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Abstract

Traditional optimization methods for decison-making under uncertainty assume perfect model
information. In practice, however, such precise knowledge is rarely available. Thus, optimal
decisions coming from these approaches can be very sensitive to perturbations and unreliable.
Stochastic optimization programs take into account uncertainty but are intractable in general
and need to be approximated. Of late, distributionally robust optimization methods have shown
to be powerful tools to reformulate stochastic programs in a tractable way. Moreover, the recent
advent of cheap sensing devices has caused the explosion of available historical data, usually
referred to as “Big Data”. Thus, modern optimization techniques are shifting from traditional
methods to data-driven approaches.

In this thesis, we derive data-driven tractable reformulations for stochastic optimization programs
based on distributionally robust optimization. In the first part of this work we provide our theo-
retical contributions. New distributionally robust probability bounds are derived and used to re-
formulate uncertain optimization programs assuming limited information about the uncertainty.
Then, we show how this information can be derived from historical data. In the second part of
this work, we compare the developed methods to support vector machines in a machine learning
setting and to randomized optimization and in a control context.
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1 Introduction

In the last decades, with the advent of fast processors and recent mathematical tools, opti-
mization has become one of the mainstream frameworks in many decision-making and control
contexts. In particular, with the recent development of fast interior point methods for convex op-
timization, in particular semidefinite programming (e.g. Boyd and Vandenberghe [9],[47]), large
problems can now be rapidly solved allowing us to apply these techniques on fast dynamical
systems.

Convex optimization problems can be described as:

minimize
x∈X

c⊤x

subject to: g(x) ≤ 0,
(1.1)

where X ⊆ Rn, c ∈ Rn, g : X → Rng . The constraint g is a convex function and the cost
function is linear without loss of generality, see [9].

Traditional approaches assume that problem (1.1) describes a perfectly known model governed
by constraints g. Unfortunately, such precise information is rarely available in practice because
systems are too complex and need to be approximated or because their parameters cannot
always be exactly estimated. Indeed, it has long been known that solutions to problem (1.1)
can exhibit high sensitivity to function g. Hence, the solution x∗ might be highly infeasible
and/or suboptimal in practice. This issue has been recently adressed in a rigorous way in
[3].

Uncertain Optimization Problems Robust optimization is a computationally attractive method
to deal with stochastic programs. Uncertainty ξ ∈ Rnξ is introduced in problem (1.1) so that the
computed solution is optimal for any realization of ξ in set Ξ ⊆ Rnξ :

minimize
x∈X

c⊤x

subject to: g(x, ξ) ≤ 0, ∀ξ ∈ Ξ,
(1.2)

where, now, g : X × Rnξ → Rng . In the 1970s, Soyster in [44] and Falk in [25] started to discuss
ways to model and solve robust programs. However, only in the 1990s with the results from Ben-
Tal and Nemirovski (see [2]) and by El Ghaoui in [24], the interest of the optimization community
focused on the issue of robustness. Unfortunately, robust programs are not as easy to solve as the
original problem and are NP-hard in general, [2]. In addition, set Ξ is usually unknown and thus,
there is no rigorous way to define it if we do not know ξ precisely.

Another approach to deal with uncertainty is chance constrained optimization. This method
assumes ξ has a probability distribution P and ensures that the optimal solution satisfies the
constraints with high probability:

minimize
x∈X

c⊤x

subject to: P (g(x, ξ) ≤ 0) ≥ 1− ϵ,
(1.3)
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where ϵ is a small positive number. This technique has been investigated for decades starting
from the 1950s by Dantzig in [19]. There is an extensive literature regarding chance constrained
programs and their reformulations (see e.g. [6] and [31]). However, also chance constrained pro-
grams are computationally intractable for generic distributions. Indeed, Shapiro and Nemirovski
[34] pointed out that computing the probability of a weighted sum of uniformly distributed
variables being nonpositive is already NP-hard. Thus, programs of the form (1.3) need to be
approximated. Moreover, the true probability distribution P is unknown in general and it has to
be estimated.

Distributionally robust optimization has gained a lot of popularity in the last decade because it
allows us to reformulate chance constraints in a tractable way taking into account our limited
knowledge about the distribution P. A distributionally robust optimization problem can be
written as:

minimize
x∈X

c⊤x

subject to: P (g(x, ξ) ≤ 0) ≥ 1− ϵ, ∀P ∈ P,
(1.4)

where set P is the smallest set containing the true distribution given limited information. Sev-
eral authors have recently shown that knowing only the first two moments of P, it is possible
to reformulate the chance constraints preserving computational tractability. Rockafellar and
Uryasev in [37], then El Ghaoui in [23], derived distributionally robust reformulations under
the framework of Conditional Value-at-Risk. More recently Joel and Melvyn in [28], developed
tractable approximations for chance constrained linear programs. Moreover, Chen et al. in [17]
used distributionally robust optimization to construct uncertainty sets with probabilistic guar-
antees in order to transform problem (1.4) in (1.2) and solve it efficiently. Of late, Zymler et al.
[50] derived distributionally robust reformulations for multiple chance constraints with limited
moment information about the distribution. In 2013, Van Parys et al. [46] applied within Condi-
tional Value-at-Risk setting, distributionally robust optimization for control synthesis providing
probabilistic guarantees. Thus, due to its computational attractiveness many research directions
are currently converging to this field.

Probability Inequalities All the distributionally robust optimization methods are based on the
worst-case probability distributions within a family P. Typically P is chosen as as the set of all
distributions sharing the first two moments because they can be easily estimated. The problem
of finding probability bounds holding for all the distributions sharing mean and covariance has
been studied since the second half 19th century. In 1867, Chebyshev proved in [16] the following
inequality:

Theorem 1.0.1 (Chebyshev Inequality [16]). Let ξ ∈ R be a random variable with mean µ and
non-zero standard deviation σ. Then, the following holds

P (|ξ − µ| > kσ) ≤


1

k2
k > 1

1 otherwise.
(1.5)

In this case, the considered region is the complement of a line segment in R centered at the origin
of length 2k. In 1910, Cantelli proved an extension of this inequality considering only one of the
distribution tails:
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Theorem 1.0.2 (Cantelli Inequality [15]). Let ξ ∈ R be a random variable with mean µ and
non-zero standard deviation σ. Then, the following holds

P (ξ − µ > kσ) ≤


1

1 + k2
k > 0

1− 1

1 + k2
k < 0.

(1.6)

The considered region is now the half line (k,+∞). The attractiveness of these bounds is
their distribution-free nature in the sense that they depend only on the set P. On the other
hand, the worst-case distributions for these inequalities are discrete with few atoms and are
unlikely to be encountered in practice. Thus, the obtained bounds are in general pessimistic. In
order to mitigate this over-pessimism, it is possible to assume additional information about the
elements of P. A structural property often encountered in practice is unimodality. Informally,
a continuous distribution is unimodal with mode γ if its Probability Density Function (PDF)
is non-increasing with increasing distance from the mode. In addition, most of the commonly
studied distributions are unimodal: e.g. Gauss, Cauchy, Gamma, etc. In 1821, Gauss proved in
[27] an inequality similar to the Chebyshev inequality (1.5) with the additional assumption of
unimodality:

Theorem 1.0.3 (Gauss Inequality [27]). Let ξ ∈ R be a random variable with mode equal to the
mean µ and non-zero standard deviation σ. Then, the following holds

P (|ξ − µ| > kσ) ≤


4

9k2
k >

2

3

1− k√
3

otherwise.
(1.7)

This result provides a much less pessimistic bound improving the Chebyshev inequality by a
factor 4/9. We will show that the unimodality assumption can improve the chance constrained
programs reformulations by giving less conservative solutions.

Data-driven methods Even if P includes limited distribution information, in practice we do
not know it. However, with the growing availability of cheap sensing devices and big storage
capacities, the amount of data available has increased exponentially. Hence, we can use these
data to estimate the set P describing our knowledge about the distribution. In this direction,
Delage and Ye in [20] provided a rigorous way to estimate distribution moments from data.
Also Bertsimas et al. in [5] reformulated chance constraints starting from data and constructing
uncertainty sets with probabilistic guarantees.

Recently, Calafiore and Campi in [12], later Campi and Garatti in [14] and then Calafiore in
[11] developed the so called Scenario Approach to solve chance constrained programs from data.
The Scenario Approach reformulates the problem (1.3) using the past N data samples ξ(i) of
uncertainty ξ as

minimize
x∈X

c⊤x

subject to: g(x, ξ(i)) ≤ 0, i = 1, . . . , N.
(1.8)

This approach is based on randomized optimization as the formulated program is itself random.
Even though the number of samples is limited, it has been proven that if N is large enough,
then, with high confidence, the solution of the random program (1.8) will satisfy the chance
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constraints in (1.3), see [11]. Even though this method is intuitive and easy to implement, it
is computationally expensive because the N required is typically very large even for medium
size problems. Thus, also the number of constraints to be satisfied becomes large leading to an
intractable program.

1.1 Data-driven Tractable Reformulations

The main contribution of the present work is the reformulations of chance constrained linear
programs focusing on:

• Tractability of the proposed methods,

• Conservatism of the obtained solutions,

• Data-driven reformulations.

We obtain an extension of Gauss inequality to unimodal distributions parametrized by a pos-
itive index α (see [21]). Then, we generalize this bound to multiple dimensions. These new
inequalities are used to construct multidimensional ellipsoidal sets with probabilistic guarantees.
In particular, we obtain the closed form solution for the Minimum Volume Ellipsoid (MVE)
containing a minimum amount of probability mass for all the distributions in P. Furthermore,
the so called empirical Chebyshev inequality [38] is generalized in a multivariate settings pro-
viding a direct extension of the obtained probability bounds for plug-in estimates of distribution
moments.

From the obtained results, we exactly reformulate single linear chance constraints as Second-
Order Cone (SOC) constraints (see [9] for SOC details) using the unimodality assumption. We
then develop two approximations of multiple chance constraints. The first one based on Bon-
ferroni inequality deals with chance constraints individually. The second one is based on robust
optimization: we construct multidimensional ellipsoidal uncertainty sets from the probabilistic
results we derived, in order to solve robust programs with respect to all the uncertainty real-
izations within these sets. Afterwards the extension to data-driven estimation of P is studied
providing rigorous approaches to estimate distribution moments.

In order to validate the theoretical results, we compare our uncertain programs reformulations
in two different areas:

Machine Learning The problem of linear classification is reformulated with the unimodality as-
sumption obtaining stochastic programs within the Minimax Probability Machine (MPM)
[32] framework. These results are compared with the commonly used Support Vector Ma-
chines (SVMs).

Model Predictive Control A stochastic water reservoir management problem is described in a
Model Predictive Control (MPC) [26] fashion. Then, the program is reformulated and
solved with our methods and the unimodality assumption. The obtained solutions are
benchmarked against the Scenario Approach (SA) in terms of performance, tractability
and conservatism.
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1.2 Organization

In the first part of this work we present the theoretical results behind the developed methods.
Chapter 2 introduces the α-unimodality framework that will be used throughout this work. In
Chapter 3, we derive the probability inequalities in multiple dimensions with α-unimodality as-
sumption. Ellipsoidal uncertainty sets with probabilistic guarantees are computed from these
inequalities. Then, the empirical Chebyshev inequality is generalized to multiple dimensions.
Chapter 4 introduces chance constrained linear programs: single linear chance constraints re-
formulations using the obtained probabilistic bounds are studied and then extended to multi-
ple dimensions. Furthermore, these approaches are generalized to data-driven moment estima-
tion.

In the second part of this thesis we benchmark the developed approaches. In Chapter 5, our
methods are test in a Machine Learning setting and in Chapter 6 we implement our contributions
in a Control context.

1.3 Mathematical Preliminaries

In this section we introduce the basic notation and assumptions in order to avoid ambiguities
throughout the different chapters. The complete notation can be found at page 89.

Notation We use R to denote the set of real numbers, R+ to denote the set of nonnegative
real numbers, and R++ to denote the set of positive real number. The set of real n-vectors is
denoted Rn and the set of real m× n matrices is denoted Rm×n. Given a set A, |A| denotes its
cardinality. We denote by Sn, Sn+ and Sn++ the sets of all symmetric, positive semidefinite and
positive definite matrices in Rm×n respectively. The relation X ⪰ Y (X ⪯ Y ) indicates that
X − Y ∈ Sn+ (Y − X ∈ Sn+). Given A ∈ Rn×n, tr(A) designates its trace. Given two matrices
A,B⊤ ∈ Rm×n, their inner product is denoted by ⟨A,B⟩ = tr (AB). For any t ∈ R, ⌈t⌉ indicates
the smallest integer not less than t ,while ⌊t⌋ indicates the largest integer not more than t. Given
a, b ∈ R, (a, b) and [a, b] denote respectively the open and closed intervals between a and b.
Furthermore, if a, b ∈ Rn, (a, b) and [a, b] denote respectively the open and closed line segments
between them. The indicator function 1B of a set B ⊆ Rn is defined as: 1B(x) = 1 if x ∈ B;
= 0 otherwise.

Probability Framework In this paragraph we define some basic formal probability notions and
their link to the notation we use in this work, for more details see [22]. We define the probability
space (Ω,F ,Q), where: Ω is the space of elementary events, F is a σ-algebra of subsets of Ω, Q is
a probability measure defined on the events of F . Moreover, let (Rnξ ,B(Rnξ)) be a measurable
space with B(Rnξ) being the Borel sigma algebra on Rnξ . A random variable ξ is defined as a
measurable function

ξ : Ω→ Rnξ ,

i.e. ∀A ∈ B(Rnξ), ξ−1(A) = {ω ∈ Ω : ξ(ω) ∈ A} ∈ F . We associate to the random variable ξ,
the measure Pξ on Rnξ such that Pξ(Rnξ) = 1, defined as:

Pξ : B(Rnξ)→ [0, 1]

A 7→ Q(ξ−1(A)).
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We assume that Ω is rich enough to guarantee that, for all A ∈ B(Rnξ) and for all distribu-
tions Pξ on Rnξ , it is possible to find a set C ⊆ Ω and random variable ξ that maps C to
A.

Throughout this work, we will refer directly to ξ ∈ Rnξ as random variables and to P on Rnξ as
their related distribution. Moreover, we will adopt the following notation for P:

P(A) = P({ξ ∈ Rnξ : ξ ∈ A}) := Q({ω ∈ Ω : ξ(ω) ∈ A}).

The set of all Borel probability distributions on Rnξ is denoted by P∞.



Part I

Theoretical Results





2 α-Unimodality

In this chapter the basic concepts of univariate and multivariate unimodality are introduced.
The α-unimodality framework is described using the results by Dharmadhikari and Joag-Dev
[21] and Van Parys et al. [45]. These definitions and theorems will be extensively used in
the rest of this work, when deriving new probability bounds based on the distribution mo-
ments.

2.1 Unimodality

Unimodality is a natural property of many distributions commonly encountered in both theory
and practice and it can often be justified by empirical or theoretical motivations.

