ORF307 – Optimization

2. Solving linear systems in practice

Today's lectureSolving linear systems in practice

- Matrices: definition, operations, special cases
- Linear systems solutions
- Solving linear systems

Matrices

Matrices

matrix of size $m \times n$

$$A = \begin{bmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \vdots & \vdots & & \vdots \\ A_{m1} & A_{m2} & \dots & A_{mn} \end{bmatrix}$$

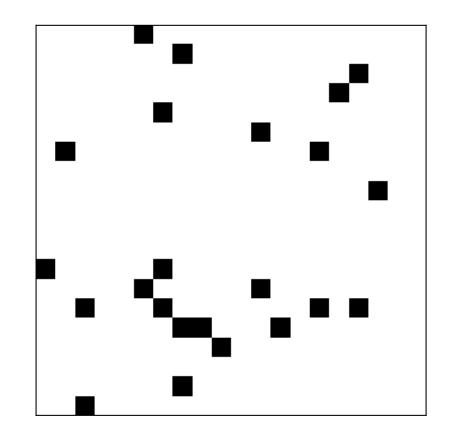
- A_{ij} is the i, j element (also called entry or coefficient)
- i is the row index, j the column index
- indices start at 1 (when you code, at 0)
- vectors are like matrices with 1 column

Special matrices

Special matrices

- A = 0 (zero matrix): $A_{ij} = 0, \quad i = 1, ..., m, j = 1, ..., n$
- A=I (identity matrix): m=n with $A_{ii}=1$ and $A_{ij}=0$ for $i\neq j$

Sparse matrices (most entries are 0)



- Examples: 0 and I
- Can be stored and manipulated efficiently
- $\mathbf{nnz}(A)$ is the number of nonzero entries

Diagonal and triangular matrices

diagonal matrix

- A square matrix $n \times n$ with $A_{ij} = 0$ when $i \neq j$
- $\operatorname{diag}(a_1, \ldots, a_n)$ is the diagonal matrix with $A_{ii} = a_i$ for $i = 1, \ldots, n$

$$\mathbf{diag}(0.2, -3) = \begin{bmatrix} 0.2 & 0 \\ 0 & -3 \end{bmatrix}$$

lower triangular matrix

$$A_{ij} = 0 \text{ for } i < j$$

$$\begin{bmatrix} -0.6 & 0 \\ 1.6 & -2 \end{bmatrix}$$

upper triangular matrix

$$A_{ij} = 0 \text{ for } i > j$$

$$\begin{vmatrix} -0.2 & 0.3 \\ 0 & -1 \end{vmatrix}$$

Block matrices

Matrices whose entries are matrices

$$n \times m \text{ matrix } A = egin{bmatrix} B & C \\ D & E \end{bmatrix}$$

where B,C,D,E are submatrices of blocks of A

column representation

$$A = \begin{bmatrix} a_1 & a_2 & \dots & a_n \end{bmatrix}$$
 (a_i are m -vectors)

row representation

$$A = egin{bmatrix} b_1^T \ b_2^T \ \vdots \ b_n^T \end{bmatrix}$$

(b_i are n-row-vectors)

Matrix operations

transpose

A transpose of a matrix A is denoted as A^T where

$$(A^T)_{ij} = A_{ji}, \quad i = 1, \dots, m, \quad j = 1, \dots, n$$

addition (just like vectors)

$$(A+B)_{ij} = A_{ij} + B_{ij}, \quad i = 1, \dots, m, \quad j = 1, \dots, n$$

scalar multiplication (just like vectors)

$$(\alpha A)_{ij} = \alpha A_{ij}, \quad i = 1, \dots, m, \quad j = 1, \dots, n$$

Many properties

$$(A^T)^T = A,$$
 $A + B = B + A,$ $\alpha(A + B) = \alpha A + \alpha B$

Matrix-vector multiplication

dot product

A matrix-vector product of an $m \times n$ matrix A and a n-vector x is denoted as

$$y = Ax$$
, where $y_i = A_{i1}x_1 + \cdots + A_{in}x_n$, $i = 1, ..., m$

$$\begin{bmatrix} 0 & 2 & -1 \\ -2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ -4 \end{bmatrix}$$

