ORF307 – Optimization

6. Constrained least squares

Today's lecture

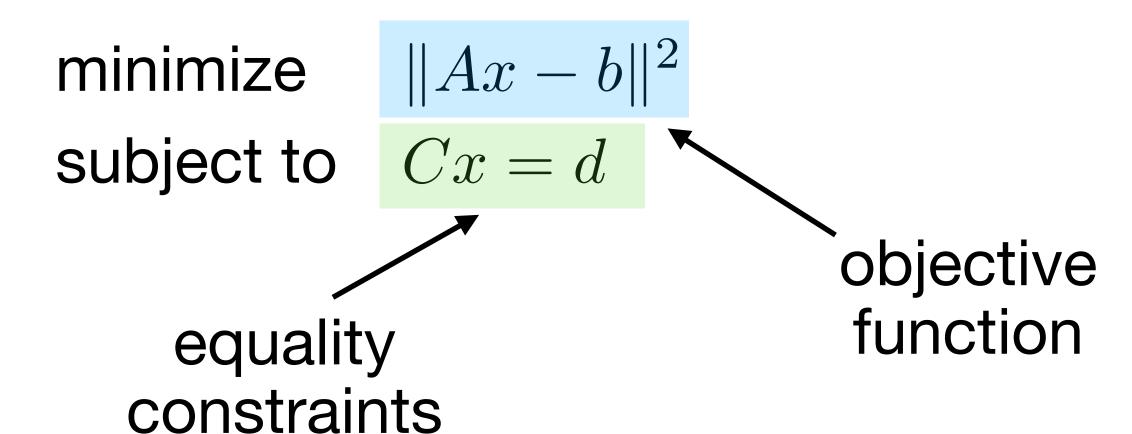
Constrained least squares

- Linearly constrained least squares
- Solving the constrained least squares problem
- Portfolio optimization

Linearly constrained least squares

Least squares with equality constraints

The (linearly) constrained least squares problem is



Problem data

- $m \times n$ matrix A, m-vector b
- $p \times n$ matrix C, p-vector d

Definitions

x is feasible if Cx = d x^{\star} is a solution if

- $Cx^* = d$
- $||Ax^* b||^2 \le ||Ax b||^2$ for any x satisfying Cx = d

Interpretations

- Combine solving linear equations with least squares.
- Like a bi-objective least squares with ∞ weight on second objective, $\|Cx-d\|^2$.

Optimal advertising with budget

m demographic groups we want to advertise to

 $v^{
m des}$ is the m-vector of desired views/impressions

n advertising channels (web publishers, radio, print, etc.)

s is the n-vector of purchases

 $m \times n$ matrix A gives demographic reach of channels

 A_{ij} is the number of views for group i and dollar spent on channel j (1000/\$)

Views across demographic groups

$$v = As$$

Goal

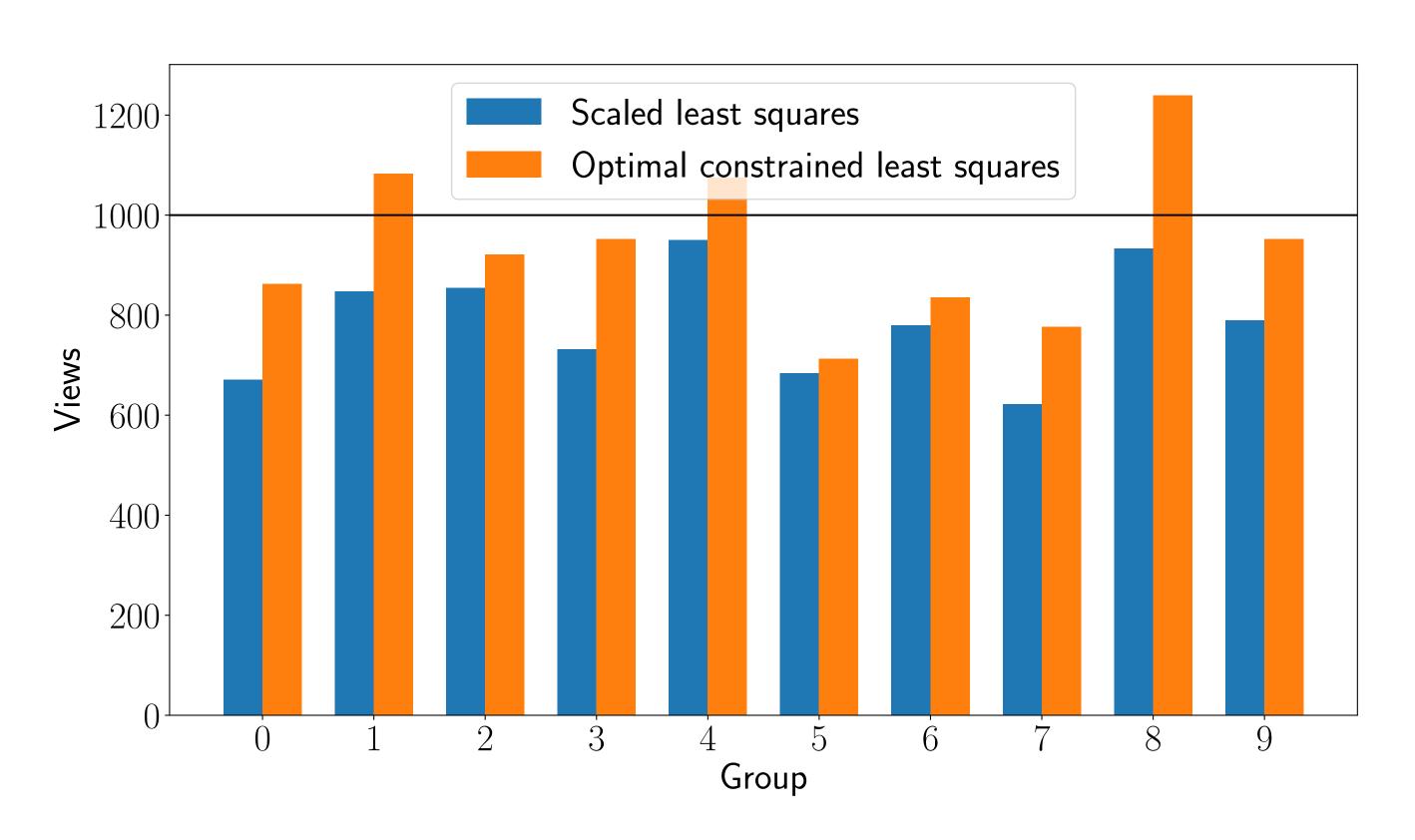
minimize
$$||As - v^{\text{des}}||^2$$
 subject to $\mathbf{1}^T s = B$