Let ξ ∈ R be a random variable and P its distribution. Moreover, let the mapping t 7→ P (ξ ≤ t)
be its Cumulative Distribution Function (CDF). The most basic definition of unimodality is the
following:

Definition 2.1.1 (Univariate unimodality). A univariate distribution P is called unimodal with
mode 0 if the mapping t 7→ P (ξ ≤ t) is convex for t < 0 and concave for t > 0.

In the case of continuous unimodal distributions the Probability Density Function (PDF), defined
as the mapping t 7→ P (ξ = t), decreases as the distance with respect to the mode 0 increases.
By consequence, the CDF is convex for t < 0 and concave for t > 0. Please note that, with-
out loss of generality, the mode is located at the origin, which can always be enforced by a
suitable coordinate transformation. In Figure 2.1 the case for the Gaussian distribution is pre-
sented.

P (ξ = t)

t

0.5

1

P (ξ ≤ t)

t

Figure 2.1: Example of unimodal distribution (Gaussian): PDF (left), CDF (right).
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In the multivariate case, our definition of unimodality is based on the notion of star-shaped sets.
Let now ξ ∈ Rnξ be a random vector.

Definition 2.1.2 (Star-shaped sets). A set B ⊆ Rnξ is said to be star-shaped with center 0 if for
every x ∈ B, the line segment [0, x] is a subset of B.

Even though there are several different notions of unimodality in multiple dimensions (linear, con-
vex, log-concave, etc...), our work will be based on the star-unimodality definition:

Definition 2.1.3 (Star-unimodality). A distribution P ∈ P∞ is called star-unimodal with mode
0 if it belongs to the weak closure of the convex hull of all uniform distributions on star-shaped
sets with center 0. The set of all star-unimodal distribution with mode 0 is denoted as P⋆.

Please note that all definitions of unimodality in multiple dimensions are equivalent in the uni-
variate case [21]. Moreover, the definition of star-unimodality is coherent with our intuitive
idea of unimodality when P has a continuous PDF. In that case it is possible to prove that
P is star unimodal if and only if its PDF is not-increasing along any ray emanating from the
origin, which means that the mapping t 7→ P (ξ = tζ) is non-increasing in t ∈ (0,∞) for all
ζ ̸= 0.

2.2 Choquet Representations

In order to derive tractable reformulations of probability inequalities, we make use of Choquet
theory [35] because it provides us with powerful tools for extreme point representations of convex
compact subsets of general topological vector spaces. In this work, we are interested in extreme
point representations of ambiguity sets P ⊆ P∞.

In order to apply the results of Choquet theory, we must endow P∞ with a topology such that
its open, closed and compact subsets are well-defined. We assume that P∞ is equipped with the
weak convergence topology [35] which allows us to construct the Borel σ-algebra on P∞: the
smallest σ-algebra containing all open subsets of P∞. Given an ambiguity set P, we can now
define its extreme distributions

Definition 2.2.1 (Extreme distributions). A distribution P ∈ P∞ is said to be an extreme point
of an ambiguity set P ⊆ P∞ if it is not representable as a strict convex combination of two
distinct distributions in P. The set of all extreme points of P is denoted as exP.

Given the previous definitions, it is possible to define the Choquet representation of set P:
Definition 2.2.2 (Choquet representation). A weakly closed convex ambiguity set P ⊆ P∞ is said
to admit a Choquet representation if for every distribution P ∈ P there exists a Borel probability
measure Pm on exP with

P(·) =
∫
exP

e(·)Pm(de). (2.1)

Please note that this is a generalization of the notion of convex combination: this representation
expresses each P ∈ P as a weighted average (mixture) of extreme elements of P. Moreover, as
Pm is a probability measure, the Choquet representation can be viewed as a generalized (infinite)
convex combination and Pm will be refferred to as a mixture distribution. One of the main results
of Choquet theory [35] ensures that every convex compact subset of P∞ has a Choquet represen-
tation of type (2.1). It happens to be the case that convex subsets of P∞ sometimes admit explicit
Choquet representations even though they are not compact.
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The Choquet representation can be reduced to the following definition if the extreme distributions
of P admit a spacial parametrization:

Definition 2.2.3 (Spatial Parametrization). The set of extreme distributions of a closed convex
set P ⊆ P∞ admits a spatial parametrization if exP = {ex : x ∈ X} where x ∈ Rl parametrizes
the extreme distributions of P and ranges over a closed convex set X ⊆ Rl while the mapping
x 7→ ex(B) is a Borel-measurable function for any fixed Borel set B ⊆ B(Rnξ).

As a consequence, if a convex closed set P ⊆ P∞ has a spatial parametrization, the Choquet repre-
sentation of any of its elements P, given a mixture distribution Pm, reduces to:

P(·) =
∫
X
ex(·)Pm(dx).

In the case of P = P∞, the extreme points are given by Dirac distributions and thus, the set
of extreme distributions is given by exP = {δx : x ∈ Rnξ}. Furthermore, in this case P admits
a trivial Choquet representation because any P ∈ P is representable as a mixture of Dirac
distributions with Pm = P:

P(·) =
∫
Rnξ

δx(·)P(dx).

2.3 Unimodality Characterization Using a Positive Index

In this section we introduce a generalized notion of unimodality parametrized by a positive index
α and we define the Choquet representation of α-unimodal probability distribution sets.

Definition 2.3.1 (α-unimodality [21]). For any fixed α > 0, a random nξ-vector ξ is said to have
an α-unimodal distribution about 0 if, for every bounded, nonnegative, Borel measurable function
g on Rn, the quantity

tαE[g(tξ)] = tα
∫
Rnξ

g(tξ)P(dξ) (2.2)

is nondecreasing in t ∈ (0,∞). The set of all α-unimodal distribution is denoted by Pα.

From this definition it can be shown that Pα is closed under weak convergence. An intuitive way
of interpreting this definition comes again from continuous distributions. In the star-unimodal
case, the PDF is non-increasing along rays emanating from the origin while in the case of an
α-unimodal distribution the PDF can actually increase, but with a rate controlled by α. It is
possible to prove [21] that if P is continuous, it is α-unimodal about 0 if and only if the mapping
t 7→ tnξ−α P (ξ = tζ) is non increasing in t ∈ (0,∞) for every fixed ζ ̸= 0. In other words,
the PDF does not grow faster than ∥ξ∥α−nξ . In the case when α = nξ, the density is non-
increasing along the rays emanating from the origin, which corresponds to the star-unimodality
of Definition 2.1.3.

We will introduce the radial α-unimodal distributions that are of key importance in the bound
computations.

Definition 2.3.2 (Radial α-unimodal distributions). For any α > 0 and x ∈ Rnξ we denote the
radial distribution supported on the line segment [0, x] ⊂ Rnξ as

δα[0,x]([0, tx]) = tα, ∀t ∈ [0, 1].
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By applying Definition 2.3.1, it is possible to prove that δα[0,x] ∈ Pα. Let us first note that, from
the Definition 2.3.2:∫

Rnξ

δα[0,x](dξ) =

∫
[0,x]

δα[0,x](dξ) =

∫ 1

0

δα[0,x](xdu) =

∫ 1

0

αuα−1du, (2.3)

where in the second inequality we substituted ux = ξ with u ∈ [0, 1]. Then, from last expression
and Equation (2.2), we can rewrite:

tα
∫
Rnξ

g(tξ)P(dξ) = tα
∫
[0,x]

g(tξ)δα[0,x](dξ)

= tα
∫ 1

0

g(tux)αuα−1du

= tα
∫ t

0

g(px)αpα−1t1−α dp

t

=

∫ t

0

g(px)αpα−1dp,

where in the third equality we plugged in p = tu ∈ [0, t]. From the definition of g(·) and the sign of
α, the last expression is non-decreasing in t ∈ (0,∞) and therefore δα[0,x] ∈ Pα.

The first and second order moments of δα[0,x] can be computed from its definition.

Lemma 2.3.1 ([45]). For any α > 0 and x ∈ Rnξ , the mean value and the second-orded moment
matrix of the radial distribution δα[0,x] are given by α

α+1x and α
α+2xx

⊤ respectively.

Proof. Given x ∈ Rnξ , let y be the corresponding vector on a coordinate axis in Rnξ from which
we obtain x after the coordinate transformation R ∈ Rnξ×nξ , i.e. x = Ry. The first order
moment can be computed, using (2.3), as:

µ1,δα
[0,x]

=

∫
Rnξ

ξδα[0,x](dξ) =

∫
[0,Ry]

ξδα[0,Ry](dξ) =

=

∫ 1

0

uRyαuα−1du = Ryα

∫ 1

0

uαdu =
α

α+ 1
Ry =

α

α+ 1
x.

The second order moment can be obtained in an analogous way:

µ2,δα
[0,x]

=

∫
Rnξ

ξξ⊤δα[0,x](dξ) =

∫
[0,Ry]

ξξ⊤δα[0,Ry](dξ) =

=

∫ 1

0

uRyy⊤R⊤uαuα−1du = Ryy⊤R⊤α

∫ 1

0

uα+1du

=
α

α+ 2
Ryy⊤R⊤ =

α

α+ 2
xx⊤.

■

The main reason to use the radial α-unimodal distributions comes from the following theo-
rem:
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Theorem 2.3.1. For every P ∈ Pα there exists a unique mixture distribution Pm ∈ P∞ with

P(·) =
∫
Rnξ

δα[0,x](·)Pm(dx).

Proof. The proof can be found in [21, Theorem 3.5]. ■

Corollary 2.3.1. The radial distributions δα[0,x], x ∈ Rnξ are extremal in Pα.

Proof. ([45]) If δα[0,x] is not extremal in Pα for some x ∈ Rn, there exist P1,P2 ∈ Pα with

P1 ̸= P2, and λ ∈ (0, 1) with P = λP1 +(1 − λ)P2. Thus, the mixture distribution of δα[0,x]
can be represented as λP1

m +(1− λ)P2
m, where P1

m and P2
m are the unique mixture distributions

corresponding to P1 and P2 respectively. Nonetheless, the unique mixture distribution of δα[0,x]
is the Dirac distribution concentrating the unit mass at x, and it cannot be representable as a
strict convex combination of to distinct mixture distributions. By consequence, δα[0,x] must be
extremal in Pα. ■

Please note that the ambiguity sets Pα benefit from the nesting property: Pα ⊆ Pβ if and only
if 0 < α ≤ β ≤ ∞. Therefore, it is possible to define the α-unimodality index of a generic
ambiguity set P as the smallest α such that P ⊆ Pα. In Figure 2.2 there is example of nested
α-unimodal sets.

P∞

Pβ

Pn

Pα

Figure 2.2: Nested α-unimodal ambiguity sets for α < n < β <∞.

It can be shown [21] that, given x, as α → ∞ the radial distributions δα[0,x] converge weakly
to Dirac distribution δx. As every distribution P ∈ P∞ is representable as a mixture of Dirac
distributions with Pm = P, the weak closure of ∪α>0Pα corresponds to P∞. For this reason,
when α → ∞, the probability bounds we are going to derive for α-unimodal distributions, will
correspond to the ones for all Borel measurable distributions in P∞ (generalized Chebyshev in-
equalities). On the other hand, when α→ 0, the radial distributions weakly converge to δ0. This
means that the “most” α-unimodal distribution is a Dirac distribution in the mode. In Figure 2.3
there is an example of radial distributions in one dimension.

As previously said, when α = nξ, our definition of α-unimodality coincides with star-unimodality.
Moreover, as the dimension nξ →∞, Pnξ

= P∞, see [45]. In other words, according to our defi-
nitions, all distributions become nξ-unimodal as the dimension of the probability space tends to
∞. An intuitive explaination of this result follows from the observation that in high-dimensional
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x

δ1[0,x]

δ0.5[0,x]

δ2[0,x]

δ3[0,x]
PDF

Figure 2.3: Example of four radial α-unimodal distributions in one dimension (nξ = 1). The
nξ-unimodal distribution is a uniform one on [0, x]. It is clear that, as α increases,
the distributions δx while as α → 0, the distributions converge to the Dirac one in
0.

star-shaped sets, most of the volume is concentrated in a thin layer near their surface and, for this
reason, all the radial distributions δα[0,x] converge weakly to δx as nξ grows. In Figure 2.4 there
is an example of multivariate radial distributions for nξ = 2.
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x

δ0.5[0,x]

δ2[0,x]

δ3[0,x]

δ4[0,x]

PDF

Figure 2.4: Example of multivariate radial α-unimodal distributions. Compared to Figure 2.3
where (nξ = 1), in this case nξ = 2 and the nξ-unimodal radial distribution density
increases from the mode until the vector x with a shape that is already “closer” to a
Dirac distribution in x. Furthermore, it is clear that as α → ∞, δα[0,x] distributions
converge to a Dirac distribution in x while, when α→ 0, they converge to δ0.





3 Probability Bounds and Ellipsoidal
Uncertainty Sets

In this chapter we derive probability bounds for univariate distributions given the first two mo-
ments and the α-unimodality index introduced in Chapter 2. Then, we show that it is possible
to compute explicitly the minimum volume ellipsoid containing a certain amount of probability
mass given only the first two moments and the α-unimodality index of the distribution. After-
wards, this explicit result will be used to generalize the univariate inequalities into a multivariate
and data-driven setting.

3.1 Moment Problems

The problem of finding bounds for a set of probability distributions given a finite number of
moments, can be classified inside the general class of “moment problems”. Henceforth, we
describe the generalized moment problems and provide two powerful methods by Popescu [36]
and Van Parys et al. [45] to reformulate and solve them.

Generalized Moment Problems Let us define a convex closed probability measure set P ⊆ P∞,
m + 1 measurable moment functions f0(ξ), . . . , fm(ξ) and m + 1 feasible moment sequences
µ0, . . . , µm. Moreover, we define f0(ξ) = 1Ξ as the indicator function of the closed measur-
able convex set Ξ ⊆ Rnξ and µ0 = 1. The generalized moment problem can be expressed
as:

MPP : maximize
P∈P

∫
Rnξ

f0(ξ)P(dξ) =
∫
Ξ

P(dξ) = P(Ξ)

subject to:

∫
Rnξ

fi(ξ)P(dξ) = µi ∀i = 1, . . . ,m.

Please note that the total probability mass constraint
∫
Rnξ P(dξ) = µ0 = 1 is implicitly satisfied

by all the probability distributions in P. This program is a semi-infinite Linear Program (LP)
(see [9]) with finitely many moment constraints but an infinite-dimensional feasible set. The dual
of this problem takes the form [36]:

MPD : minimize
λ0,...,λm

m∑
i=0

λTi µi

subject to:

∫
Rnξ

λ0 +
m∑
i=1

λifi(ξ)− f0(ξ) P(dξ) ≥ 0 ∀P ∈ P.
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It constitutes a semi-infinite LP with finitely many decision variables and infinitely many con-
straints parametrized by the distributions P ∈ P. Strong duality holds under mild regularity
conditions [42].

If the extremal distributions ex ∈ exP of the ambiguity set P admit a spatial parametrization
over a semi-algebraic set X, then the semi-infinite dual LP is equivalent to:

MPDpar : minimize
λ0,...,λm

m∑
i=0

λTi µi

subject to:

∫
Rnξ

λ0 +
m∑
i=1

λ⊤i fi(ξ)− f0(ξ) ex(dξ) ≥ 0 ∀x ∈ X,
(3.1)

for the derivation see [36, Lemma 3.1].