row interpretation

$$y_i = b_i^T x$$

where b_1^T, \dots, b_m^T are rows of A

example A1

column interpretation

$$y = x_1 a_1 + \dots x_n a_n$$

where a_1, \ldots, a_n are the columns of A

example $Ae_j = a_j$

Return matrix — portfolio vector

R is the $T \times n$ matrix of asset returns

	AAPL	GOOG	MMM	AMZN	
					Mar 1, 2016
R =	0.00744	-0.00894	-0.00019	-0.00468	Mar 2, 2016
	0.01488	-0.00215	0.00433	-0.00407	Mar 3, 2016

$$R_{ti} = \frac{p_{ti}^{\text{final}} - p_{ti}^{\text{initial}}}{p_{ti}^{\text{initial}}}$$

constant investment w

Rw is the vector of portfolio returns over periods $1, \ldots, T$

Symmetric positive semidefinite matrices

symmetric matrix

$$A^T = A$$

positive semidefinite matrix

$$x^T A x \ge 0$$
 for any $x \in \mathbf{R}^n$

positive definite matrix

$$x^T A x > 0$$
 for any $x \neq 0$

example

$$A = \begin{bmatrix} 2 & 6 \\ 6 & 20 \end{bmatrix}$$

$$\begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 2 & 6 \\ 6 & 20 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 2x_1 + 6x_2 \\ 6x_1 + 20x_2 \end{bmatrix}$$

$$= 2x_1^2 + 12x_1x_2 + 20x_2^2$$
$$= 2(x_1 + 3x_2)^2 + 2x_2^2$$

sum of squares

Matrix multiplication

matrix product

A matrix product of an $m \times p$ matrix A and a $p \times n$ matrix B is

$$C = AB$$
, where $C_{ij} = A_{i1}B_{1j} + \cdots + A_{ip}B_{pj}$, $i = 1, \ldots, m, j = 1, \ldots, n$

(move along ith row of A and jth column of B)

$$\begin{bmatrix} -1.5 & 3 & 2 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} -1 & -1 \\ 0 & -2 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 3.5 & -4.5 \\ -1 & 1 \end{bmatrix}$$

Complexity

Given $m \times n$ matrix A

- Matrix addition, scalar-matrix multiplication: mn flops
- Matrix-vector multiplication: $m(2n-1) \approx 2mn$ flops
- Matrix-matrix multiplication ($A \in \mathbf{R}^{m \times p}$, $B \in \mathbf{R}^{p \times n}$): $(mn)(2p-1) \approx 2mnp$ flops (inner product of p vectors)

Questions

- How many flops does it take to multiply two 1000×1000 matrices?
- How long does it take on a computer?

Linear systems solutions

Linear systems of equations

Given an $m \times n$ matrix A and a m-vector b, find a n-vectors x such that Ax = b

typical scenarios

underdetermined (wide)

$$\begin{bmatrix} * & * & * \\ * & * & * \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} * \\ * \end{bmatrix}$$

$$\begin{bmatrix} * & * \\ * & * \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} * \\ * \end{bmatrix}$$

$$\begin{bmatrix} * & * \\ * & * \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} * \\ * \end{bmatrix}$$

infinite solutions square

$$m = n$$

$$egin{bmatrix} * & * \ * & * \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix} = egin{bmatrix} * \ * \end{bmatrix}$$

unique solution

most common

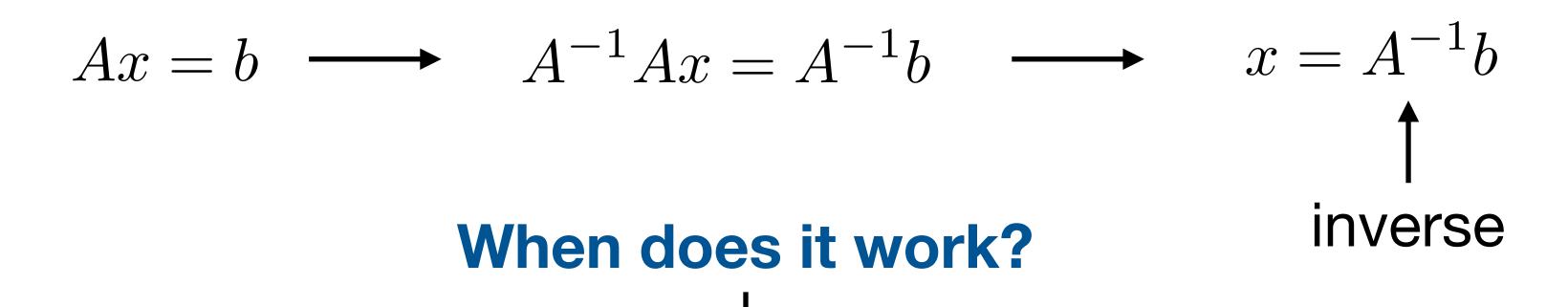
overdetermined (tall)

$$\begin{bmatrix} * & * \\ * & * \\ * & * \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} * \\ * \\ * \end{bmatrix}$$

no solution

Solving square linear systems

Given an $n \times n$ matrix A and a n-vector b, find a n-vector x such that



A must be invertible

- \bullet Columns of A are linearly independent
- Rows of A are linearly independent
- Columns/rows form a basis of \mathbb{R}^n

Solving linear systems

How do we solve linear systems in practice?