Optimal advertising with budget

Results

m=10 groups, n=3 channels budget B = 1284desired views vector $v^{\text{des}} = (10^3)1$

> $||As - v^{\text{des}}||^2$ minimize subject to $\mathbf{1}^T s = B$



rescaled least squares spending $s^* = (50, 80, 1154) \longrightarrow RMS 23.85\%$

Least norm problem

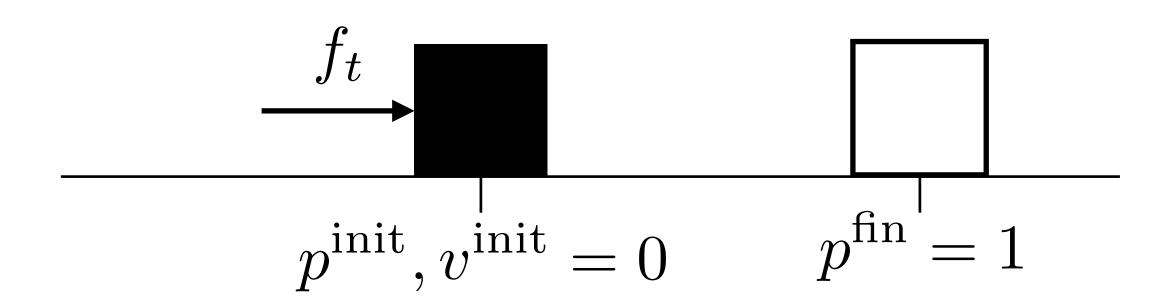
Special case of constrained least squares problem with A=I and b=0

minimize
$$||Ax-b||^2$$
 minimize $||x||^2$ subject to $Cx=d$

Find the smallest vector that satisfies a set of linear equations

Force sequence

Unit mass on frictionless surface, initially at rest



10-vector f gives the forces applied for one second each Final velocity and position (Newton's laws)