α-Unimodal Moment Problems In the moment problems encountered in this work, the first
two moments (m = 2) of the probability distributions are assumed to be known: the mean
value µ ∈ Rnξ and the second-order moment matrix Σ + µµ⊤ ∈ Snξ

+ , where Σ ∈ Snξ

+ is the
covariance matrix of ξ. The mode is assumed to be at the origin without loss of generality
because this condition can always be enforced by a suitable coordinate transformation. More-
over, the families of α-unimodal probability distributions will be considered. The ambiguity
set:

Pα(µ,Σ) := P(µ,Σ) ∩ Pα (3.2)

will denote all α-unimodal distributions sharing known µ and Σ. By restricting the ambiguity set
to this class of functions, the moment problem MPP becomes

MPPα : maximize
P∈Pα

∫
Rnξ

f0(ξ)P(dξ)

subject to:

∫
Rnξ

f1(ξ)P(dξ) = µ∫
Rnξ

f2(ξ)P(dξ) = Σ + µµ⊤,

(3.3)

while, by considering the radial α-unimodal distributions δα[0,x] from Definition 2.3.2 as extremal
distribution in exPα, the parametrized dual problemMPDpar can be written as:

MPDpar,α : minimize ⟨λ2,Σ+ µµ⊤⟩+ λ1µ+ λ0

subject to: λ0 ∈ R, λ1 ∈ Rnξ , λ2 ∈ Snξ∫
Rnξ

λ0 + λ⊤1 f1(ξ) + ⟨λ2, f2(ξ)⟩ − f0(ξ) δα[0,x](dξ) ≥ 0 ∀x ∈ Rnξ ,

(3.4)
for more details see [42]. Please note that the extremal distributions δα[0,x] admit a spatial
parametrization according to Definition 2.2.3 over the set Rnξ .

Solutions Methods In [36], Popescu showed that the parametric dual problem (3.1) can be
solved efficiently for many choices of moment functions and ambiguity sets P with the corre-
sponding set X, because in these cases the integral in the constraint evaluates to a piecewise
polynomial in x. Consequently, the semi-infinite program can be exactly reformulated as a
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linear matrix inequality (LMI) if X is one-dimensional or approximated as a hierarchy of in-
creasingly tight LMIs by using sum of squares techniques if X is multidimensional [33]. Using
α-unimodality assumption, this result can be applied also to problem (3.4) with the extreme
distributions δα[0,x]. Thus, the dual problems (3.1) and (3.4) can be systematically reduced to a

tractable Semidefinite Program (SDP) that can be solved efficiently with interior point methods
[9]. On the other hand, in [45] Van Parys et al. derived an exact SDP reformulation of primal
problem (3.3) when the set Ξ is a polyhedron. Both these two reformulations provide efficient
tools to construct generalized Chebyshev-like inequalities for unidimensional and multidimen-
sional sets.

3.2 Multivariate Generalized Gauss Inequality

In this section primal and dual reformulations of the α-unimodal moment problem will be adapted
for specific types of sets. In particular, the main objective of these derivations will be to bound
the maximum probability of the complement of a set: i.e. given a set Φ, the maximum probability
of Ξ = Φc has to be computed. These results will give a multidimensional generalization of Gauss
inequality.

3.2.1 Dual Program Reformulation

The most common approach to solve moment problems is to compute the dual in order to deal
with a finite number of variables. As mentioned before, Popescu in [36] proved that for convex
classes of distributions it is possible to reformulate these dual problems as SDPs.

The main idea behind solving the dual problem is to minimize an objective function dependent
on given moments and subject to the fact that it is an upper bound to the probability of set Ξ
for every distribution of the class Pα taken into account. Consider the function ψ : Rnξ → R+

defined as:
ψ(ξ) = ξ⊤Pξ + q⊤ξ + r,

where P ∈ Snξ , q ∈ Rnξ and r ∈ R. Independently from the α-unimodality index, the expected
value of ψ with respect to all the distributions P ∈ P(µ,Σ) having same mean and covariance
is:

E (ψ(ξ)) = E
(
ξ⊤Pξ + q⊤ξ + r

)
= E

(
tr
(
Pξξ⊤

))
+ E

(
q⊤ξ

)
+ r

= tr
(
P (Σ + µµ⊤)

)
+ q⊤µ+ r

= ⟨P,Σ+ µµ⊤⟩+ q⊤µ+ r.

(3.5)

It is immediate to see that, last expression is equivalent to the objective function of problem
(3.4) with λ0 = r, λ1 = q and λ2 = P . By setting f0 = 1Ξ, it is possible to rewrite (3.4)
as

minimize ⟨P,Σ+ µµ⊤⟩+ q⊤µ+ r

subject to: P ∈ Snξ , q ∈ Rnξ , r ∈ R∫
Rnξ

r + q⊤ξ + ξ⊤Pξ − 1Ξ(ξ) δ
α
[0,x](dξ) ≥ 0 ∀x ∈ Rnξ .
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Please note that the known moments affect only the objective function while the α-unimodality
index changes the constraints giving different optima according to its value. By using the mo-
ments of δα[0,x] in (2.3.1), the first part of the integral can be rewritten using the same algebraic

manipulations as in (3.5), as∫
Rnξ

r + q⊤ξ + ξ⊤Pξ δα[0,x](dξ) = Eδα
[0,x]

(ψ(ξ)) =
α

α+ 2
tr
(
xx⊤P

)
+

α

α+ 1
q⊤x+ r

=
α

α+ 2
x⊤Px+

α

α+ 1
q⊤x+ r.

where last equality comes from the fact that tr
(
xx⊤P

)
= tr

(
x⊤Px

)
= x⊤Px. From last

equation, problem (3.4) becomes:

minimize ⟨P,Σ+ µµ⊤⟩+ q⊤µ+ r

subject to: P ∈ Snξ , q ∈ Rnξ , r ∈ R
α

α+ 2
x⊤Px+

α

α+ 1
q⊤x+ r −

∫
Rnξ

1Ξ(ξ) δ
α
[0,x](dξ) ≥ 0 ∀x ∈ Rnξ .

(3.6)

Depending on the chosen set Ξ, the integral in (3.6) can be computed in different ways often
leading to computationally tractable problems.

Let us now consider the case when the set Ξ is the complement of a polyhedron Φ defined by k
hyperplanes:

Φ =
{
ξ ∈ Rn : a⊤i ξ ≤ bi, ∀i ∈ {1, . . . , k}

}
, and Ξ = Φc. (3.7)

If x /∈ Ξ, the integral in (3.6) is 0 while if x ∈ Ξ it can be rewritten using Equation (2.3) as
follows:∫

Rnξ

1Ξ(ξ)δ
α
[0,x](dξ) =

∫ 1

0

1Ξ(xu)αu
α−1du =

∫ 1

bi
a⊤
i

x

αuα−1du = 1−
(

bi
a⊤i x

)α

, ∀i ∈ {1, . . . , k} .

(3.8)
Problem (3.6) becomes:

minimize ⟨P, S⟩+ q⊤µ+ r

subject to: P ∈ Snξ , q ∈ Rnξ , r ∈ R
α

α+ 2
x⊤Px+

α

α+ 1
q⊤x+ r − 1 +

(
bi
a⊤i x

)α

≥ 0 ∀i ∈ {1, . . . , k} , ∀x ∈ Ξ

α

α+ 2
x⊤Px+

α

α+ 1
q⊤x+ r ≥ 0, ∀x ∈ Rnξ .

(3.9)
Please note that if x /∈ Ξ, the integral in (3.8) becomes negative. In order to express a constraint
equivalent to the one in (3.8) for a fixed x, we have to decouple it in two ones: one that has to
be valid whenever the integral in (3.6) is null and another one that becomes tighter if x ∈ Ξ.
Thus, for a fixed x, the inequality in problem (3.6) is decoupled in k + 1 ones: one for each face
of the polyhedron plus last one to ensure nonnegativity of the integral in (3.6). Please note that
if α = nξ, from what said in Chapter 2, the problem coincides to the Generalized Gauss bound
in nξ-dimensions.

It is possible to approximate the inequalities in (3.9) to increasingly tight Linear Matrix In-
equality (LMI) using sum-of-squares techniques [33]. However, there are more specific in-
stances, when the solution can be simplified and computed exactly without any approxima-
tion.
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Generalized Chebyshev Inequalities When α =∞, the problem can be simplified and exactly
reformulated as an SDP. In this case the ambiguity set is P∞(µ,Σ) (all Borel measurable distri-
butions on Rn with mean µ and covariance Σ). By consequence, the unimodality information does
not give any advantage and the probability bound corresponds to a generalization of Chebyshev
inequality in more dimensions. Problem (3.9) becomes

minimize ⟨P, S⟩+ q⊤µ+ r

subject to: P ∈ Snξ , q ∈ Rnξ , r ∈ R
x⊤Px+ q⊤x+ r − 1 ≥ 0 ∀x ∈ Ξ

x⊤Px+ q⊤x+ r ≥ 0 ∀x ∈ Rnξ .

(3.10)

The first set of parametric inequalities in x can be translated into this condition:

a⊤i x ≥ bi ⇒ x⊤Px+ q⊤x+ r − 1 ≥ 0 ∀i ∈ {1, . . . , k} ∀x ∈ Rnξ .

By applying the S-procedure (Appendix A.2), it can be rewritten as: there exist τ1, . . . , τk ≥ 0
such that: [

P q/2
q⊤/2 r − 1

]
⪰ τi

[
0 ai/2

a⊤i /2 −bi

]
τi ≥ 0 ∀i ∈ {1, . . . , k} .

The second set of parametric inequalities in x can be also reformulated as an LMI:[
P q/2

q⊤/2 r

]
⪰ 0.

Thus, problem (3.10) can be finally reformulated as:

minimize ⟨P, S⟩+ q⊤µ+ r

subject to: P ∈ Snξ , q ∈ Rnξ , r ∈ R
τi ≥ 0 ∀i ∈ {1, . . . , k}[

P q/2
q⊤/2 r − 1

]
⪰ τi

[
0 ai/2

a⊤i /2 −bi

]
∀i ∈ {1, . . . , k}[

P q/2
q⊤/2 r

]
⪰ 0.

In [48], Vandenberghe et al. derived the same reformulation without using the α-unimodality
framework. In this work it will be shown that for many distributions encountered in theory
and practice, this type of bound, even though computationally tractable, leads to pessimistic
results.

3.2.2 Primal Program Reformulation

As previously mentioned, another method to deal with moment problems is to directly reformu-
late the primal problem. Recently Van Parys et al. [45] derived the following SDP reformulation
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when the set Ξ is a polyhedron defined as in (3.7) and α ∈ N:

maximize
k∑

i=1

(λi − ti,0)

subject to: zi ∈ Rnξ , Zi ∈ Snξ , λi ∈ R, ti ∈ Rl+1 ∀i ∈ {1, . . . , k}[
Zi zi
z⊤i λi

]
⪰ 0, a⊤i zi ≥ 0, ti ≥ 0 ∀i ∈ {1, . . . , k}

k∑
i=1

[
Zi zi
z⊤i λi

]
⪯
[

α+2
α S α+1

α µ
α+1
α µ⊤ 1

]
∥∥∥∥[ 2λibi
ti,lbi − a⊤i zi

]∥∥∥∥
2

≤ ti,lbi + a⊤i zi ∀i ∈ {1, . . . , k}∥∥∥∥[ 2ti,j+1

ti,j − λi

]∥∥∥∥
2

≤ ti,j + λi ∀j ∈ E, ∀i ∈ {1, . . . , k}∥∥∥∥[ 2ti,j+1

ti,j − ti,l

]∥∥∥∥
2

≤ ti,j + ti,l ∀j ∈ O, ∀i ∈ {1, . . . , k} ,

(3.11)

where l = ⌈log2 α⌉, E =
{
j ∈ {0, . . . , l − 1} : ⌈α/2j⌉ is even

}
and O = {j ∈ {0, . . . , l − 1} :

⌈α/2j⌉ is odd
}
. For more details and the complete derivation, please see [45]. This reformulation

will be used in this work to compute exact probability bounds without resorting to Sum-Of-
Squares (SOS) approximations when it is not possible to derive an explicit solution to the dualized
moment problem.

3.3 Univariate Generalized Gauss Inequality

In this section the univariate case where ξ ∈ R will be studied. Assuming that the mean µ ∈ R is
equal to the mode in 0 and that the variance is σ2 ∈ R, it is possible to derive explicit bounds gen-
eralizing the Gauss inequality to the α-unimodality framework.

3.3.1 Double-Sided Problem

The generalized Gauss inequality for α-unimodal distributions is defined in the following theorem:

Theorem 3.3.1 (α-unimodal Gauss Inequality). Let ξ ∈ R be an α-unimodal random variable
with given mode equal to its mean µ ∈ R and variance σ2 ∈ R. Then, for every k ∈ R+:

P(|ξ − µ| > kσ) ≤


(

2

α+ 2

) 2
α 1

k2
k >

(
2

α+ 2

) 1
α
(
α+ 2

α

) 1
2

1− kα
(

α

α+ 2

)α
2

0 ≤ k ≤
(

2

α+ 2

) 1
α
(
α+ 2

α

) 1
2

. (3.12)

Proof. Given k ∈ R+, the set Ξ of which we need to bound the probability, is now defined as the
complement of the line segment of length 2k centered in 0:

Ξ := {ξ ∈ R : |ξ| > k} = {ξ ∈ R : ξ > k ∧ −ξ > k} .
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The multivariate problem (3.9) can be reduced to:

minimize pσ2 + r

subject to: p, q, r ∈ R
α

α+ 2
px2 +

α

α+ 1
qx+ r − 1 +

(
k

x

)α

≥ 0 ∀x ∈ R≥k

α

α+ 2
px2 +

α

α+ 1
qx+ r − 1 +

(
k

−x

)α

≥ 0 ∀x ∈ R≤−k

α

α+ 2
px2 +

α

α+ 1
qx+ r ≥ 0, ∀x /∈ Ξ.

As the set Ξ is symmetric, also the function we are trying to minimize will be symmetric. Thus
we can set q = 0. Moreover, we notice that the elements (k/x)

α
when x ≥ k and (k/− x)α

when x ≤ −k can be translated into a single constraint. Hence, we can be rewrite the problem
as follows:

minimize pσ2 + r

subject to: p, r ∈ R
α

α+ 2
px2 + r − 1 +

(
k

∥x∥

)α

≥ 0 ∀x ∈ R

α

α+ 2
px2 + r ≥ 0, ∀x /∈ R.

As the problem does not depend on the sign of x, but only on the norm, it is possible to define
the new variable t = ∥x∥ ∈ R+ and rewrite it as:

minimize pσ2 + r

subject to: p, r ∈ R
α

α+ 2
pt2 + r − 1 +

(
k

t

)α

≥ 0 ∀i ∈ {1, . . . , k} , ∀t ∈ R+

α

α+ 2
pt2 + r ≥ 0, ∀t ∈ R+.