Idea

$$Ax = b$$

- compute A^{-1}
- multiply $A^{-1}b$

Example

 5000×5000 matrix A and a 5000-vector b

- Solve by computing ${\cal A}^{-1}$
- Solve with numpy.linalg.solve

What's happening inside?

Diagonal matrix

$$\begin{bmatrix} A_{11} & & & \\ & \ddots & \\ & & A_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} \longrightarrow A_{11}x_1 = b_1$$

$$A_{22}x_2 = b_2$$

$$\vdots$$

$$A_{nn}x_n = b_n$$

Solution

$$x = A^{-1}b = (b_1/A_{11}, \dots, b_n/A_{nn})$$

Complexity

n flops

Lower triangular matrix

$$\begin{bmatrix} A_{11} & & & & \\ A_{21} & A_{22} & & & \\ \vdots & & \ddots & \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} \qquad A_{11}x_1 = b_1 \\ A_{21}x_1 + A_{22}x_2 = b_2 \\ \vdots \\ A_{n1}x_1 + A_{n2}x_2 + \dots + A_{nn}x_n = b_n$$

Solution: "forward substitution"

- First equation: $x_1 = b_1/A_{11}$
- Second equation: $x_2 = (b_2 A_{21}x_1)/A_{22}$
- Repeat to get x_3, \ldots, x_n

- First equation: 1 flop (division)
- Second equation: 3 flops
- ith step needs 2i-1 flops

$$1 + 3 + \dots + (2n - 1) = n^2$$
 flops

Upper triangular matrix

$$\begin{bmatrix} A_{11} & \dots & A_{n-1,n} & A_{1n} \\ & \ddots & & \vdots \\ & & A_{n-1,n-1} & A_{n-1,n} \\ & & & A_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} \xrightarrow{A_{11}x_1 + \dots + A_{1,n-1}x_{n-1} + A_{1n}x_n = b_1} A_{n-1,n-1}x_{n-1} + A_{n-1,n}x_n = b_{n-1} A_{nn}x_n = b_n$$

Solution: "backward substitution"

- Last equation: $x_n = b_n/A_{nn}$
- Second to last equation:

$$x_{n-1} = (b_{n-1} - A_{n-1,n}x_n)/A_{n-1,n-1}$$

• Repeat to get x_{n-2}, \ldots, x_1

- Last equation: 1 flop (division)
- Second to last equation: 3 flops
- $i {
 m th} \ {
 m step} \ {
 m needs} \ 2i-1 \ {
 m flops}$

$$1 + 3 + \cdots + (2n - 1) = n^2$$
 flops

Permutation matrices

 $\pi = (\pi_1, \dots, \pi_n)$ is a permutation of $(1, 2, \dots, n)$

A $n \times n$ permutation matrix P, permutes the vector x

$$Px = (x_{\pi_1}, \dots, x_{\pi_n})$$

Properties

- $P_{ij} = \begin{cases} 1 & j = \pi_i \\ 0 & \text{otherwise} \end{cases}$
- $P^{-1} = P^T$ (inverse permutation)

Complexity

Solve Px = b: 0 flops (no operations)

example

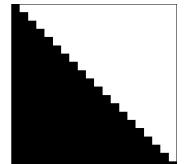
$$\begin{array}{ccccc}
\pi = (2, 3, 1) \\
P \\
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = \begin{bmatrix}
x_2 \\
x_3 \\
x_1
\end{bmatrix} \\
P^{-1} \\
\begin{bmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
x_2 \\
x_3 \\
x_1
\end{bmatrix} = \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} \\
\begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix} = \begin{bmatrix}
x_1 \\
x_2 \\
x_3
\end{bmatrix}$$

Summary of easy linear systems

diagonal
$$A = diag(a_1, \ldots, a_n)$$

$$x_i = b_i/a_i$$

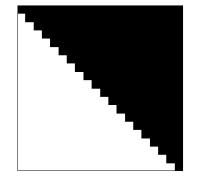
n



lower triangular
$$A_{ij} = 0$$
 for $i < j$

forward substitution

 n^2



upper triangular

$$A_{ij} = 0 \text{ for } i > j$$

backward substitution

permutation

$$P_{ij} = 1 \text{ if } j = \pi_i \text{ else } 0$$

inverse permutation

How do we solve linear systems in practice?

$$Ax = b$$

Any idea?