$$v^{\text{fin}} = f_1 + f_2 + \dots + f_{10}$$

$$p^{\text{fin}} = (19/2)f_1 + (17/2)f_2 + \dots + (1/2)f_{10}$$

Goal

Let's find f such that $v^{\rm fin}=0$ and $p^{\rm fin}=1$

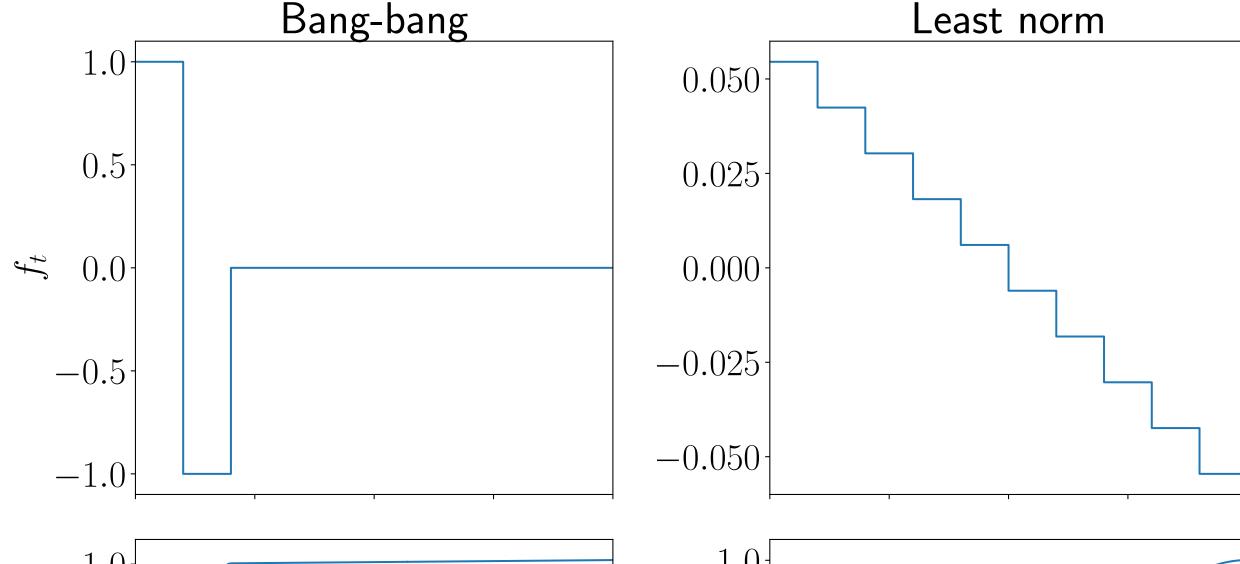
Least norm force sequence

Find f that brings to $p^{fin} = 1$, $v^{fin} = 0$

Bang-bang solution

$$f^{\text{bb}} = (1, -1, 0, \dots, 0)$$
 $||f^{\text{bb}}||^2 = 2$

$$||f^{\text{bb}}||^2 = 2$$

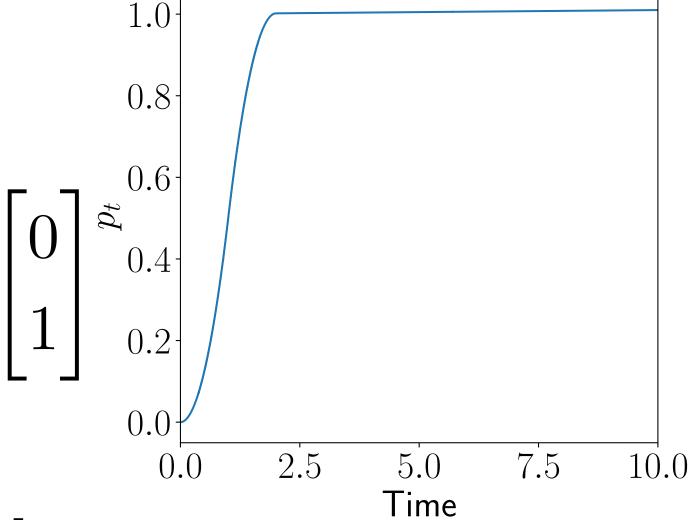


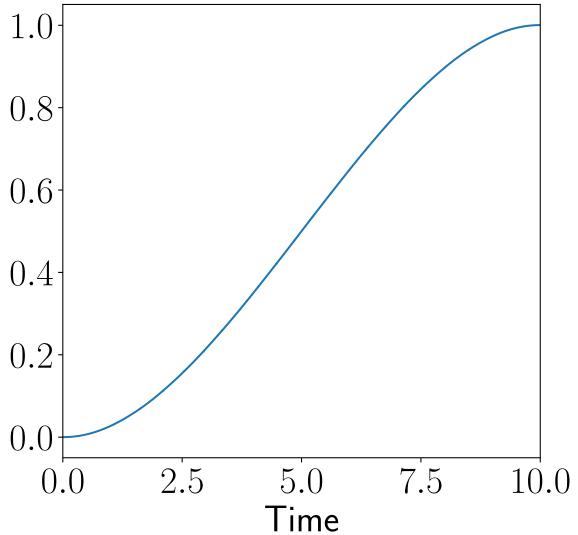
Least norm solution

minimize

 $||f||^2$

subject to
$$\begin{bmatrix} 1 & 1 & \dots & 1 \\ 19/2 & 17/2 & \dots & 1/2 \end{bmatrix} f = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$





9

$$||f^{\ln}||^2 = 0.012$$

Much cheaper effort!