(3.13)

The second inequality can be rewritten as p ≥ −α+2
α

r
t2 where, together with the first inequality,

the right-hand side is always a negative number that goes to −∞ as t → 0. Thus, it is always
satisfied if p ≥ 0. In the same way, the first inequality implies that r ≥ 0.

Let us analyze the first inequality more deeply: the left-hand side has a two local minima in

tα−1 = 0 and in t =
√

1−r
p , both in R+. The case when tα−1 = 0 corresponds t = 0 when α ̸= 1

and it is not satisfied when α = 1. When t = 0, the inequalities become independent from the
optimization variables and, thus, the problem becomes unbounded below. We will, then, focus

on the case when t =
√

1−r
p to analyze the minimum of the left-hand side of the first inequality

that has to be always greater than 0. We can rewrite the convex feasible region of our program
as a system of three inequalities: one to ensure that the minimum of the left-hand side of first
inequality in (3.13) is always greater than 0 together with the two ones ensuring the second
inequality in (3.13) always holds:

p ≥
(

2

α+ 2

) 2
α 1

k2
(1− r)

α+2
α ∧ r ≥ 0 ∧ p ≥ 0. (3.14)
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In order to obtain the minimum of this convex program with linear objective function we need to
find a point where the closure of the feasible region is tangent to the level set of the cost function
or, if there are no points with this property, the vertex of the feasible region that minimizes
the objective function. In Figure 3.1 the feasible region is plotted for both cases. The negative

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

(r∗, p∗)

r

p

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

(r∗, p∗)

r

p

Figure 3.1: Optimal solutions for two different values of k and with σ2 = 1 and α = 1: on the
left k = 0.8 ≤ 2/

√
3 and on the right k = 2 > 2/

√
3.

gradient of the cost function is given by c = [−1,−σ2]T . As we do not accept σ2 = 0 nor σ2 =∞,
the straight lines r = 0 and p = 0 cannot be tangent to any level set. For r ≤ 1, the curve

p =

(
2

α+ 2

) 2
α 1

k2
(1− r)

α+2
α (3.15)

is positive and has always a negative derivative given by

∂p

∂r
= −2 2

αα−1(α+ 2)1−2/α 1

k2
(1− r)2/α ≤ 0 ∀r ∈ [0, 1] .

Moreover, if r ≤ 1, the derivative is always increasing as the second derivative of (3.15) is

∂2p

∂r2
= 21+

2
αα−2(α+ 2)1−

2
α
1

k2
(1− r)

2
α−1 ≥ 0, ∀r ∈ [0, 1] .

By consequence, the derivative of (3.15) has a minimum inside the feasible region in r = 0. If
the minimum is greater than − 1

σ2 , then there is no point of the curve tangent to the level sets
for p, r ≥ 0. Thus, the minimum is achieved at the vertex:

r∗ = 0, p∗ =

(
2

α+ 2

) 2
α 1

k2
.

If the minimum of the derivative is lower than − 1
σ2 we have

−2 2
αα−1(α+ 2)1−2/α 1

k2
≤ − 1

σ2
=⇒ k ≤ 2

1
αα− 1

2 (α+ 2)
α−2
2α (σ2)

1
2 .

Then, the tangent point is reached when

−2 2
αα−1(α+ 2)1−2/α 1

k2
(1− r)2/α = − 1

σ2
,
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that gives

r∗ = 1− 1

2

kα

(σ2)
α
2
α

α
2 (α+ 2)1−

α
2 , p∗ =

1

2

kα

(σ2)1+
α
2
α1+α

2 (α+ 2)−
α
2 .

The optimum in the two cases is given by:

(
2

α+ 2

) 2
α σ2

k2
if k >

(
2

α+ 2

) 1
α
(
α+ 2

α

) 1
2

σ

1− kα

(σ2)
α
2

(
α

α+ 2

)α
2

if k ≤
(

2

α+ 2

) 1
α
(
α+ 2

α

) 1
2

σ

.

After assuming that the random variable has arbitrary mean µ and subtracting it, we can finally
obtain the explicit bound for α-unimodal distributions:

sup
P∈Pα(µ,σ2)

P(|ξ − µ| > k) =


(

2

α+ 2

) 2
α σ2

k2
k >

(
2

α+ 2

) 1
α
(
α+ 2

α

) 1
2

σ

1−
(
k

σ

)α(
α

α+ 2

)α
2

0 ≤ k ≤
(

2

α+ 2

) 1
α
(
α+ 2

α

) 1
2

σ

. (3.16)

■

Remark The two regions switch continuously when

k =

(
2

α+ 2

) 1
α
(
α+ 2

α

) 1
2

σ with sup
P∈Pα(µ,σ2)

P(|ξ − µ| > k) =
α

α+ 2
.

Proposition 3.3.1. If α = nξ = 1, the bound defined in Theorem 3.3.1 corresponds to the Gauss
inequality (1.7) while, for α→∞, it corresponds to the Chebyshev inequality (1.5).

Proof. The case when α = nξ = 1 can be directly verified from Equation (1.7). As α→∞, the
feasible region (3.14) becomes

p ≥ 1

k2
(1− r) ∧ r ≥ 0 ∧ p ≥ 0.

The first inequality in this case corresponds to an halfspace and the line p = 1
k2 (1− r) passes

through the points (0, 1
k2 ) and (1, 0). It is still convenient to discuss the different values the

constant derivative of this line
∂p

∂r
= − 1

k2
≤ 0,

could assume and compare them to the one of the level sets − 1
σ2 . We have now three cases:

− 1

k2
< − 1

σ2
→ k <

√
σ2 =⇒ Optimal point (r∗, p∗) = (1, 0)

− 1

k2
> − 1

σ2
→ k >

√
σ2 =⇒ Optimal point (r∗, p∗) = (0, 1/k2)

− 1

k2
= − 1

σ2
→ k =

√
σ2 =⇒ Optimal point (r∗, p∗) ∈ [(1, 0), (0, 1/σ2)]

.
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Figure 3.2: Optimal solutions for σ2 = 1, α = ∞ and k = 0.9 (left), k = 1 (center), k = 2
(right).

The three possible solutions are displayed in Figure 3.2. We can, then, write the bound when
α→∞ and extremal distributions become Dirac couples at ±x:

sup
P∈P∞(µ,σ2)

P(|ξ − µ| > k) =


σ2

k2
k > σ

1 0 ≤ k ≤ σ
(3.17)

■

In [21, Theorem 3.10] Dharmadhikari and Joag-Dev already derived a similar but more conserva-
tive result than the bound in Theorem 3.3.1, having only one region:

Theorem 3.3.2 (α-unimodal Gauss Inequality with One Region ([21, Theorem 3.10])). Let ξ ∈ R
be an α-unimodal random variable with given mode equal to its mean µ ∈ R and variance σ2 ∈ R.
Then, for every k ∈ R+:

P(|ξ − µ| > k) ≤
(

2

α+ 2

) 2
α σ2

k2
k ∈ R+. (3.18)

In Figure 3.3 the univariate α-unimodal bounds are plotted for different values of α togther with
the result from [21].

3.3.2 One-Sided Formulation

Unfortunately, in the one-sided case, problem (3.9) cannot be simplified in such a way to compute
an explicit solution as the double-sided inequality (3.16). For this reason, the one-sided version
of the inequality will be numerically computed in the remainder of this work using the primal
reformulation (3.11) adapted for the following set Ξ:

Ξ := {ξ ∈ R : ξ > k} , k ∈ R+.

Now, Ξ is the half-line (k,∞). Using the recent results in [45], we can compute the bound on
the probability of Ξ as:
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Figure 3.3: Generalized univariate α-unimodal double sided probability bound for different val-
ues of α together with the previous bound (DJ) from Dharmadhikari and Joag-Dev
in [21].

sup
P∈P∞(µ,σ2)

P(ξ − µ > k) = maximize λ− t0

subject to: z ∈ R, Z ∈ R+, λ ∈ R, t ∈ Rl+1[
Z z
z λ

]
⪰ 0, z ≥ 0, t ≥ 0[

Z z
z λ

]
⪯
[

α+2
α σ2 α+1

α µ
α+1
α µ⊤ 1

]
∥∥∥∥[ 2λk
tlk − z

]∥∥∥∥
2

≤ tlk + z∥∥∥∥[2tj+1

tj − λ

]∥∥∥∥
2

≤ tj + λ ∀j ∈ E∥∥∥∥[ 2tj+1

tj − tl

]∥∥∥∥
2

≤ tj + tl ∀j ∈ O,

(3.19)

where l = ⌈log2 α⌉, E =
{
j ∈ {0, . . . , l − 1} : ⌈α/2j⌉ is even

}
and O = {j ∈ {0, . . . , l − 1} :

⌈α/2j⌉ is odd
}
.

If the distribution is symmetric with respect to its mean, the one-sided bound could still be explic-
itly computed because it corresponds to half of the double-sided one (3.16).

In Figure 3.4 there is a comparison between the numerically computed bounds and the explicit
ones for symmetric distributions. It is clear from the plot that the added knowledge about
symmetry always improves the one-sided bound. Furthermore, when k < 0 the bound becomes
1 because it is always possible to construct a probability distribution with given α, µ = 0 and
σ2 that is entirely contained in the half line [k,∞).

Moreover, when α =∞, the one-sided bound for arbitrary distributions converges to the Cantelli
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Figure 3.4: Univariate α-unimodal one-sided probability bounds for α = 1 and α = ∞ and for
symmetric and generic distributions.

inequality (1.6) and can be explicitly computed:

sup
P∈P∞(µ,σ2)

P(ξ − µ > k) =
σ2

σ2 + k2
.

3.3.3 Inverse Bounds

In the next chapters it will be necessary to use bounds for standardized distributions with zero
mean µ equal to the mode and unit variance σ2 = 1.

From Equation (3.16) we define the parametric function fα,ds : R+ 7→ [0, 1] representing the
double-sided bound as

fα,ds(k) := sup
P∈Pα(0,1)

P(|ξ| > k) =


(

2

α+ 2

) 2
α 1

k2
k >

(
2

α+ 2

) 1
α
(
α+ 2

α

) 1
2

1− kα
(

α

α+ 2

)α
2

0 ≤ k ≤
(

2

α+ 2

) 1
α
(
α+ 2

α

) 1
2

. (3.20)

Its inverse f−1
α,ds : [0, 1] 7→ R+ can be computed explicitly as:

f−1
α,ds(ϵ) := inf

k∈R+

{
sup

P∈Pα(0,1)

P(|ξ| > k) ≤ ϵ

}

=


(

2

α+ 2

) 1
α
(
1

ϵ

) 1
2

0 ≤ ϵ < α

α+ 2(
α+ 2

α

) 1
2

(1− ϵ)
1
α

α

α+ 2
≤ ϵ ≤ 1

.

(3.21)
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The parametric function fα,os : R+ 7→ [0, 1] for the one-sided bound will be denoted as:

fα,os(k) := sup
P∈Pα(0,1)

P(ξ > k), (3.22)

and, from what previously discussed in Section 3.3.2, it can be computed numerically by solving
problem (3.19). By consequence, its inverse f−1

α,ds : [0, 1] 7→ R+ defined as

f−1
α,os(ϵ) := inf

k∈R+

{
sup

P∈Pα(0,1)

P(ξ > k) ≤ ϵ

}
, (3.23)

has to be computed by numerically inverting fα,os. It is interesting to see that the limit of the
inverse function

lim
α→∞

f−1
α,os(ϵ) =

√
1− ϵ
ϵ

,

corresponds to the inverse of Cantelli’s bound [15] (one-sided Chebyshev inequality).

In Figure 3.5 the curves f−1
1,os(ϵ) and f

−1
∞,os(ϵ) are plotted.
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Figure 3.5: Inverse one-sided bounds for univariate α-unimodal distributions with α = 1 and
α =∞

3.4 Minimum Volume Ellipsoid Containing a Certain Amount
of Probability Mass

From what was introduced at the beginning of this work, a commonly used technique to address
uncertain optimization problems is to construct sets in which the uncertainty realizes with some
probabilistic guarantees and robustify the optimization with respect to all the elements of these
sets. In this section, we will derive an explicit formulation to derive the Minimum Volume
Ellipsoid (MVE) in Rnξ containing at least a 1 − ϵ amount of probability mass for all the
distributions in our ambiguity set.
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Let ξ ∈ Rnξ be a random vector and let its distribution P ∈ Pα(µ,Σ), with µ ∈ Rnξ be its mean
(assumed to be equal to the mode) and Σ ∈ Snξ

+ be its covariance matrix.

The problem can be written as

minimize
E

Vol(E)

subject to: inf
P∈Pα(µ,Σ)

P(E) ≥ 1− ϵ. (3.24)

It is possible to express the constraint using the complement of E by inverting the inequality sign
as follows:

maximize
E

Vol(E)

subject to: sup
P∈Pα(µ,Σ)

P (Ec) ≤ ϵ. (3.25)

We are now going to derive a tractable reformulation for the constraint in (3.25) by first centering
the ellipsoid at the mean µ and then by imposing a constraint on the matrix describing its shape.

Assumption 3.4.1 (MVE Centering for Symmetric Distributions). Given the ambiguity set of
all symmetric distributions Pα,sym(µ,Σ) on Rnξ with mean µ ∈ Rnξ equal to the mode and
covariance matrix Σ ∈ Sn+, then the MVE containing at least 1 − ϵ of probability mass for all
distributions inside the ambiguity set, is centered at µ.

This assumption is justified from the class of considered distributions: it is reasonable to assume
that no offset from µ would increase the probabilistic guarantees of E for the worst-case symmetric
distributions of the ambiguity set Pα,sym(µ,Σ).

The case of asymmetric distributions is described by the following lemma:

Lemma 3.4.1 (MVE Centering). Given a ambiguity set of distributions on Pα(µ,Σ) on Rnξ with
mean µ ∈ Rnξ equal to the mode and covariance matrix Σ ∈ Sn+, then the MVE containing at
least 1− ϵ of probability mass for all distributions inside the ambiguity set, is centered at µ.

Proof. Let us choose ellipsoid E∗sym being the MVE of the ambiguity set Pα,sym(µ,Σ) such that:

inf
P∈Pα,sym(µ,Σ)

P
(
E∗sym

)
≥ 1− ϵ. (3.26)

From Assumption 3.4.1, E∗sym has to be centered at the mode. It can be shown that for every set
of asymmetric radial extreme distributions, it is possible to construct a symmetric one by taking
half of their length and their symmetric version with respect to the mode and preserving the
same mean and covariance. Thus, as the infimum in Equation (3.26) holds over all distributions
in Pα,sym(µ,Σ), it holds also over all distributions in Pα(µ,Σ), i.e.:

inf
P∈Pα(µ,Σ)

P
(
E∗sym

)
≥ 1− ϵ.

We define E∗ being the MVE for set Pα(µ,Σ). From problem (3.24), we know that:

inf
P∈Pα(µ,Σ)

P (E∗) ≥ 1− ϵ.