We know how to solve special ones

Let's use that!

The factor-solve method for solving Ax=b

1. Factor A as a product of simple matrices:

$$A = A_1 A_2 \cdots A_k, \longrightarrow A_1 A_2, \ldots A_k x = b$$

(A_i diagonal, upper/lower triangular, permutation, etc)

2. Compute
$$x = A^{-1}b = A_k^{-1} \cdots A_1^{-1}b$$
 by solving k "easy" systems

$$A_1x_1 = b$$

$$A_2x_2 = x_1$$

$$\vdots$$

$$A_kx = x_{k-1}$$

Note: step 2 is much cheaper than step 1

Multiple right-hand sides

You now have factored A and you want to solve d linear systems with different righ-hand side m-vectors b_i

$$Ax = b_1$$
 $Ax = b_2$... $Ax = b_d$

Factorization-caching procedure

- 1. Factor $A = A_1, \ldots, A_k$ only once (expensive)
- 2. Solve all linear systems using the same factorization (cheap)

Solve many "at the price of one"

LU Factorization

Every invertible matrix A can be factored as

$$A = PLU$$

$$\longrightarrow P^T A = LU$$

P permutation, L lower triangular, U upper triangular

Procedure

- Similar to Gaussian elimination (but we can reuse P, L, and U!)
- Permutation P avoids divisions by 0
- One of infinite possible combinations of P, L, U

- $(2/3)n^3$ flops
- Less if A has special structure (sparse, diagonal, etc)

LU Solution

$$Ax = b, \Rightarrow PLUx = b$$

Iterations

- 1. Permutation: Solve $Px_1 = b$ (0 flops)
- 2. Forward substitution: Solve $Lx_2 = x_1$ (n^2 flops)
- 3. Backward substitution: Solve $Ux = x_2$ (n^2 flops)

- Factor + solve: $(2/3)n^3 + 2n^2 \approx (2/3)n^3$ (for large n)
- Just solve (prefactored): $2n^2$

LL^T (Cholesky) Factorization

Every positive definite matrix A can be factored as

$$A = LL^T$$

L lower triangular

Procedure

- Works only on symmetric with positive definite matrices
- No need to permute as in LU
- ullet One of infinite possible choices of L

- $(1/3)n^3$ flops (half of LU decomposition)
- Less if A has special structure (sparse, diagonal, etc)

LL^T (Cholesky) Solution

$$Ax = b, \Rightarrow LL^T x = b$$

Iterations

- 1. Forward substitution: Solve $Lx_1 = b$ (n^2 flops)
- 2. Backward substitution: Solve $L^T x = x_1$ (n^2 flops)

- Factor + solve: $(1/3)n^3 + 2n^2 \approx (1/3)n^3$ (for large *n*)
- Just solve (prefactored): $2n^2$

What complexity really means?

Example

Large matrix $n \times n$ matrix A with n = 10,000

Factor + solve:
$$(2/3)n^3$$

Just solve: $2n^2$

Gains:
$$\frac{(2/3)n^3}{2n^2} = (1/3)n \approx 3,333 \text{ times}$$

3 thousand times!