Solving the constrained least squares problem

Optimality conditions via calculus

minimize
$$f(x) = \|Ax - b\|^2$$
 minimize $f(x) = \|Ax - b\|^2$ subject to $Cx = d$ subject to $c_i^T x = d_i, \quad i = 1, \dots, p$

Lagrangian function

$$L(x,z) = f(x) + z_1(c_1^T x - d_1) + \dots + z_p(c_p^T x - d_p)$$

Optimality conditions

$$\frac{\partial L}{\partial x_i}(x^*, z) = 0, \quad i = 1, \dots, n,$$

$$\frac{\partial L}{\partial z_i}(x^*, z) = 0, \quad i = 1, \dots, p$$

Optimality conditions via calculus

$$L(x,z) = x^T A^T A x - 2(A^T b)^T x + b^T b + z_1(c_1^T x - d_1) + \dots + z_p(c_p^T x - d_p)$$

Optimality conditions

Vector form

$$\frac{\partial L}{\partial z_i}(x^\star,z) = c_i^T x - d_i = 0 \quad \text{(we already knew)} \qquad Cx = d$$

$$\frac{\partial L}{\partial x_i}(x^\star,z) = 2\sum_{j=1}^n (A^TA)_{ij}x_j^\star - 2(A^Tb)_i + \sum_{j=1}^p z_j(c_j)_i = 0 \qquad 2A^TAx^\star - 2A^Tb + C^Tz = 0$$

Karush-Kuhn-Tucker (KKT) conditions

$$\begin{bmatrix} 2A^TA & C^T \\ C & 0 \end{bmatrix} \begin{bmatrix} x^* \\ z \end{bmatrix} = \begin{bmatrix} 2A^Tb \\ d \end{bmatrix}$$
 (square set of $n+p$ linear equations)

Note KKT equations are extension of normal equations to constrained least squares

Invertibility of KKT matrix

no longer positive definite in general
$$\begin{vmatrix} 2A^TA & C^T \\ C & 0 \end{vmatrix} \begin{vmatrix} x^* \\ z \end{vmatrix} = \begin{vmatrix} 2A^Tb \\ d \end{vmatrix}$$

The KKT matrix is invertible if and only if

$$p \le n$$
 (C is wide)

• The sum of the properties o

$$m+p \ge n$$
 $\left(\begin{bmatrix} A \\ C \end{bmatrix}$ is tall $\right)$

Complexity (with $p \le n \le m$)

- Factor + solve: $2mn^2 + (2/3)(n+p)^3 + 2(n+p)^2 \approx 2mn^2$
- Solve given a new b (prefactored): $2mn + 2(n+p)^2 \approx 2mn$

same as unconstrained

Optimality from KKT solution

For x^* and z^* such that

$$2A^T A x^* + C^T z^* = 2A^T b, \quad Cx^* = d$$

Given a feasible x and z, we can write the objective (just as least squares)

$$||Ax - b||^2 = ||(Ax - Ax^*) + (Ax^* - b)||^2$$
$$= ||A(x - x^*)||^2 + ||Ax^* - b||^2 + 2(x - x^*)^T A^T (Ax^* - b)$$

We can expand last term, using $2A^T(Ax^*-b)=-C^Tz^*$ and $Cx=Cx^*=d$

$$2(x - x^*)^T A^T (Ax^* - b) = -(x - x^*)^T C^T z^* = -(C(x - x^*))^T z^* = 0$$

$$||Ax - b||^2 = ||A(x - x^*)||^2 + ||Ax^* - b||^2 \ge ||Ax^* - b||^2$$

 x^* is optimal

Portfolio optimization

Portfolio allocation weights

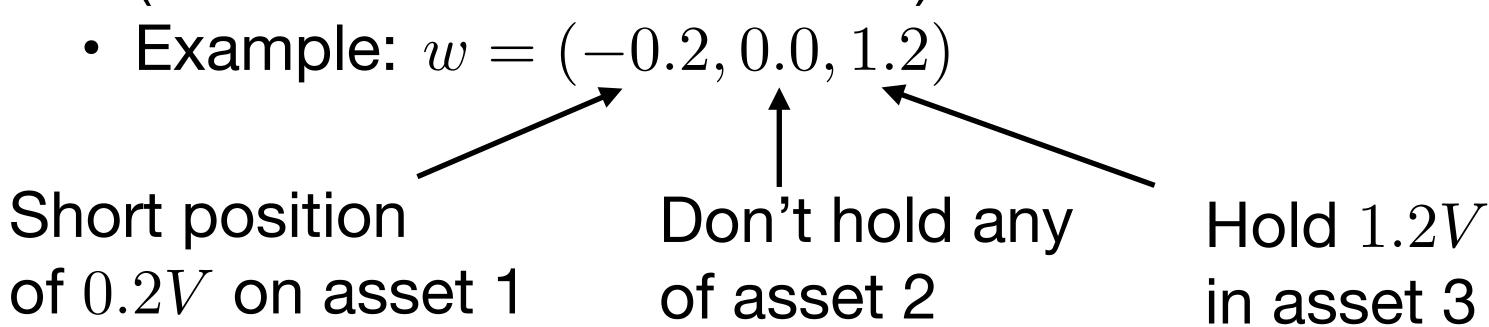
We want to invest V dollars in n different assets (stocks, bonds, ...) over periods $t=1,\ldots,T$