Moreover, as E∗ is the MVE of set Pα(µ,Σ) and as E∗sym satisfies Equation (3.4), it holds also
that

Vol (E∗) ≤ Vol
(
E∗sym

)
.
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Since Pα,sym(µ,Σ) ⊂ Pα(µ,Σ), we have that:

inf
P∈Pα,sym(µ,Σ)

P (E∗) ≥ inf
P∈Pα(µ,Σ)

P (E∗) ≥ 1− ϵ.

Thus, as E∗sym is the MVE for set Pα,sym(µ,Σ), we need to have

Vol (E∗) ≥ Vol
(
E∗sym

)
.

By consequence E∗ and E∗sym have the same volume. In addition, from the problem construction,
two ellipsoids with the same volume and the same probabilistic guarantees have to be symmetric
with respect to a line passing through the mode. Since E∗sym is centered at the mode, also E∗
has to be centered at that point. ■

In the case when the ellipsoid E is centered at the mean µ, the constraint can be exactly refor-
mulated as an LMI:

Theorem 3.4.1. Given an ambiguity set Pα(µ,Σ) (all the α-unimodal distributions with mean µ
and covariance Σ) and a µ-centered ellipsoid E defined as E =

{
(x− µ)⊤C(x− µ) ≤ 1

}
, then

the probabilistic constraint
sup

P∈Pα(µ,Σ)

P(Ec) ≤ ϵ

is equivalent to the following linear matrix inequality (LMI) condition:

∃C ∈ Sn+ :
(
f−1
α,ds(ϵ)

)2
⟨C,Σ⟩ ≤ 1,

where f−1
α,ds : [0, 1]→ R+ is defined in Equation (3.21).

Proof. To simplify the derivation we assume, without loss of generality, that µ = 0. This
condition can always be enforced by a suitable coordinate transformation. Hence, by using
parametrization (B.8), the MVE can be described by its shape matrix C ∈ Snξ

+ alone:

E =
{
ξ ∈ Rnξ | ξ⊤Cξ ≤ 1

}
.

Moreover, the objective function can be rearranged1 and the optimization problem rewritten as
follows:

maximize log detC

subject to: C ∈ Snξ

+

sup
P∈Pα(µ,Σ)

P (Ec) ≤ ϵ.
(3.27)

Let us now focus on computing the supremum inside the constraint of problem (3.27). It can be
seen as a moment problem (3.6) where we consider Ξ = Ec. As the set Ec is symmetric around
the mode, also the worst-case distributions can be assumed to be symmetric. Thus, we can set
q = 0 and rewrite (3.6) as:

sup
P∈Pα(µ,Σ)

P (Ec) = minimize ⟨P,Σ⟩+ r

subject to: P ∈ Snξ , r ∈ R
α

α+ 2
x⊤Px+ r −

∫
Rnξ

1Ec(ξ) δα[0,x](dξ) ≥ 0 ∀x ∈ Rnξ .

(3.28)

1log
√
detC−1 = − 1

2
log detC
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We first analyze the problem as E was a unit sphere S and then we make a coordinate transfor-
mation to relate P to E . The transformation is the following: if y belongs to a sphere S and x
to the transformed ellipsoid E we have that:

y⊤Iy ≤ 1 =====⇒
y=C1/2x

x⊤Cx ≤ 1

When the indicator function inside problem (3.28) is related to the complement of an unit sphere
Sc, the worst case probability distribution can be taken in the direction of smallest growth of P
corresponding to its smallest eigenvalue λmin. If the inequality holds in this case, it will hold in
all the other cases being the value of the integral larger and the inequality satisfied.

If x ∈ S, the integral in (3.28) is 0 while if x ∈ Sc it can be rewritten using Equation (2.3) as
follows:∫

Rnξ

1Sc(ξ)δα[0,x](dξ) =

∫ 1

0

1Sc(xu)αuα−1du =

∫ 1

1
∥x∥ 2

αuα−1du = 1−
(

1

∥x∥ 2

)α

. (3.29)

The constraints in (3.28) can be then rewritten as

α

α+ 2
x⊤Px+ r − 1 +

(
1

∥x∥2

)α

≥ 0 ∀x ∈ Rnξ

Now we choose x in the direction of the slowest growth of P and write it as x = ∥x∥2 d where
d = x/ ∥x∥2 is the directional unit vector. Then,

x⊤Px = x⊤ (Px) = x⊤ (λminx) = ∥x∥2 d
⊤d︸︷︷︸
1

λmin ∥x∥2 = λmin ∥x∥22 .

The constraints now become:

α

α+ 2
λmin ∥x∥22 + r − 1 +

(
1

∥x∥ 2

)α

≥ 0 ∀x ∈ Rnξ

As the problem depends only on the norm of x, it is convenient to define t = ∥x∥2 ∈ R+ to
parametrize the chance constraints. By introducing λmin as a decision variable and by ensuring
that the minimum eigenvalue of P has to be larger than λmin we can rewrite the moment problem
as follows:

sup
P∈Pα(µ,Σ)

P (Ec) = minimize ⟨P,Σ⟩+ r

subject to: P ∈ Snξ , r ∈ R, λmin ∈ R+

α

α+ 2
λmint

2 + r − 1 +

(
1

t

)α

≥ 0 ∀t ∈ R+

P ⪰ λminI

(3.30)

We need to transform the coordinates from sphere S to ellipse E . From Section 3.2.1, the cost
function can be seen as the expected value ∀P ∈ Pα(0,Σ):

E
(
ξ⊤Pξ + r

)
= ⟨P,Σ⟩+ r

If we apply the coordinate transformation defined in (3.4) by defining ζ = C1/2ξ, we can rewrite
the cost function as:

E
(
ζ⊤
(
C1/2

)⊤
PC1/2ζ + r

)
=

⟨(
C1/2

)⊤
PC1/2,Σ

⟩
+ r
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By applying the same transformation to the generalized inequality we obtain:

(C1/2)⊤PC1/2 ⪰ λminC.

Then, the moment problem (3.30) can be rearranged as:

sup
P∈Pα(µ,Σ)

P (Ec) = minimize

⟨(
C1/2

)⊤
PC1/2,Σ

⟩
+ r

subject to: P ∈ Snξ , r ∈ R, λmin ∈ R+

α

α+ 2
λmint

2 + r − 1 +

(
1

t

)α

≥ 0 ∀t ∈ R+(
C1/2

)⊤
PC1/2 ⪰ λminC.

Finally, by defining P̃ := 1
λmin

(
C1/2

)⊤
PC1/2, the problem becomes:

sup
P∈Pα(µ,Σ)

P (Ec) = minimize λmin

⟨
P̃ ,Σ

⟩
+ r

subject to: P̃ ∈ Snξ , r ∈ R, λmin ∈ R+

α

α+ 2
λmint

2 + r − 1 +

(
1

t

)α

≥ 0 ∀t ∈ R+

P̃ ⪰ C.

The two constraints act separately on P̃ and on the other optimization variables λmin and r.
Moreover, as λmin, r, ⟨P̃ ,Σ⟩ ≥ 0, it is possible to optimize separately over P̃ and then over the
other two variables. The problem

minimize
⟨
P̃ ,Σ

⟩
subject to: P̃ ⪰ C,

clearly admits an unique solution in P∗ = C. Thus, by solving this optimization in advance, the
moment problem can be rewritten as

sup
P∈Pα(µ,Σ)

P (Ec) = minimize λmin ⟨C,Σ⟩+ r

subject to: r ∈ R, λmin ∈ R+

α

α+ 2
λmint

2 + r − 1 +

(
1

t

)α

≥ 0 ∀t ∈ R+

As λmin, r ∈ R+ , this problem is equivalent (3.13) when σ2 = ⟨C,Σ⟩. By consequence, we have
reduced the multidimensional problem into a unidimensional one. By defining gα : R+ 7→ [0, 1]
as

gα(x) := sup
P∈Pα(0,x)

P (|ξ| ≥ 1) ,
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with ξ ∈ R, we can write

sup
P∈Pα(µ,Σ)

P (Ec) = sup
P∈Pα(0,⟨C,Σ⟩)

P (|ξ| ≥ 1) = gα(⟨C,Σ⟩)

=


(

2

α+ 2

) 2
α

⟨C,Σ⟩ ⟨C,Σ⟩ ≤
(
α+ 2

2

) 2
α
(

α

α+ 2

)
1−

(
α

α+ 2

1

⟨C,Σ⟩

)α
2

⟨C,Σ⟩ ≥
(
α+ 2

2

) 2
α
(

α

α+ 2

) .

Using this result it is possible to rewrite the constraint

sup
P∈Pα(µ,Σ)

P (Ec) ≤ ϵ ⇐⇒ gα(⟨C,Σ⟩) ≤ ϵ,

or, equivalently, as:
⟨C,Σ⟩ ≤ g−1

α (ϵ),

where g−1
α : [0, 1] 7→ R+ is defined as

g−1
α (ϵ) =


(
α+ 2

2

) 2
α

ϵ 0 ≤ ϵ < α

α+ 2(
1

1− ϵ

) 2
α α

α+ 2
ϵ ≥ α

α+ 2

.

From the definition of f−1
α,ds in Equation (3.21) as the inverse of the double-sided bound in one

dimension, we notice that:

g−1
α (ϵ) =

1(
f−1
α,ds(ϵ)

)2 .
Finally, by using a coordinate transformation to shift µ to a different value than 0, we complete
the proof. ■

Thus, from Lemma 3.4.1 it is possible to directly center E in µ. In addition, from Theorem 3.4.1,
the problem of finding the MVE in (3.25) can be rewritten as the following SDP over the shape
matrix C:

maximize log detC

subject to: C ∈ Snξ

+(
f−1
α,ds(ϵ)

)2
⟨C,Σ⟩ ≤ 1.

The solution can be computed explicitly from the KKT conditions. By defining the Lagrange
multiplier λ ∈ R associated to the only constraint, we can write the Lagrangian function
as:

L(C, λ) = − log detC + λ

((
f−1
α,ds(ϵ)

)2
⟨C,Σ⟩ − 1

)
The KKT conditions at the optimum C∗, λ∗ are:

(
f−1
α,ds(ϵ)

)2
⟨C,Σ⟩ − 1 ≤ 0 (Primal feasibility)

λ∗ ≥ 0 (Dual feasibility)

λ∗
((

f−1
α,ds(ϵ)

)2
⟨C,Σ⟩ − 1

)
= 0 (Complementary Slackness)

∇CL(C
∗, λ∗) = 0 (Stationarity)
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α Volume

0.5 34.31
1 37.23
2 41.89
5 50.76
100 77.44
∞ 83.76

Table 3.1: Volumes of the optimal ellipsoids for different values of α.

The last condition can be expressed as:

−(C∗)−1 + λ∗
(
f−1
α,ds(ϵ)

)2
Σ = 0 ⇒ C∗ =

Σ−1

λ∗
(
f−1
α,ds(ϵ)

)2 ,
see [9, Section A.4.1]. By plugging C∗ into the Complementary Slackness condition we get:

λ∗
((

f−1
α,ds(ϵ)

)2
⟨C∗,Σ⟩ − 1

)
= 0 ⇒ λ∗ = nξ.

Using Lemma 3.4.1, Theorem 3.4.1 and the KKT conditions, we can finally write the explicit
form of the MVE in the following Theorem:

Theorem 3.4.2 (Minimum Volume Ellipsoid). Given the ambiguity set Pα(µ,Σ) defining all α-
unimodal distributions with mode equal to mean µ ∈ Rnξ and covariance Σ ∈ Snξ

+ , the Minimum
Volume Ellipsoid (MVE) EαMV E such that:

inf
P∈Pα(µ,Σ)

P (EαMV E) ≥ 1− ϵ,

is centered in µ and can be written explicitly as:

EαMV E = {ξ ∈ Rnξ : (ξ − xc)⊤C(ξ − xc) ≤ 1},

where

xc = µ, C =
Σ−1

n
(
f−1
α,ds(ϵ)

)2
and f−1

α,ds(ϵ) is defined in Equation (3.21).

We show this result for different values of α in the following example:

Example Let us assume the mode is equal to the zero mean and that the covariance matrix of
the ambiguity set is:

Σ =

[
1 2
2 5

]
.

The MVEs for different values of α are shown in Figure 3.6. In Table 3.1 are shown the values
of the volume of the optimal ellipsoids.

It is evident that the volume tends to 0 as α tends to 0 as the extreme distributions of the
ambiguity set Pα(0,Σ) converge to a Dirac in the origin. Moreover, the volume of the ellipsoid
for α = n = 2 is circa half of the one for α = ∞. Thus, there is a good improvement on the
optimal ellipsoids for random vectors of small dimensions.
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α = 0.5
α = 1
α = 2
α = 5
α = 100
α =∞
Σ−1

Figure 3.6: Minimum volume ellipsoids for different α, mean in the origin and covariance matrix
Σ.

It is interesting to see what happens when we deal with univariate random variables. The
minimum volume ellipsoid in that case becomes the minimum length segment centered at the
mean that contains at least 1− ϵ probability mass. The mean becomes a scalar µ (= 0 w.l.o.g.)
while the variance σ2. The matrix C is then:

C =
1(

f−1
α,ds(ϵ)σ

)2 =
1

d2

where d is the minimum distance from µ. Thus, d = f−1
α,ds(ϵ)σ because it corresponds to the right

part of the inequality of the Gauss bound when the random variable is scaled by its standard de-
viation. d is then the minimum distance because f−1

α,ds(ϵ) is the inverse of the double sided Gauss
bound in one dimension for zero mean and standardized variance.

3.5 Multivariate Gauss Inequality over Ellipsoids

In this section the MVE results will be used to generalize the Gauss inequality from Theo-
rem 1.0.3 in multiple dimensions. From Theorem 3.4.2 it is possible to state the following
inequality:

sup
P∈Pα(µ,Σ)

P
(
(ξ − µ)⊤Σ−1(ξ − µ) > nξ

(
f−1
α,ds(ϵ)

)2)
≤ ϵ. (3.31)

If we define λ2 = nξ

(
f−1
α,ds(ϵ)

)2
, by Equation (3.21), we can rewrite ϵ as follows

λ2 = nξ

(
f−1
α,ds(ϵ)

)2
⇐⇒ λ

√
nξ

= f−1
α,ds(ϵ) ⇐⇒ ϵ = fα,ds

(
λ
√
nξ

)
,

where fα,ds is one-dimensional Gauss bounds for distributions with 0 mean and variance 1 defined
in Equation (3.20). Equation (3.31) can be rewritten as:

sup
P∈Pα(µ,Σ)

P
(
(ξ − µ)⊤Σ−1(ξ − µ) > λ2

)
≤ fα,ds

(
λ
√
nξ

)
. (3.32)



3.6 Multivariate Ellipsoidal Sampled Chebyshev Inequality 37

From this result it is immediate to derive the generalization of Gauss inequality for α-unimodal
distributions in multiple dimensions:

Theorem 3.5.1 (Mutivariate Gauss Inequality over Ellipsoids). Let ξ ∈ Rnξ be an α-unimodal
random variable with mean µ ∈ Rnξ and covariance Σ ∈ Snξ

+ . Then, for every λ2 ∈ R+, the
following holds:

P
(
(ξ − µ)⊤Σ−1(ξ − µ) > λ2

)
≤ fα,ds

(
λ
√
nξ

)
, (3.33)

where fα,ds is defined in Equation (3.20).

