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Flop counts

 Computers store real numbers in floating-
point format

e Basic arithmetic operations (addition,
multiplication, etc...) are called floating
point operations (flops)

* Algorithm complexity: total number of
flops needed as function of dimensions

 Execution time =~ (flops)/(computer speed)
[Very grossly approximated]

 Modern computers can go at 1 Gflop/sec
(10° flops/sec)




Summary of easy linear systems

method flops

diagonal
A = diag(aq,...,a,) Ti = bi/a; n
lower triangular forward ,
A;; =0fori <y substitution n
upper triangular backward

. . . . 2
A;; = 0fori > g substitution n
permutation Inverse

P,=1Iifj7=m; else permutation 0



The factor-solve method for solving Ax = b

1. Factor A as a product of simple matrices:
A:A1A2°°°Ak, BE— AlAQ,...AkCIZ:b

(A; diagonal, upper/lower triangular, permutation, etc)

A1$1 =%,

A To = X
2. Compute z = A~ lb=A_"-. . AT'D 242 1
by solving k “easy” systems

At = Tp—1

Note: step 2 Is much cheaper than step 1



Multiple right-hand sides

You now have factored A and you want to solve d linear systems
with different righ-hand side m-vectors b;

A$:b1 AZU:[?Q AQE:bd

Factorization-caching procedure

1. Factor A = A4,..., A, only once (expensive)
2. Solve all linear systems using the same factorization (cheap)

Solve many “at the price of one”



LU Factorization

Every invertible matrix A can be factored as
A=PLU — P'A=LU
P permutation, L lower triangular, U upper triangular

Procedure
« Similar to Gaussian elimination (rewrite Ax = b as Ux = d)
» Permutation P avoids divisions by 0
* One of infinite possible combinations of P, L, U

Complexity
* (2/3)n° flops
» Less if A has special structure (sparse, diagonal, etc)



LU Solution

Ar=b, = PLUx=5b

Iterations

1. Permutation: Solve Px1 = b (0 flops)
2. Forward substitution: Solve Lzo = 1 (n?* flops)
3. Backward substitution: Solve Uz = x5 (n® flops)

Complexity

- Factor + solve: (2/3)n’ + 2n? ~ (2/3)n° (for large n)
- Just solve (prefactored): 2n?



LL" (Cholesky) Factorization

Every positive definite matrix A can be factored as
A=LL"

L lower triangular

Procedure
» Works only on symmetric with positive definite matrices

» No need to permute as in LU
» One of Infinite possible choices of L

Complexity

» (1/3)n° flops (half of LU decomposition)
» Less if A has special structure (sparse, diagonal, etc)



LL' (Cholesky) Solution

Ar=b, = LL'z=1

Iterations

1. Forward substitution: Solve Lx; = b (n* flops)
2. Backward substitution: Solve L' z = x; (n? flops)

Complexity

- Factor + solve: (1/3)n’ + 2n? ~ (1/3)n° (for large n)
- Just solve (prefactored): 2n?
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Today'’s lecture

Least squares

e | east squares optimization
e Gram matrix
e Solving least squares

 Example
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L east squares optimization



Solving overdetermined linear systems

You have an overdetermined m x n linear system (m > n)

Typically no solution

Axr =0
(with tall A)

9
1
0

example
0l -

XL
1|7 =
XL

2| LT
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Least squares problem

residual vector

r=Ax — b —

Goal: make it as small as possible
minimize ||r|]

Least squares problem

minimize || Az — b||3

* 1 IS the decision variable
» ||Axz — bl|3 is the objective function
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Least squares solution

optimality
condition

minimize || Az — b||3

x™ IS a solution of least squares problem if

|Az* — b||* < ||Az — b||*, for any n-vector z

x* need not (and usually does not) satisfy Ax™ = b

What happens if +* does satisfy Ax™ = b?
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Column interpretation

A= |ay,...,a,|, ai,...,a, are columns of A

Goal: find a linear combination of the columns of A that is closest to b
|Az — b||* = |[(z1a1 + - - - + zpay,) — b]|?

If £* Is a solution of the least squares problem, the m-vector
Ax* =xja1 + -+ x)any

IS the closest to b among all linear combinations of the columns of A
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Row iInterpretation

A= |, al,...,al arerows of A

The residual components are r; = a: = — b;

(

Goal minimize sum of squares of the residuals

Az —b]|" = (a1 = b1)* + -+ + (@ — bin)°

Comparison

» Solving Ax = b forces all residuals to be zero
» Least squares attempts to make them small
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£z
1 1 L —
£z
o 2| U -1
|Az — b||7

Least squares problem
Compute = to minimize

Az — b||* = (221 — 1)° + (—21 + 22)° + (225 + 1)7

Solution z* = (1/3, —1/3) (via calculus)