Portfolio allocation weights

n-vector w gives the fraction of our total portfolio held in each asset

Properties

- Vw_j dollar value hold in asset j
- $\mathbf{1}^T w = 1$ (normalized)
- $w_j < 0$ means short positions (you borrow) (must be returned at time T)



Leverage, long-only portfolios, and cash

Leverage

$$L = |w_1| + \cdots + |w_n| = ||w||_1$$

L=1 when all weights are nonnegative ("long only portfolio")

Uniform portfolio

$$w = 1/n$$

Risk free asset

We often assume asset n is "risk-free" (e.g., cash)

if $w = e_n$, it means the portfolio is all cash

Return over a period

Asset returns

 \tilde{r}_t is the (fractional) return of each asset over period t

Portfolio return

$$r_t = \tilde{r}_t^T w$$

It is the (fractional) return for the entire portfolio over period t

example: $\tilde{r}_t = (0.01, -0.023, 0.02)$ (often expressed as percentage)

Total portfolio value after a period

$$V_{t+1} = V_t + V_t \tilde{r}_t^T w = V_t (1 + r_t)$$

Return matrix

Hold constant portfolio with weights \boldsymbol{w} over T periods

Columns interpretation

Column j is time series of asset j returns

Rows interpretation

Row t is \tilde{r}_t is the asset return vector over period t

R is the $T \times n$ matrix of asset returns R_{tj} is the return of asset j in period t

$$R = \begin{bmatrix} AAPL & GOOG & MMM & US \$ \\ 0.00219 & 0.0006 & -0.00113 & 0.00005 \\ 0.00744 & -0.00894 & -0.00019 & 0.00005 \\ 0.01488 & -0.00215 & 0.00433 & 0.00005 \end{bmatrix}$$
Mar 1, 2016 Mar 2, 2016

Note. If nth asset risk-free, the last column of R is $\mu^{\rm rf}$ 1, where $\mu^{\rm rf}$ is the risk-free per-period interest reate

Portfolio returns (time series)

$$r = Rw$$
 (T-vector)

Returns over multiple periods

r is time series T-vector of portfolio returns

average return

(or just return)

$$\mathbf{avg}(r) = \mathbf{1}^T r / T$$

risk

(standard deviation)

$$\operatorname{std}(r) = ||r - \operatorname{avg}(r)\mathbf{1}||/\sqrt{T}$$

Total portfolio value

$$V_{T+1} = V_1(1+r_1)\cdots(1+r_T)$$
 $pprox V_1 + V_1(r_1+\cdots+r_T)$ $pprox V_1 + T\mathbf{avg}(r)V_1$ (for $|r_t|$ small, e.g., ≤ 0.01 ignore higher order terms)

For high portfolio value we need large avg(r)

Annualized return and risk

Mean return and and risk are often expressed in annualized form (per year)

Given P trading periods per year (i.e., 250 days)

annualized return = Pavg(r), annualized risk = $\sqrt{P}std(r)$

Portfolio optimization

How shall we choose the portfolio weight vector w?

Goals

High (mean) return $\mathbf{avg}(r)$

Low risk std(r)

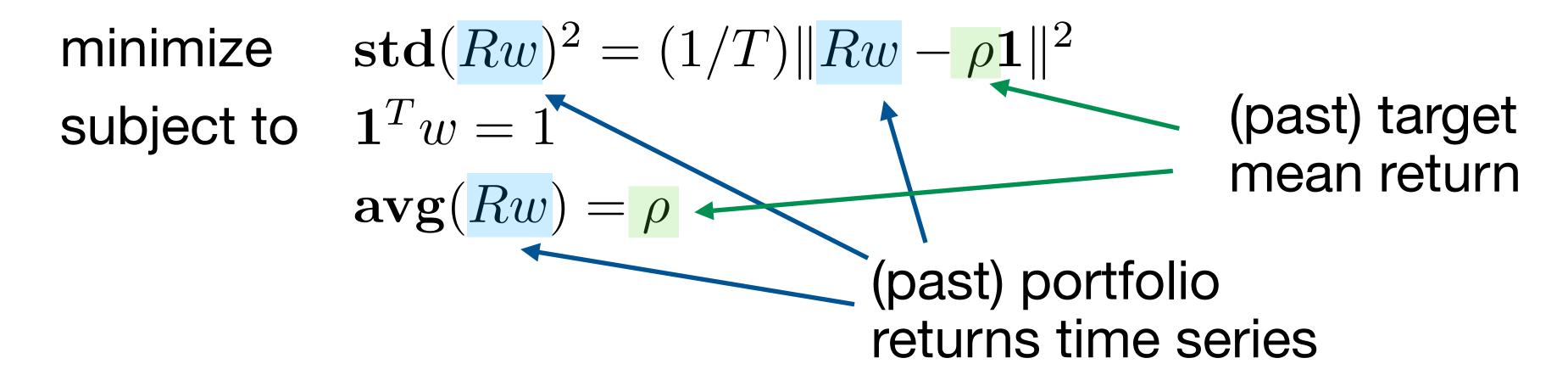
Data

- We know realized asset returns but not future ones
- Optimization. We choose w that would have worked well in the past
- True goal. Hope it will work well in the future (just like data fitting)