Please note that, as α → ∞, the right-hand side of (3.33) tends to the Chebyshev bound for
distributions with 0 mean and variance 1:

lim
α→∞

fα,ds

(
λ
√
nξ

)
=


nξ
λ2

λ
√
nξ

> 1

1 0 ≤ λ
√
nξ
≤ 1

= min
(
1,
nξ
λ2

)
. (3.34)

3.6 Multivariate Ellipsoidal Sampled Chebyshev Inequality

It has been shown [38] that it is possible to define a Chebyshev-like inequality in one dimension
based on the sampled mean and covariance with only the weak exchangeability assumption on
the distribution. In this section we will extend the result to a multivariate setting using the
Euclidean norm.

Theorem 3.6.1. Let ξ ∈ Rnξ be a random variable and let N ∈ Z≥nξ
. Given ξ(1), . . . , ξ(N), ξ(N+1) ∈

RNξ i.i.d. samples of ξ, define the empirical mean and covariance of the first n samples as:

ξ̂ :=
1

N

N∑
i=1

ξ(i), Σ̂ :=
1

N − 1

N∑
i=1

(ξ(i) − ξ̂)(ξ(i) − ξ̂)⊤.

If we assume that Σ̂ is nonsingular, then for all λ ∈ R++ it holds that:

PN+1
({
ξ(1), . . . , ξ(N+1)

}
∈ Rnξ(N+1) : (ξ(N+1) − ξ̂)⊤Σ̂−1(ξ(N+1) − ξ̂) > λ2

)
≤ h(N,nξ, λ

2),

(3.35)
where

h(N,nξ, λ
2) = min

(
1,
nξ(N

2 − 1 +Nλ2)

N2λ2

)
.

Remark As N →∞, the right-hand side of the inequality tends to

min
(
1,
nξ
λ2

)
,

that corresponds to the Multivariate Gauss inequality over Ellipsoids when α → ∞ in Equa-
tion (3.34).

Remark The assumption that Σ̂ is nonsingular can be justified in practice. In the case when ξ
is a continuous random variable, the true covariance Σ ∈ Snξ

+ is nonsingular and the number of

samples is greater than nξ, it can be shown that the probability of having a singular Σ̂ is null.
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3.6.1 Proof of the Inequality

The proof is based on the following preliminary result.

Lemma 3.6.1. Let k ∈ R++ and N ∈ Z≥2. Consider a set of vectors U := {u1, . . . , uN} with
ui ∈ Rnξ for all i ∈ {1, . . . , N}. Moreover, let us assume that

N∑
i=1

ui = 0nξ
,

N∑
i=1

uiu
⊤
i = NInξ×nξ

,

and define the set

J := {i ∈ {1, . . . , N} : ∥ui∥2 > k} .

Then we have

|J | ≤
⌊
nξN

k2

⌋
. (3.36)

Proof. We first note that

∥ui∥2 > k ⇐⇒ u⊤i ui > k2.

If we sum both sides of last inequality over all the elements of J we get:

k2 |J | <
∑
i∈J

u⊤i ui ≤
N∑
i=1

u⊤i ui = tr

(
N∑
i=1

uiu
⊤
i

)
= nξN

and the result follows immediately. ■

We now define the empirical sample mean and the biased covariance matrix based of all N + 1
samples as:

ξ̂∗ :=
1

N + 1

N+1∑
i=1

ξi, Σ̂∗ :=
1

N + 1

N+1∑
i=1

(ξ(i) − ξ̂)(ξ(i) − ξ̂)⊤.

Proposition 3.6.1. The following holds:

ξ(N+1) − ξ̂∗ =
N

N + 1
(ξ(N+1) − ξ̂) (3.37)

Σ̂∗ =
1

(N + 1)2

[
(N2 − 1)Σ̂ +N(ξ(N+1) − ξ̂)(ξ(N+1) − ξ̂)⊤

]
. (3.38)

Proof. The first equality can be obtained from the following algebraic steps:

ξ(N+1) − ξ̂∗ = ξ(N+1) − 1

N + 1

(
N∑
i=1

{ξ(i)}+ ξ(N+1)

)

=
N

N + 1
ξ(N+1) − 1

N + 1

N∑
i=1

ξ(i)

=
N

N + 1

(
ξ(N+1) − ξ̂

)
.
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The second inequality can be proven as follows

Σ̂∗ =
1

N + 1

N+1∑
i=1

(ξ(i) − ξ̂∗)(ξ(i) − ξ̂∗)⊤

=
1

N + 1

(
N+1∑
i=1

{
ξ(i)ξ(i)⊤

}
− ξ̂∗

N+1∑
i=1

{
ξ(i)⊤

}
−

N+1∑
i=1

{
ξ(i)
}
ξ̂∗⊤ + (N + 1)ξ̂∗ξ̂∗⊤

)

=
1

N + 1

(
N+1∑
i=1

{
ξ(i)ξ(i)⊤

}
− (N + 1)ξ̂∗ξ̂∗⊤ − (N + 1)ξ̂∗ξ̂∗⊤ + (N + 1)ξ̂∗ξ̂∗⊤

)

=
1

N + 1

(
N+1∑
i=1

{
ξ(i)ξ(i)⊤

}
− (N + 1)ξ̂∗ξ̂∗⊤

)

=
1

N + 1

(
N∑
i=1

{ξ(i)ξ(i)⊤}+ ξ(N+1)ξ(N+1)⊤

− 1

N + 1

(
N∑
i=1

{ξ(i)}+ ξ(N+1)

)(
N∑
i=1

{ξ(i)}+ ξ(N+1)

)⊤
=

1

N + 1

(
N∑
i=1

{ξ(i)ξ(i)⊤}+ ξ(N+1)ξ(N+1)⊤

− 1

N + 1

(
N2ξ̂ξ̂⊤ + ξ(N+1)ξ(N+1)⊤ +Nξ(N+1)ξ̂⊤ +Nξ̂ξ(N+1)⊤

))
,

we now add and subtract the quantity N
N−1 ξ̂ξ̂

⊤ and multiply and divide by N − 1:

=
N − 1

N + 1

(
1

N − 1

N∑
i=1

{ξ(i)ξ(i)⊤} − N

N − 1
ξ̂ξ̂⊤︸ ︷︷ ︸

Σ̂

+
N

N − 1
ξ̂ξ̂⊤ +

1

N − 1
ξ(N+1)ξ(N+1)⊤

− 1

(N + 1)(N − 1)

(
N2ξ̂ξ̂⊤ + ξ(N+1)ξ(N+1)⊤ +Nξ(N+1)ξ̂⊤ +Nξ̂ξ(N+1)⊤

))

=
N − 1

N + 1
Σ̂ +

N

N + 1
ξ̂ξ̂⊤ +

1

N + 1
ξ(N+1)ξ(N+1)⊤ − N2

(N + 1)2
ξ̂ξ̂⊤

− 1

(N + 1)2
ξ(N+1)ξ(N+1)⊤ − N

(N + 1)2
ξ(N+1)ξ̂⊤ − N

(N + 1)2
ξ̂ξ(N+1)⊤

=
1

(N + 1)2

(
(N2 − 1)Σ̂ +N(N + 1)ξ̂ξ̂⊤ + (N + 1)ξ(N+1)ξ(N+1)⊤ −N2ξ̂ξ̂⊤

− ξ(N+1)ξ(N+1)⊤ −Nξ(N+1)ξ̂⊤ −Nξ̂ξ(N+1)⊤
)

=
1

(N + 1)2

(
(N2 − 1)Σ̂ +Nξ̂ξ̂⊤ +Nξ(N+1)ξ(N+1)⊤ −Nξ(N+1)ξ̂⊤ −Nξ̂ξ(N+1)⊤

)
=

1

(N + 1)2

(
(N2 − 1)Σ̂ +N(ξ(N+1) − ξ̂)(ξ(N+1) − ξ̂)⊤

)
.

■
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Since we assumed that Σ̂ ≻ 0, it follows from Equation (3.38) that Σ̂∗ ≻ 0. We next normalize
each of the N + 1 samples ξ(i) as follows

ui

(
ξ(1), . . . , ξ(N+1)

)
:=
(
Σ̂∗
)−1/2 (

ξ(i) − ξ̂∗
)

∀i ∈ {1, . . . , N + 1} (3.39)

so that we get

N+1∑
i=1

ui

(
ξ(1), . . . , ξ(N+1)

)
= 0d,

N+1∑
i=1

ui

(
ξ(1), . . . , ξ(N+1)

)
ui

(
ξ(1), . . . , ξ(N+1)

)⊤
= (N + 1)Inξ×nξ

.

Let us write ui instead of ui(ξ
(1), . . . , ξ(N+1)) for notational convenience. Please notice that as we

assumed ξ(i) to be i.i.d., also ui will be i.i.d. with i ∈ {1, . . . , N + 1}.

We now partition the space Rnξ(N+1) into different Ũ
(
ũ(1), . . . , ũ(N+1)

)
each one having fixed or-

dered vectors
{
ũ(1), . . . , ũ(N+1)

}
, with ũ(i) ∈ Rnξ for all i ∈ {1, . . . , N + 1}, such that

∥∥ũ(1)∥∥2 ≤
· · · ≤

∥∥ũ(N+1)

∥∥
2
. Each one of these partitions represents all possible vector sets {u1, . . . , uN+1}

that can be reordered as
{
u(1) = ũ(1), . . . , u(N+1) = ũ(N+1)

}
, see Figure 3.7.

Rnξ(N+1)

{
{u1, . . . , uN+1} ∈ Rnξ(N+1) : ∥un+1∥2 > k

}
Ũ(ũ(1), . . . , ũ(N+1))

Figure 3.7: The partitioning is intuitively described by a finite number of subsets of
Rnξ(N+1). The goal of our computations is to bound the probability of set{
{u1, . . . , uN+1} ∈ Rnξ(N+1) : ∥uN+1∥2 > k

}
. The conditioning corresponds to con-

straining the space into one of the partitions drawn as the oblique stripes, e.g. the
blue region. The intersection of the blue and the red regions corresponds to the set
of which we compute the conditioned probability.

Let
{
ū(1), . . . , ū(N+1)

}
∈ Rnξ(N+1) and the corresponding U

(
ū(1), . . . , ū(N+1)

)
be a fixed parti-

tion of Rnξ . We define the distribution PN+1

U
on Rnξ(N+1) such that:

PN+1

U

({
y ∈

{
ū(1), . . . , ū(N+1)

}
: y = t

})
:=

∣∣{i ∈ {1, . . . , N + 1} : ū(i) = t}
∣∣

N + 1
.
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As all the ui with i ∈ {1, . . . , N+1} are exchangeable, the probability of a set {u1, . . . , uN+1} such
that ∥uN+1∥2 > k, given the partition U

(
ū(1), . . . , ū(N+1)

)
, is equal to the probability of having

one of the elements of
{
ū(1), . . . , ū(N+1)

}
that is greater than k, i.e.:

PN+1
(
{u1, . . . , uN+1} ∈ Rnξ(N+1) : ∥uN+1∥2 > k

∣∣∣ U (ū(1), . . . , ū(N+1)

))
= PN+1

U

(
y ∈

{
ū(1), . . . , ū(N+1)

}
: ∥y∥2 > k

)
=

1

N + 1

∣∣{i ∈ {1, . . . , N + 1} :
∥∥ū(i)∥∥2 > k

}∣∣
≤ 1

N + 1

⌊
nξ(N + 1)

k2

⌋
,

(3.40)

where last inequality comes from Lemma 3.6.1.

In order to remove the conditioning, we integrate the distribution over all sets Ũ(ũ(1), . . . , ũ(N+1)):

PN+1
(
{u1, . . . , uN+1} ∈ Rnξ(N+1) : ∥uN+1∥2 > k

)
≤
∫
{ũ(1),...,ũ(N+1)}∈Rnξ(N+1)

1

N + 1

⌊
nξ(N + 1)

k2

⌋
PN+1

(
Ũ (dũ1, . . . , dũN+1)

)
=

1

N + 1

⌊
nξ(N + 1)

k2

⌋∫
{ũ(1),...,ũ(N+1)}∈Rnξ(N+1)

PN+1
(
Ũ (dũ1, . . . , dũN+1)

)
︸ ︷︷ ︸

1

=
1

N + 1

⌊
nξ(N + 1)

k2

⌋
,

where in the inequality we used Equation (3.40). We are going to rearrange the following in-
equality

PN+1
(
{u1, . . . , uN+1} ∈ Rnξ(N+1) : ∥uN+1∥2 > k

)
≤ 1

N + 1

⌊
nξ(N + 1)

k2

⌋
, (3.41)

so that we get the one in Theorem 3.6.1. Let us rewrite the complement of the argument inside
the probability operator by using Equation (3.39):

∥uN+1∥2 ≤ k ⇐⇒ u⊤N+1uN+1 ≤ k2

⇐⇒ (ξ(N+1) − ξ̂∗)⊤(Σ̂∗)−1(ξ(N+1) − ξ̂∗) ≤ k2

By applying the Schur complement (Appendix A.1) last inequality, together with the assumption
of positive definiteness of Σ̂∗, we get Σ̂∗ ξ(N+1) − ξ̂∗(

ξ(N+1) − ξ̂∗
)⊤

k2

 ⪰ 0.

This means that all the leading principal minors of the matrix are positive semidefinite:

Σ̂∗ ⪰ 0 ∧ Σ̂∗k2 − (ξ(N+1) − ξ̂∗)(ξ(N+1) − ξ̂∗)⊤ ⪰ 0.
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It is possible to rewrite these condition involving ξ̂ and Σ̂ based only on the first N samples by
plugging in Equations (3.37) and (3.38) as follows:

Σ̂∗k2 − (ξ(N+1) − ξ̂∗)(ξ(N+1) − ξ̂∗)⊤ ⪰ 0

⇐⇒ 1

(N + 1)2

[
(N2 − 1)Σ̂ +N(ξ(N+1) − ξ̂)(ξ(N+1) − ξ̂)⊤

]
k2

− (ξ(N+1) − ξ̂)(ξ(N+1) − ξ̂)⊤ N2

(N + 1)2
⪰ 0

⇐⇒ Σ̂
(N2 − 1)k2

N(N − k2)
− (ξ(N+1) − ξ̂)(ξ(N+1) − ξ̂)⊤ ⪰ 0.

By noting that Σ̂ ⪰ 0, these two conditions

Σ̂ ⪰ 0 ∧ Σ̂
(N2 − 1)k2

N(N − k2)
− (ξ(N+1) − ξ̂)(ξ(N+1) − ξ̂)⊤ ⪰ 0,

correspond to this matrix inequality:[
Σ̂ ξ(N+1) − ξ̂

(ξ(N+1) − ξ̂)⊤ (N2−1)k2

N(N−k2)

]
⪰ 0.

By using again the Schur complement, the condition can be translated to:

Σ̂ ⪰ 0 ∧ (ξ(N+1) − ξ̂)⊤Σ̂−1(ξ(N+1) − ξ̂) ≤ (N2 − 1)k2

N(N − k2)
.