Interpretations

* ||Az* — b]|* = 2/3 smallest
possible value of ||[Az — bHZ

» Ax* = (2/3,-2/3,—2/3) is the
linear combination of columns

of A closest to b
18



Gram matrix



Gram matrix

Given an m x n matrix A with columns a4, ..., a,

the Gram matrix of A is

T T T,

- aQT&l &gag o agan
ATA=1 . .
T T T
A, a1 Qa2 Uy Ay _

Very useful in least squares problems
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Gram matrix
Invertibility

A has linearly independent columns if and only if A* A is invertible

Proof
We show that Ax =0 <— A1 Az =0

= If Az = 0 then we can write
At Ax = AT (Az) = AT0 =0
< if AT Ax = 0 then we can write
0=2"'0=za" (A" Az) = 2* A" Az = || Ax||?
which implies that Ax = 0 (definition of norm) B
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Positive (semi)definiteness of Gram matrix

Positive semidefinite (always)

vt AY Ax = (Az)' (Az) = ||Az||? >0,  for any n-vector z

Positive definite
AT A is positive definite if and only if A has linearly independent columns

Proof

If the columns of A are linearly independent, then
Ax # 0 forany x # 0

Therefore, ' A* Az = || Az||* > 0 (definition of norm) [
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Solving least squares problems



Main assumption

Least squares problem

minimize ||Az — b||5

A has linearly independent columns

True In most practical examples such as data fitting (next lecture)
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Calculus derivation

2
f(z)= Az —b* = (Z Ajjrj — bi)
i=1 \ j=1

The solution z* satisfies 8xk = 2 Z (Z A;jxj — b ) ik)
o, 9
g —QZATkZAJJ—b)
fork=1,...,n

(AT(AZE —0))x

25



Calculus derivation in vector form

f(x) =||Az = b||? = (Ax — b)" (Az — b) = 2' AT Ax — 2(A" b) =+ b" b

Vi(z*) = : = 2A" Ax* —2A" b =2A" (Az" — b) =0

normal equations
XN

square —— (AT A)x*=A"b

linear system
26



Optimality

For z* such that A* Axz* = ATb, we have

|Az — b = [|[(Az — Az*) + (Az* — b)||°
= [|A(z — z%)||” + ||Az* — b||* + 2(A(xz — 2*))" (Az* — b)
— || A(x — 2*)||* + [|[Az* — b|]? + 2(x — 2*)" A" (Ax* — b)
= ||A(z — 2%)||? + ||Ax™ — b||? ‘

(AT (Az* — b) = 0)

Therefore, for any =, we have
|Az — b > || Az* — b||°

If equality holds, A(x —2*) =0= 2z =2~
since columns of A are linearly independent



Solving normal equations

(AT A)x* = A" b
Inversion

T (ATA)_lATb —_

Factor-solve method
A has linearly independent columns

'
AT A is symmetric positive-definite

Which method is faster?

Pseudo-inverse

AT = (AT A)71TAT

Cholesky factorization

ATA=LL"
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Solving normal equations with Cholesky

1. Form linear system A! Az = A'b
« Form M = A* A (2mn? flops)
» Form g = A’ b: (2mn flops)

2. Factor M = LL* ((1/3)n° flops)

3. Solve LL' x = q (2n? flops)
(with forward/backward substitution)

Complexity

- Factor + solve: 2mn? + 2mn + (1/3)n’ + 2n° ~ 2mn?
- Solve given a new b (prefactored): 2mn + 2n? ~ 2mn
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Optimal advertising

m demographic groups vdes is the m-vector

we want to advertise to of desired views/impressions
n advertising channels s IS the n-vector

(web publishers, radio, print, etc.) of purchases

A;; 1s the number of views
—— for group 2 and dollar spent
on channel j (1000/$)

m X n matrix A gives
demographic reach of channels

Views across demographic groups
v = As

Goal
minimize || As — v9%||?
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Optimal advertising

Results

m = 10 groups, n = 3 channels

desired views vector v9° = (10°)1

minimize || As — v9%||?

|

optimal spending s* = (62, 100, 1443)

1200

1000

8001

Views

400

2001

6001
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Optimal advertising

Reusing factorization on large example
m = 100, 000 groups, n = 5,000 channels
minimize || As — v9||?

First solve Second solve
desired views v = (10°)1 desired views v9¢% = 5001
1. Form linear system Mx = ¢ 1. Form g = A™b
Pseudoinverse where M = A" A, q = A"b 2. Solve LL Tz = g

2. Factor M = LL1

Time: 263 sec -
3. Solve LL ' x = q

Complexity Complexity
2mn? 2mn

Time: 9 sec Time: 0.37 sec 33



Least squares

Today, we learned to:
 Define and recognize least squares problems
e Solve least squares problems using Cholesky factorization

 Understand the benefits of reusing factorizations
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Next lecture

* | east squares and data fitting
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