Portfolio optimization

Minimize risk given a target return

Chose n-vector w to solve



Solutions w are Pareto optimal

Our question

what would have been the best constant allocation w, had we known future returns?

Example allocations

Annual return 1% (risk-free asset has 1% return)

$$w = (0.00, 0.00, 0.00, \dots, 0.00, 0.00, 1.00)$$

Annual return 13%

$$w = (0.02, -0.07, -0.05, \dots, -0.03, 0.06, 0.56)$$

Annual return 25%

$$w = (0.05, -0.143, -0.09, \dots, -0.07, 0.12, 0.12)$$

Asking for higher annual returns yields

- More invested in risky, but high return assets
- Larger short positions ("leveraging")

Portfolio optimization

As constrained least squares

minimize
$$\|Rw - \rho \mathbf{1}\|^2$$
 subject to
$$\begin{bmatrix} \mathbf{1}^T \\ \mu^T \end{bmatrix} w = \begin{bmatrix} 1 \\ \rho \end{bmatrix}$$

 μ is the n-vector of average returns per asset

$$\mathbf{avg}(r) = (1/T)\mathbf{1}^{T}(Rw)$$
$$= (1/T)(R^{T}\mathbf{1})^{T}w = \mu^{T}w$$

Solution via KKT linear system

$$egin{bmatrix} 2R^TR & \mathbf{1} & \mu \ \mathbf{1}^T & 0 & 0 \ \mu^T & 0 & 0 \end{bmatrix} egin{bmatrix} w \ z_1 \ z_2 \end{bmatrix} = egin{bmatrix} 2
ho T\mu \ 1 \
ho \end{bmatrix}$$

Optimal portfolios

Rewrite right-hand side

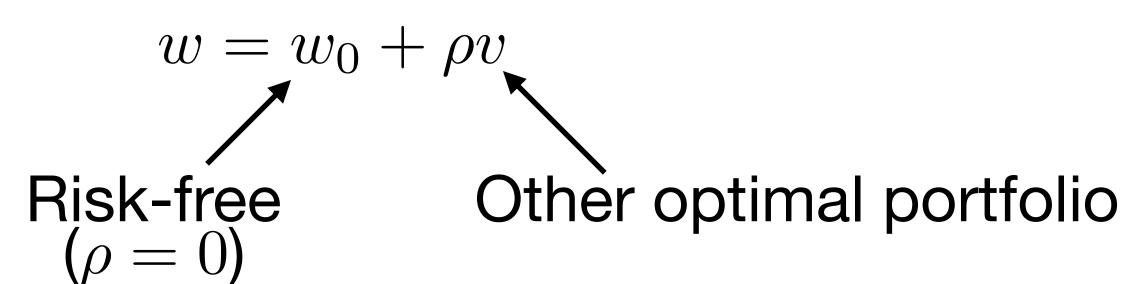
$$\begin{bmatrix} 2\rho T\mu \\ 1 \\ \rho \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \rho \begin{bmatrix} 2T\mu \\ 0 \\ 0 \end{bmatrix}$$

Two fund theorem

Optimal portfolio w is an affine function of ρ

$$\begin{bmatrix} w \\ z_1 \\ z_2 \end{bmatrix} = \begin{bmatrix} 2R^TR & \mathbf{1} & \mu \\ \mathbf{1}^T & 0 & 0 \\ \mu^T & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \rho \begin{bmatrix} 2R^TR & \mathbf{1} & \mu \\ \mathbf{1}^T & 0 & 0 \\ \mu^T & 0 & 0 \end{bmatrix}^{-1} \begin{bmatrix} 2T\mu \\ 0 \\ 1 \end{bmatrix}$$