Thus, we have obtained the following equivalent conditions:

∥uN+1∥2 ≤ k ⇐⇒ (ξ(N+1) − ξ̂∗)⊤(Σ̂∗)−1(ξ(N+1) − ξ̂∗) ≤ k2

⇐⇒ (ξ(N+1) − ξ̂)⊤Σ̂−1(ξ(N+1) − ξ̂) ≤ (N2 − 1)k2

N(N − k2)
,

from which it is immediate to obtain the complementary ones

∥uN+1∥2 > k ⇐⇒ (ξ(N+1) − ξ̂∗)⊤(Σ̂∗)−1(ξ(N+1) − ξ̂∗) > k2

⇐⇒ (ξ(N+1) − ξ̂)⊤Σ̂−1(ξ(N+1) − ξ̂) > (N2 − 1)k2

N(N − k2)
.

We can now rewrite Equation (3.41) as:

PN+1

({
ξ(1), . . . , ξ(N+1)

}
: (ξ(N+1) − ξ̂)⊤Σ̂−1(ξ(N+1) − ξ̂) > (N2 − 1)k2

N(N − k2)

)
≤ 1

N + 1

⌊
nξ(N + 1)

k2

⌋
.

(3.42)

Let us define λ such that

λ2 =
(N2 − 1)k2

N(N − k2)
so that k2 =

N2λ2

N2 − 1 +Nλ2
.
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We finally plug λ2 in Equation (3.42), so that (3.42) becomes:

PN+1
({
ξ(1), . . . , ξ(N+1)

}
∈ Rnξ(N+1) : (ξ(N+1) − ξ̂)⊤Σ̂−1(ξ(N+1) − ξ̂) > λ2

)
≤ 1

N + 1

⌊
nξ(N + 1)(N2 − 1 +Nλ2)

N2λ2

⌋
≤ nξ(N

2 − 1 +Nλ2)

N2λ2
.

■





4 Chance Constrained Linear Programs

In this chapter uncertain optimization programs of the form (1.3) will be reformulated in a
tractable way using the theoretical results from Chapter 3. We will study two ways to approach
this problem: the first one based on distrbutionally robust optimization and the second one based
on randomized optimization.

4.1 Distributionally Robust Approach

Distributionally robust optimization deals with chance constraints by considering probability
distributions lying in an uncertainty set describing our knowledge about the uncertainty. In this
section we will consider the ambiguity set Pα(µ,Σ) defined in (3.2). The distributionally robust
optimization problem is in the form of (1.4) with Pα(µ,Σ):

minimize
x∈X

c⊤x

subject to: P (g(x, ξ) ≤ 0) ≥ 1− ϵ ∀P ∈ Pα(µ,Σ).
(4.1)

In this work, linear chance constraints with will be discussed focusing on the case when the
uncertainty ξ affects linearly the coefficients.

4.1.1 Single Linear Chance Constraint

Single linear chance constraints have already been exactly reformulated as SOC constraints using
distributionally robust optimization: e.g. by Calafiore and Ghaoui [13] or by Cinquemani et al.
[18]. However, these reformulations do not take into account the unimodality of the distributions.
We will reformulate distributionally robust single chance constraints in an exact way considering
distributions in Pα(µ,Σ). The following problem will be analyzed:

minimize
x∈X

c⊤x

subject to: P
(
a(ξ)⊤x ≤ b(ξ)

)
≥ 1− ϵ ∀P ∈ Pα(µ,Σ).

(4.2)

ξ ∈ Ξ ⊆ Rnξ is assumed to enter linearly in a(ξ) and b(ξ). Thus, the coefficients can be written
as

a(ξ) = a0 +

nξ∑
j=1

ajξj = a0 + Âξ

b(ξ) = b0 +

nξ∑
j=1

bjξj = b0 + b̂⊤ξ,

(4.3)
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where a0 ∈ Rnx , b0 ∈ R, aj ∈ Rnx j = {1, . . . , nξ} and bj ∈ R j = {1, . . . , nξ}. Hence, b̂ ∈ Rnξ

and Â ∈ Rnx×nξ . Please note that a0 and b0 are the nominal values of the coefficients while Â
and b̂ describe the perturbation given by the uncertainty.

The single chance constraint can be written by using (4.3) and the infimum over all the proba-
bilities in the ambiguity set in the following way:

inf
P∈Pα(µ,Σ)

P
((

a0 + Âξ
)⊤

x ≤ b0 + b̂⊤ξ

)
≥ 1− ϵ.

It is possible to rearrange the terms in the following way:

inf
P∈Pα(µ,Σ)

P
((

Â⊤x− b̂
)⊤

ξ ≤ b0 − a⊤0 x
)
≥ 1− ϵ.

It is clear that if the uncertainty is null, the inequality becomes the nominal one a⊤0 x ≤ b0. We
define

ã(x) = Â⊤x− b̂, b̃(x) = b0 − a⊤0 x,

and rewrite the constraint as

inf
P∈Pα(µ,Σ)

P
(
ã(x)⊤ξ ≤ b̃(x)

)
≥ 1− ϵ.

By bounding the complement of the argument inside the constrant, it can be rewritten as:

sup
P∈Pα(µ,Σ)

P
(
ã(x)⊤ξ > b̃(x)

)
≤ ϵ.

We now focus on random variable ã(x)⊤ξ. By noting that

E
(
ã(x)⊤ξ

)
= ã(x)⊤µ, Var

(
ã(x)⊤ξ

)
=
∥∥∥Σ1/2ã(x)

∥∥∥2
2
,

the constraint can be reformulated as:

sup
P∈Pα(µ,Σ)

P

(
ã(x)⊤ξ − ã(x)⊤µ∥∥Σ1/2ã(x)

∥∥
2

>
b̃(x)− ã(x)⊤µ∥∥Σ1/2ã(x)

∥∥
2

)
≤ ϵ. (4.4)

The left-hand side of the inequality inside the probability measure, is the standardized version (0
mean and variance 1) of random variable ã(x)⊤ξ. From the definition of the one-sided probability
bound for 0 mean variance 1 variables in Equation (3.22), we know that:

sup
P∈Pα(µ,Σ)

P

(
ã(x)⊤ξ − ã(x)⊤µ∥∥Σ1/2ã(x)

∥∥
2

>
b̃(x)− ã(x)⊤µ∥∥Σ1/2ã(x)

∥∥
2

)
= fα,os

(
b̃(x)− ã(x)⊤µ∥∥Σ1/2ã(x)

∥∥
2

)
.

After applying the inverse f−1
α,os defined in (3.23) to Equation (4.4), the single linear chance

constraint can be reformulated as a SOC constraint:

b̃(x)− ã(x)⊤µ ≥ f−1
α,os(ϵ)

∥∥∥Σ1/2ã(x)
∥∥∥
2
,

where the inequality sign changed because f−1
α,os is a monotonically decreasing function.
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Finally, problem (4.2) can be exactly reformulated as an Second-Order Cone Program (SOCP):

minimize
x∈X

c⊤x

subject to: b̃(x)− ã(x)⊤µ ≥ f−1
α,os(ϵ)

∥∥∥Σ1/2ã(x)
∥∥∥
2
.

By comparing the inequality we get by neglecting the uncertainty1:

b̃(x) ≥ 0,

to the one in the SOCP, we can see that there is a margin introduced by two elements: the first re-
lated to the mean µ and the second related to the covariance Σ together with the function f−1

α,os(ϵ).
The latter adapts depending on the unimodality index α and on the probability level ϵ. Please
see Figure 3.5 for the behavior f−1

α,os(ϵ). As ϵ tends to 0, the margin tends to infinity and the fea-
sible region shrinks. On the other hand, assuming low α means considering distributions that are
more concentrated around the mode and reducing the margin.

4.1.2 Multiple Linear Chance Constraints

Unfortunately multiple linear chance constraints cannot be in general reformulated in an ex-
act tractable way. Therefore, we will show two tractable approximations: the first based
on Bonferroni inequality and the second one based on robust optimization with respect to
uncertainty ellipsoids. The following problem with ng joint chance constraints will be dis-
cussed:

minimize
x∈X

c⊤x

subject to: P

(
ng∩
i=1

(
ãi(x)

⊤ξ ≤ b̃i(x)
))
≥ 1− ϵ ∀P ∈ Pα(µ,Σ).

(4.5)

4.1.2.1 Bonferroni Approximation

Problem (4.5) can be rewritten using the union of the complements of all chance constraints:

minimize
x∈X

c⊤x

subject to: P

(
ng∪
i=1

(
ãi(x)

⊤ξ > b̃i(x)
))
≤ ϵ ∀P ∈ Pα(µ,Σ).

(4.6)

From Bonferroni inequality we have that:

P

(
ng∪
i=1

(
ãi(x)

⊤ξ > b̃i(x)
))
≤

ng∑
i=1

P
(
ãi(x)

⊤ξ > b̃i(x)
)
.

Thus, for any vector ϵ ∈ Rng such that 1⊤ϵ ≤ ϵ, the system of distributionally robust individual
chance constraints

sup
P∈Pα(µ,Σ)

P
(
ã(x)⊤ξ > b̃(x)

)
≤ ϵi, i = 1, . . . , ng,

1Setting µ = 0 ∈ Rnξ and Σ = 0 ∈ Rnξ×nξ
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or equivalently

inf
P∈Pα(µ,Σ)

P
(
ã(x)⊤ξ ≤ b̃(x)

)
≥ 1− ϵi, i = 1, . . . , ng,

corresponds to a conservative approximation of the constraint in problem (4.6). In this work, we
will choose for simplicity ϵi = ϵ/ng. It can be shown that even if the vector ϵ is chosen optimally,
this approximation can still be conservative [50].

Finally, using Bonferroni inequality, we can reformulate each single chance constraint in the same
way as in Section 4.1.1 and rewrite problem (4.6) as an SOCP as follows:

minimize
x∈X

c⊤x

subject to: b̃i(x)− ãi(x)⊤µ ≥ f−1
α,os(ϵ/ng)

∥∥∥Σ1/2ãi(x)
∥∥∥
2
, i = 1, . . . , ng.

(4.7)

We will denote this reformulation as Bonferroni Approximation (BA). Also in this case, the
margin depends on the mean µ and on a second term given by a 2-norm multiplying the inverse
function f−1

α,os. Differently from the single chance constraint case, the argument of f−1
α,os is reduced

by the number of joint chance constraints. From Figure 3.5 it is clear that as the argument of f−1
α,os

tends to 0 the margin increases, shrinking the feasible region. By consequence, more joint chance
constraints will increase the conservatism of this approximation.

4.1.2.2 Ellipsoid Approximation

Another way to deal with joint chance constraints is to reformulate them as robust ones with re-
spect to uncertainty sets having distributionally robust probabilistic guarantees.

We will consider ellipsoidal uncertainty sets E defined using parametrization (B.5) in the Ap-
pendix:

E = {xc +Bu | ∥u∥2 ≤ 1}.
xc ∈ Ξ ⊆ Rnξ is the center and B ∈ Snξ

+ is the shape matrix.

If the set E has probabilistic guarantess with respect to all the distributions in Pα(µ,Σ), i.e.

inf
P∈Pα(µ,Σ)

P (E) ≥ 1− ϵ, (4.8)

then the solution to the robust program

minimize
x∈X

c⊤x

subject to: ãi(x)
⊤ξ ≤ b̃i(x), ∀ξ ∈ E i = 1, . . . , ng,

will have at least the same probabilistic guarantees as the ones of the set E . In other words, the
optimal solution will have the probabilistic guarantees of problem (4.5). It is well known that
robust linear programs can be reformulated as SOCP, see [2]. The reformulation can be obtained
by imposing

sup
ξ∈E

(
ãi(x)

⊤ξ
)
≤ b̃i(x), i = 1, . . . , ng,

⇐⇒ ãi(x)
⊤xc + sup

∥u∥2≤1

(
ãi(x)

⊤Bu
)
≤ b̃i(x), i = 1, . . . , ng,

⇐⇒ ãi(x)
⊤xc + ∥Bãi(x)∥2 ≤ b̃i(x), i = 1, . . . , ng,

⇐⇒ b̃i(x)− ãi(x)⊤xc ≥ ∥Bãi(x)∥2 , i = 1, . . . , ng.

(4.9)



4.1 Distributionally Robust Approach 49

In Appendix B, we derived the relationship between different ellipsoid parametrization. Parametriza-
tion (B.5) used here corresponds to parametrization (B.1) when B = C−1/2. Thus, by adopting
uncertainty set

E =
{
ξ ∈ Ξ : (ξ − xc)⊤C(ξ − xc) ≤ 1

}
,

and using Equation (4.9), we can reformulate the robust LP as the following SOCP

minimize
x∈X

c⊤x

subject to: b̃i(x)− ãi(x)⊤xc ≥
∥∥∥C−1/2ãi(x)

∥∥∥
2
, i = 1, . . . , ng.

(4.10)

The degree of conservatism introduced by this approximation critically depends on the choice
of the ellipsoid E . Whatever ellipsoid is chosen, it must satisfy probabilistic guarantees (4.8) in
order to have a feasible solution x∗.

Minimum Volume Ellipsoid Reformulation A reasonable ellipsoid E we can use is the Minimum
Volume Ellipsoid (MVE). In Theorem 3.4.2 we derived the following closed form solution for the
MVE containing at least 1− ϵ of probability mass:

xc = µ, C =
Σ−1

n
(
f−1
α,dsϵ)

)2 .
By plugging last equation in problem (4.10), we obtain the Minimum Volume Ellipsoid Approx-
imation (MVEA):

minimize
x∈X

c⊤x

subject to: b̃i(x)− ãi(x)⊤µ ≥
√
nξf

−1
α,ds(ϵ)

∥∥∥Σ1/2ãi(x)
∥∥∥
2
, i = 1, . . . , ng.

(4.11)

Comparison Bonferroni and Minimum Volume Ellipsoid Approximations So far we have seen
two different ways to deal with multiple joint linear chance constraints: Bonferroni Approxima-
tion (4.7) and Minimum Volume Ellipsoid Approximation (4.11). Their structure and dependence
on µ, Σ is the same:

minimize
x∈X

c⊤x

subject to: b̃i(x)− ãi(x)⊤µ ≥ ρ
∥∥∥Σ1/2ãi(x)

∥∥∥
2
, i = 1, . . . , ng,

(4.12)

and the only difference is the term ρ multiplying the 2-norm.

The coefficients for the two methods are displayed in Table 4.1. The BA depends on the number
of joint chance constraints ng and becomes more conservative as ng increases. On the other hand,
the MVEA depends on the square root of the dimension of the uncertainty nξ and becomes more
conservative when nξ is large. Thus, it preferable to choose one or the other method depending
on the structure of the chance constrained program.

In Figure 4.1 the the MVEA coefficient with nξ = 3 is compared with the BA coefficient with
ng = 2, 3, 4. In addition, in Figure 4.2 the BA coefficient with ng = 3 us compared with the
MVEA coefficient with nξ = 2, 3, 4. From the graphs it is clear that the BA is better than the
MVEA if and only if nξ ≥ ng.
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f−1
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f−1
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√
nξf

−1
α,ds(ϵ) nξ = 3

Figure 4.1: Comparison of MVEA and BA coefficients with ng = 2, 3, 4 and nξ = 3.