Something that takes 1 second

$$\Rightarrow$$
 $\approx 1 \text{ hour}$

Linear system example

Polynomial interpolation

Given a cubic polynomial

$$p(x) = c_1 + c_2 x + c_3 x^2 + c_4 x^3$$

Find the coefficients such that it passes by 4 points

$$p(-1.1) = b_1$$
 $p(-0.4) = b_2$
 $p(0.1) = b_3$
 $p(0.8) = b_4$

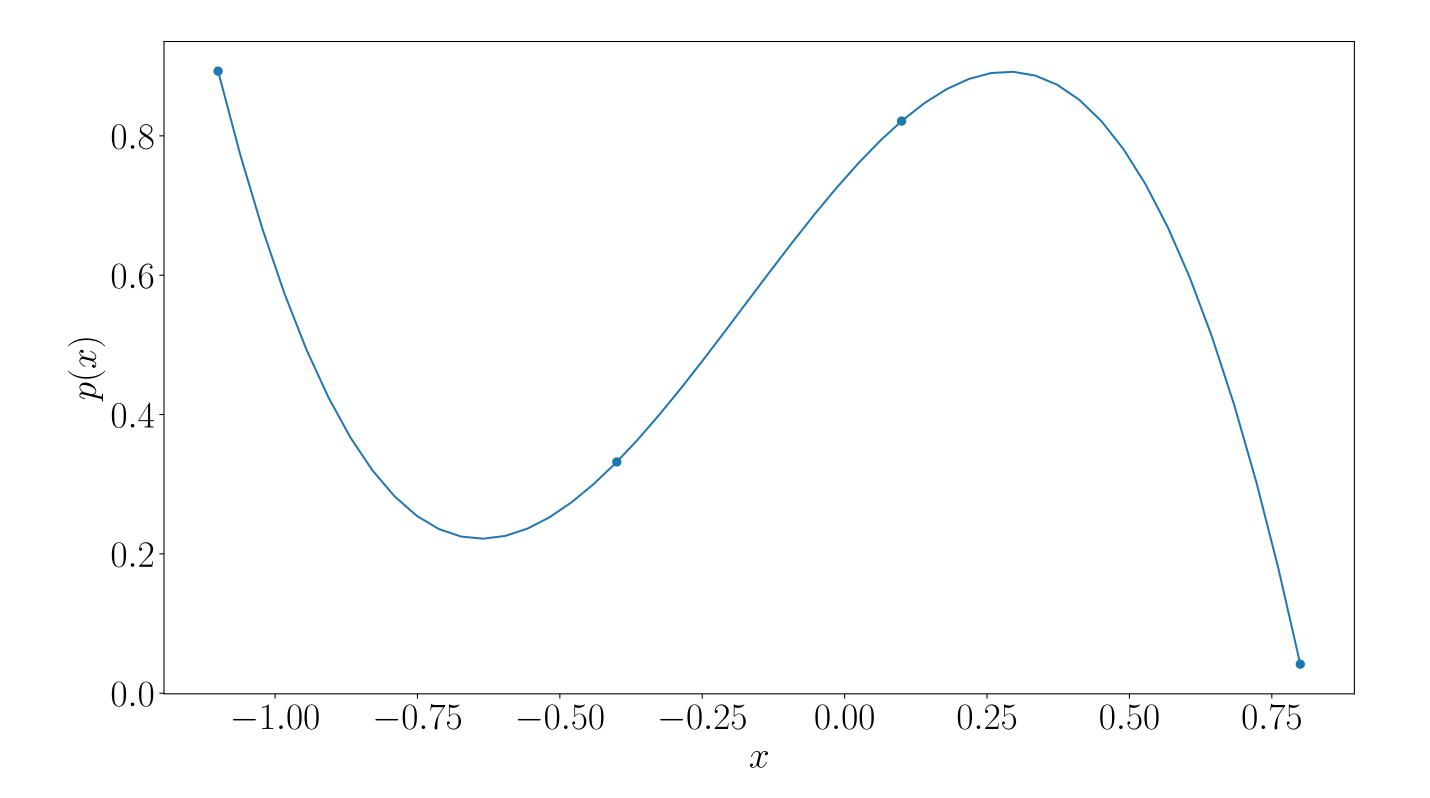
Equivalent linear system

$$Ac = b$$

$$\begin{bmatrix} 1 & -1.1 & (-1.1)^2 & (-1.1)^3 \\ 1 & -0.4 & (-0.4)^2 & (-0.4)^3 \\ 1 & 0.1 & (0.1)^2 & (0.1)^3 \\ 1 & 0.8 & (0.8)^2 & (0.8)^3 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}$$

Polynomial interpolation Plot

$$p(x) = c_1 + c_2 x + c_3 x^2 + c_4 x^3$$
 $c = (0.74, 0.93, -0.89, -1.70)$



Solving linear systems in practice

Today, we learned to:

- Avoid computing inverses
- Solve linear systems using the factor-solve method
- Understand the complexity of solving linear systems (useful to build optimization algorithms!)

References

- S. Boyd, L. Vandenberghe: Introduction to Applied Linear Algebra Vectors, Matrices, and Least Squares
 - Chaptrer 6: matrices
 - Chapter 10: matrix multiplication
 - Chapter 11: matrix inverses/solving linear systems

Next lecture

Solve optimization problems: least squares