00,0.00,0.00, ... ., 0.00,0.00, 1.00)

Annual return 13%
w = (0.02, —0.07, —0.05, ..., —0.03,0.06, 0.56)

Annual return 25%
w = (0.05,—0.143, —0.09, . .., —0.07,0.12,0.12)

Asking for higher annual returns yields

» More invested in risky, but high return assets
 Larger short positions ("leveraging”)

24



Portfolio optimization

As constrained least squares

minimize

subject to

Rw — pl||?

17t 1
w p—

I I

1 1S the n-vector of
average returns per asset

avg(r) = (1/T)1" (Rw)

= (1/T)(R" 1) w = p' w

Solution via KKT linear system

ORTR
1T

i

1 ,u_
0 O
0 0

1
o,

_QpT,u_

25



Rewrite right-hand side

Optimal portfolios 2pTn]  [0]  [2Tu
1 = 1] +p| O
P 0 0

Two fund theorem

Optimal portfolio w is an affine function of p
—1 ~ - —1 ~ -

w 2RTR 1 u 0 2RTR 1 u 2T 11
21l=1 17 0 0 1{+p| 17 0 0 0
2] I ,uT 0 O_ _O_ I ,uT 0 O_ I 1 )

We can rewrite the first n-components as
the combination of two portfolios (funds)

w = Wy + PU

/

R(isk-fBe)e Other optimal portfolio -
p —



Example
20 assets over 2000 days (past)

« Optimal portfolios on a
straight line

* Line starts at risk-free
portfolio (p = 0)

* 1/n much better than
single portfolios

Annualized return

-0,

Risk-free

0 0.1 0.2 0.3 0.4

Annualized risk

0.5

0.6

0.7

27



The big assumption

Robinhood #

Future returns will look like past ones

© 2021 Robinhood. All rights reserved.

* You are warned this is false, every time you invest e e sttt st e
o I 't i S Of'te n re aS O n a b I e \ Robinhood Financial, Robinhood Securities, and Robinhood Crypto.

All investments involve risk and loss of capital.

» During crisis, market shifts, other big events not true

If assumption holds (even approximately), a good w on past returns
leads to good future (unknown) returns

Example

* Pick w based on last 2 years of returns

» Use w during next 6 months
28



Total portfolio value

Portfolio value (thousand dollars)

150-

100-

-
-

—_
-

Return Risk
Train Test Train Test Leverage
Risk-free (1%) 0.01 0.01 0.00 0.00 1.00
10% 0.10 0.08 0.09 0.07 1.96
20% 0.20 0.15 0.18 0.15 3.03
40% 0.40 0.30 0.37 0.31 5.48
1/n 0.10 0.21 0.23 0.13 1.00
Train " Test
—— Risk-free (1%)
10% "
— 2%
—— 40%
I 1/n 14‘
12 '
10
_, \/W
0 500 1000 2000 0 100 200 300 400 500
Day Day
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Build your quantitative hedge fund

Rolling portfolio optimization

For each period t, find weight w; using L past returns
Ft—15-- s Tt—L

Variations
- Update w every K periods (monthly, quarterly, ...)

- Add secondary objective \||w; — w;_1]|* to
discourage turnover, reduce transaction cost

- Add logic to detect when the future is likely to
not look like the past

- Add “signals” that predict future return of assets
(Twitter sentiment analysis)

30



Constrained least squares

Today, we learned to:
 Formulate (linearly) and solve constrained least squares problems
* Solve portfolio allocations problems

 Understand the difference between past and future returns (be careful!)

31
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Next lecture

* Linear optimization
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