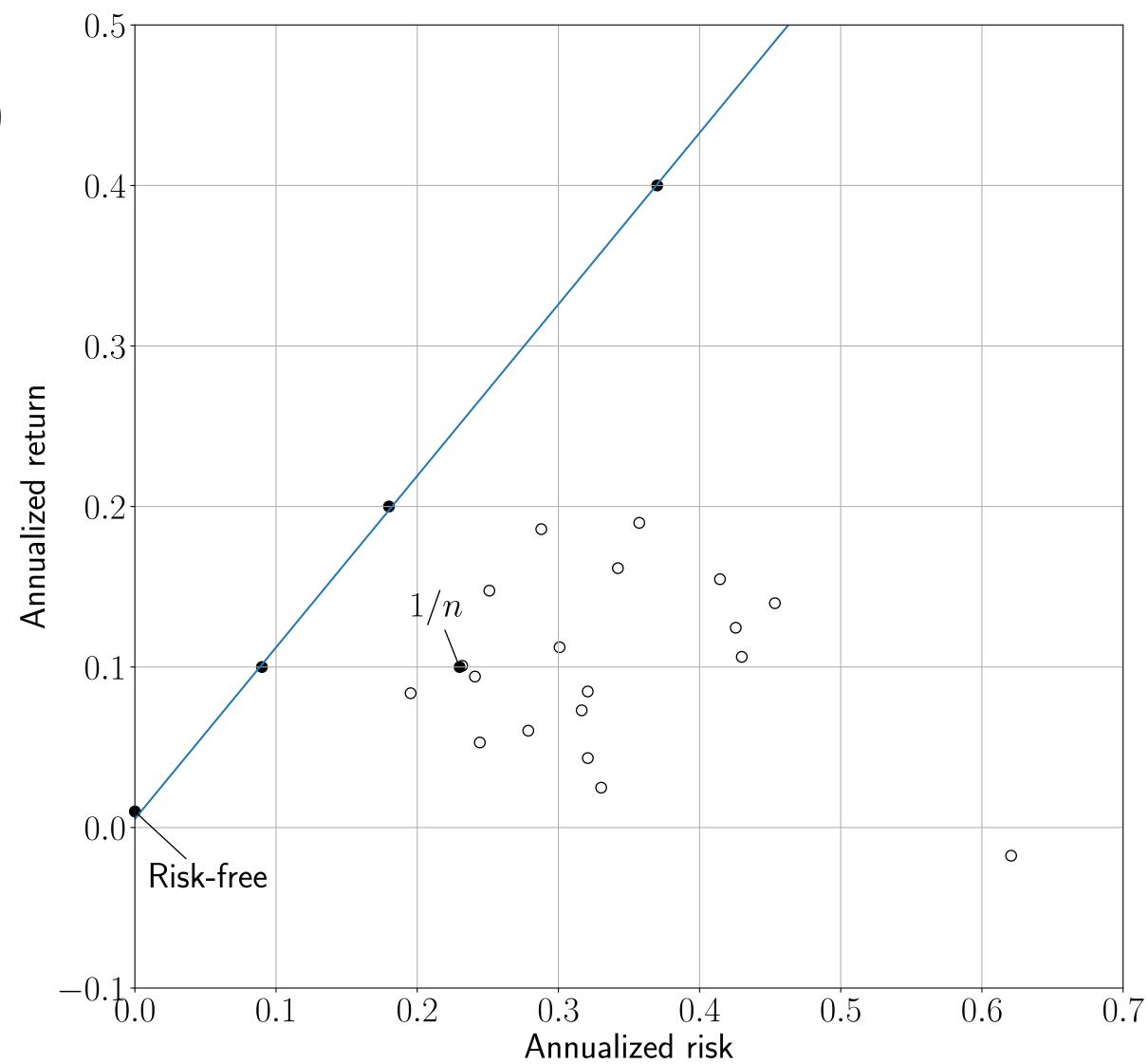
We can rewrite the first n-components as the combination of two portfolios (funds)



Example

20 assets over 2000 days (past)

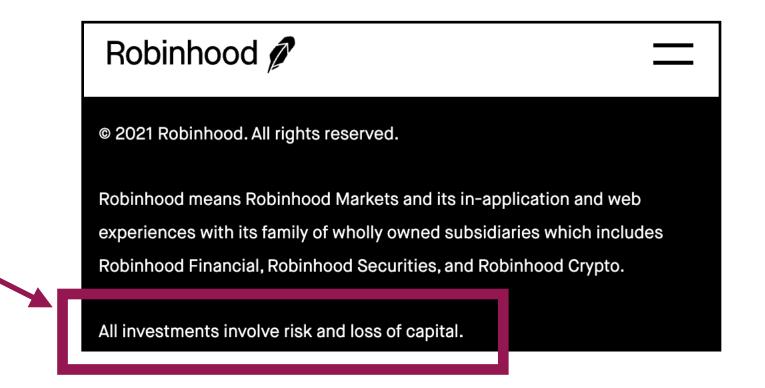
- Optimal portfolios on a straight line
- Line starts at risk-free portfolio ($\rho = 0$)
- 1/n much better than single portfolios



The big assumption

Future returns will look like past ones

- You are warned this is false, every time you invest
- It is often reasonable
- During crisis, market shifts, other big events not true



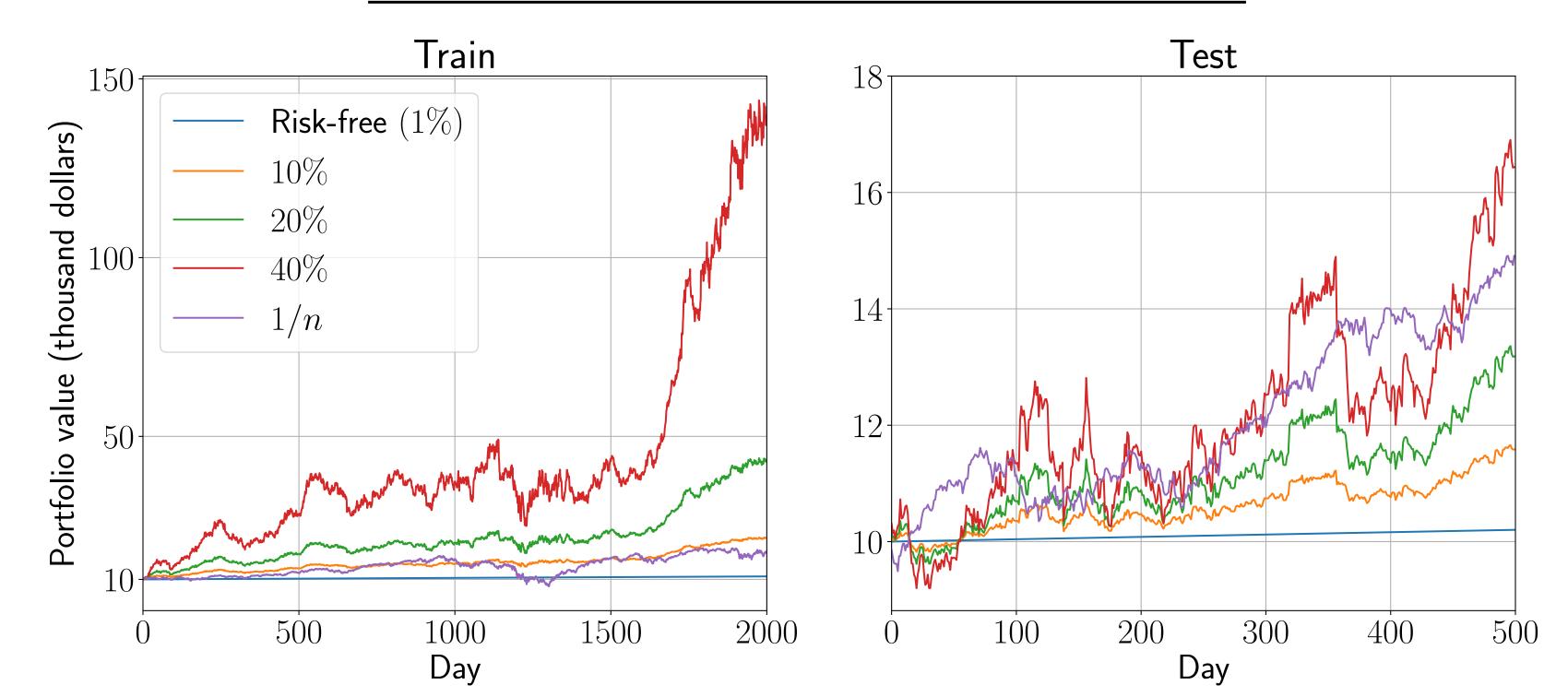
If assumption holds (even approximately), a good w on past returns leads to good future (unknown) returns

Example

- Pick w based on last 2 years of returns
- Use w during next 6 months

Total portfolio value

	Return		Risk		
	Train	Test	Train	Test	Leverage
Risk-free (1%)	0.01	0.01	0.00	0.00	1.00
10%	0.10	0.08	0.09	0.07	1.96
20%	0.20	0.15	0.18	0.15	3.03
40%	0.40	0.30	0.37	0.31	5.48
1/n	0.10	0.21	0.23	0.13	1.00



Build your quantitative hedge fund

Rolling portfolio optimization

For each period t, find weight w_t using L past returns r_{t-1}, \dots, r_{t-L}

Variations

- Update w every K periods (monthly, quarterly, ...)
- Add secondary objective $\lambda \|w_t w_{t-1}\|^2$ to discourage turnover, reduce transaction cost
- Add logic to detect when the future is likely to not look like the past
- Add "signals" that predict future return of assets (Twitter sentiment analysis)

Constrained least squares

Today, we learned to:

- Formulate (linearly) and solve constrained least squares problems
- Solve portfolio allocations problems
- Understand the difference between past and future returns (be careful!)

References

- S. Boyd, L. Vandenberghe: Introduction to Applied Linear Algebra Vectors, Matrices, and Least Squares
 - Chapter 16 and 17: constrained least squares

Next lecture

Linear optimization