BA MVE

f−1
α,os(ϵ/ng)

√
nξf

−1
α,ds(ϵ)

Table 4.1: BA and MVEA coefficient ρ dependence comparison.

Iterative Ellipsoid Approach Another way to define the ellipsoid inside problem (4.10) having
distributionally robust probabilistic guarantees, is to use Theorem 3.4.1 stating that an ellipsoid
E centered at the mean µ with shape matrix C such that:(

f−1
α,ds(ϵ)

)2
⟨C,Σ⟩ ≤ 1, (4.13)

satisfies Equation (4.8). Thus, it is possible to iteratively solve problem (4.10) by first opti-
mizing with a fixed ellipsoid E and then by optimizing with respect to the shape matrix C
to find a new one giving a better optimum while enforcing the previous solution to be feasi-
ble.

We will denote this procedure as Iterative Ellipsoid Approximation (IEA). It is described in
Algorithm 1 and works as follows. First we solve the robust LP (4.10) with the MVE as a
first guess for the ellipsoid obtaining the solution x∗cur, the optimal cost ϕ∗cur and the set A of
active constraints indeces. Then, while the current optimal cost ϕ∗cur and the previous one ϕ∗prev
differ for more than ϵ, we perform the iterations. We save x∗cur and ϕ∗cur inside the previous
optimization results x∗prev and ϕ∗prev. Then, we reshape the matrix C by ensuring that the
solution x∗prev satisfies the constraints. This is done by squaring the constraints of (4.9) in
x∗prev: (

b̃i(x
∗
prev)− ãi(x∗prev)⊤µ

)2
≥ ãi(x∗prev)⊤C−1ãi(x

∗
prev), i = 1, . . . , ng. (4.14)

Please note that (4.14) and the constraints in (4.9) in x∗prev are equivalent if and only if

b̃i(x
∗
prev)− ãi(x∗prev)⊤µ ≥ 0.

This is implied by the fact that x∗prev satisfies problem (4.9). Afterwards, we minimize the
right-hand side of (4.14) for the active constraints in A while ensuring that x∗prev is always
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Figure 4.2: Comparison of MVEA and BA coefficients with ng = 3 and nξ = 2, 3, 4.

feasible for the new shape matrix and that (4.13) holds. It can be done by solving the following
SDP:

minimize t

subject to: C ∈ Snξ

++, t ∈ R[
C ãi(x

∗
prev)

ãi(x
∗
prev)

⊤
(
b̃i(x

∗
prev)− ãi(x∗prev)⊤µ

)2] ⪰ 0 i = 1, . . . , ng[
C ãj(x

∗
prev)

ãj(x
∗
prev)

⊤ t

]
⪰ 0 ∀j ∈ A(

f−1
α,ds(ϵ)

)2
⟨C,Σ⟩ ≤ 1,

(4.15)

obtaining C∗. Then, we solve again the robust LP obtaining a new x∗cur, ϕ
∗
cur and a new

set A of active constraints indices. We repeat this procedure until the solution converges and∣∣ϕ∗cur − ϕ∗prev∣∣ < ϵ.

Algorithm 1 Iterative Ellipsoid

Initialization: Solve robust LP (4.10) with MVE obtaining x∗cur, ϕ
∗
cur and set A.

while
∣∣ϕ∗cur − ϕ∗prev∣∣ ≥ ϵ do

x∗prev ← x∗cur and ϕ∗prev ← ϕ∗cur
Reshape matrix C by solving SDP (4.15) obtaining C∗

Solve robust LP (4.10) with xc = µ and C = C∗ obtaining new x∗cur, ϕ
∗
cur and set A.

end while
x∗ ← x∗cur

This iterative procedure has shown to empirically converge to an ellipsoid E having the same
guarantees as the MVE but giving a better optimal solution for the optimization problem. As one
can intuitively see, this approach is computationally more expensive than BA and MVE because
we need to solve several SOCPs (4.10) and also SDPs (4.15).
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4.1.3 Moment Uncertainty

In practical problems, limited information about the ambiguity set Pα(µ,Σ) is available. Usu-
ally, we have to gather this knowledge from data and construct the ambiguity set accordingly.
The most intuitive method to obtain µ and Σ is to compute the estimated ones. Based on
N samples ξ(1), . . . , ξ(N) of random variable ξ ∈ Ξ ⊆ Rnξ , empirical mean and covariance are
defined:

µ̂ =
1

N

N∑
i=1

ξ(i), Σ̂ =
1

N − 1

N∑
i=1

(
ξ(i) − µ̂

)(
ξ(i) − µ̂

)⊤
.

Unfortunately, plugging µ̂ and Σ̂ inside the ambiguity set Pα(µ,Σ) will not give reliable prob-
abilistic guarantees, especially if they are estimated from few data samples. We will intro-
duce a more rigorous approach to use the estimates while taking into account estimation er-
rors.

Shawe-Taylor and Cristianini in [43] extended the Hoeffding’s inequality to random vectors and
matrices. The first lemma below describes random vectors behavior

Lemma 4.1.1 ([43, Theorem 3]). Let ξ(1), . . . , ξ(N) ∈ Ξ ⊆ Rnξ be i.i.d. random samples of ξ and
let

R = sup
ξ∈Ξ
∥ξ∥2 , β ∈ (0, 1).

Then, with confidence at least 1− β, the following holds:

∥µ− µ̂∥2 ≤ r1, r1 =
R√
N

(
2 +

√
2 ln

1

β

)
.

The next lemma provides a similar result for the empirical covariance.

Lemma 4.1.2 ([43, Corollary 6]). Let ξ(1), . . . , ξ(N) ∈ Ξ ⊆ Rnξ be i.i.d. random samples of ξ and
let

R = sup
ξ∈Ξ
∥ξ∥2 , β ∈ (0, 1).

Then, provided that N >
(
2 +

√
2 ln 2

β

)2
, it holds with confidence at 1− β that:

∥∥∥Σ− Σ̂
∥∥∥
F
≤ r2, r2 =

2R2

√
N

(
2 +

√
2 ln

2

β

)
.

Combining Lemma 4.1.1 and Lemma 4.1.2 (both with β/2 instead of β), Calafiore and El Ghaoui
[13] formulated a theorem defining the regions for the true mean and covariance centered at the
estimated ones with an overall confidence at least 1− β.
Theorem 4.1.1 ([13, Theorem 4.1]). Let ξ(1), . . . , ξ(N) ∈ Ξ ⊆ Rnξ be i.i.d. random samples of ξ
such that

R = sup
ξ∈Ξ
∥ξ∥2
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Then, provided that N >
(
2 +

√
2 ln 4

β

)2
, the following holds with confidence at least 1− β:

∥µ− µ̂∥2 ≤ r1 r1 =
R√
N

(
2 +

√
2 ln

2

β

)
∥∥∥Σ− Σ̂

∥∥∥
F
≤ r2 r2 =

2R2

√
N

(
2 +

√
2 ln

4

β

)
.

As the radii depend on the square root of the logarithm of β, it is possible to set β to a a very low
value and without increasing too much the confidence regions.

4.1.3.1 Reformulations Using Moments Robustification

These confidence regions can be included inside the SOCP reformulations obtained in the pre-
vious sections in order to have a data-driven reformulation of the chance constrained problem
(4.1).

BA and MVEA Robustification We edit the constraints in the general SOCP program (4.12)
coming from both BA and MVE reformulations in analogous way to what Calafiore and Ghaoui
did in [13] without unimodality and for a single linear chance constraint. From Theorem 4.1.1,
it holds with confidence at least 1− β that

µ = µ̂+ d, d ∈ Rnξ : ∥d∥2 ≤ r1, (4.16)

and that
Σ = Σ̂ +∆, ∆ ∈ Rnξ×nξ : ∥∆∥F ≤ r2. (4.17)

By plugging Equations (4.16) and (4.17) inside the i-th constraint of problem (4.12) we get:

ρ
∥∥∥(Σ +∆)

1/2
ãi(x)

∥∥∥
2
+ ãi(x)

⊤ (µ̂+ d)− b̃i(x) ≤ 0.

We can majorize the left-hand side as follows:

ρ
∥∥∥(Σ +∆)

1/2
ãi(x)

∥∥∥
2
+ ãi(x)

⊤ (µ̂+ d)− b̃i(x)

= ρ
√
ãi(x)⊤Σãi(x) + tr (∆ãi(x)ãi(x)⊤) + ãi(x)

⊤ (µ̂+ d)− b̃i(x)

≤ ρ
√
ãi(x)⊤Σãi(x) + ∥∆∥F ∥ãi(x)ãi(x)⊤∥F + ãi(x)

⊤ (µ̂+ d)− b̃i(x)

≤ ρ
√
ãi(x)⊤ (Σ + r2I) ãi(x) + ãi(x)

⊤µ̂+ r1 ∥ãi(x)∥2 − b̃i(x)

≤ ρ
∥∥∥(Σ + r2I)

1/2
ãi(x)

∥∥∥
2
+ ãi(x)

⊤µ̂+ r1 ∥ãi(x)∥2 − b̃i(x).

(4.18)

Thus, problem (4.12) can be robustified against moment uncertainty as a modified SOCP:

minimize
x∈X

c⊤x

subject to: b̃i(x)− ãi(x)⊤µ− r1 ∥ãi(x)∥2 ≥ ρ
∥∥∥(Σ + r2I)

1/2
ãi(x)

∥∥∥
2
, i = 1, . . . , ng.

(4.19)

The complexity does not increase as the program keeps the same structure.
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With confidence 1 − β, a solution x∗ to program (4.19) will satisfy the chance constraints in
(4.1). Hence, this reformulation allows us to use the BA and the MVEA in a data-driven
setting.

IEA Robustification In order to use the IEA empirical estimates of mean and covariance we
have do adapt the iterative algorithm. In particular the ellipsoid reshaping in problem (4.15)
has to be adapted in order to take uncertainty into account. Condition (4.13) needed to have
probabilistic guarantees on ellipsoid E , has to be edited using Equation (4.17) by majorizing the
left-hand side as follows(

f−1
α,ds(ϵ)

)2 ⟨
C,
(
Σ̂ + ∆

)⟩
=
(
f−1
α,ds(ϵ)

)2 (
⟨C, Σ̂⟩+ ⟨C,∆⟩

)
≤
(
f−1
α,ds(ϵ)

)2 (
⟨C, Σ̂⟩+ ∥C∥F ∥∆∥F

)
≤
(
f−1
α,ds(ϵ)

)2 (
⟨C, Σ̂⟩+ r2 ∥C∥F

)
.

(4.20)

Thus, by using Equation (4.20) and the mean robustificaiton in Equation (4.19), we can rewrite
problem (4.13) as:

minimize t

subject to: C ∈ Snξ

++, t ∈ R[
C ãi(x

∗
prev)

ãi(x
∗
prev)

⊤
(
b̃i(x

∗
prev)− ãi(x∗prev)⊤µ̂− r1

∥∥ãi(x∗prev)∥∥2)2
]
⪰ 0 i = 1, . . . , ng[

C ãj(x
∗
prev)

ãj(x
∗
prev)

⊤ t

]
⪰ 0 ∀j ∈ A(

f−1
α,ds(ϵ)

)2 (
⟨C, Σ̂⟩+ r2 ∥C∥F

)
≤ 1

(4.21)
After reshaping the ellipsoid obtaining C∗, the SOCP required to get the new solution x∗cur and
cost ϕ∗cur needs to be robustified only with respect to the estimated mean µ̂, and thus can be
written as:

minimize
x∈X

c⊤x

subject to: b̃i(x)− ãi(x)⊤µ̂− r1 ∥ãi(x)∥2 ≥ ρ
∥∥∥C∗−1/2ãi(x)

∥∥∥
2
, i = 1, . . . , ng.

(4.22)

In Algorithm 2 the modified iterative procedure is described using last changes in (4.20), (4.21)
and (4.22).

With confidence 1−β, a solution x∗ to program (4.19) will satisfy the chance constraints in (4.1)
with probability 1− ϵ.

4.1.3.2 Multivariate Sampled Chebyshev Approach

An alternative way to deal with the errors estimating µ and Σ comes from the empirical Cheby-
shev inequality in multiple dimensions proven in Theorem 3.6.1. By using N + 1 samples
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Algorithm 2 Robustified Iterative Ellipsoid

Initialization: Solve (4.19) with MVE obtaining x∗cur, ϕ
∗
cur and set A.

while
∣∣ϕ∗cur − ϕ∗prev∣∣ ≥ ϵ do

x∗prev ← x∗cur and ϕ∗prev ← ϕ∗cur
Reshape matrix C by solving SDP (4.21) obtaining C∗

Solve (4.22) with xc = µ and C = C∗ obtaining new x∗cur, ϕ
∗
cur and set A.

end while
x∗ ← x∗cur

ξ(1), . . . , ξ(N), ξ(N+1) ∈ Ξ ⊆ Rnξ of ξ, it is possible to exploit that result in order to construct an
ellipsoid E(ξ(1), . . . , ξ(N)) depending on the firstN samples such that:

PN+1
(
ξN+1 ∈ E

(
ξ(1), . . . , ξ(N)

))
≥ 1− ϵ. (4.23)

Using Equation (3.35), we define E as

E(ξ(1), . . . , ξ(N)) =

{
(ξ − µ̂)⊤ Σ̂−1

λ2
(ξ − µ̂) ≤ 1

}
where µ̂ and Σ̂ are the estimated mean and covariance from the first N samples and λ2 is a scaling
parameter that determines the probability in (4.23). We choose λ by enforcing the right-hand
side of (3.35) being lower than a predefined ϵ.

nξ(N
2 − 1 +Nλ2)

N2λ2
≤ ϵ =⇒ λ2 ≥ nξ(N

2 − 1)

N(ϵN − nξ)
.

Then, by selecting N in order to have a positive λ2 and the minimum λ to have the smallest
ellipsoid with probabilistic bound ϵ, we obtain:

N >
nξ
ϵ
, λ =

√
nξ(N2 − 1)

N(ϵN − nξ)
. (4.24)

Then, by plugging the defined ellipsoid inside problem (4.10) we get the following data-driven
reformulation still as SOCP:

minimize
x∈X

c⊤x

subject to: b̃i(x)− ãi(x)⊤µ̂ ≥ λ
∥∥∥Σ̂1/2ãi(x)

∥∥∥
2
, i = 1, . . . , ng.

(4.25)

We denote this approach as the Multivariate Sampled Chebyshev Approximation (MSCA). The
probabilistic guarantees of solution x∗ to the problem above are now different from the ones
obtained from Theorem 4.1.1. In this setting there is no β. The bound ϵ means the following:
the probability of drawing N + 1 samples, constructing E(ξ(1), . . . , ξ(N)) based on the first N
ones, solving problem (4.25) obtaining x∗ that violates the constraints defined by ξ(N+1) in (1.3),
is lower than ϵ.

This kind of guarantees are useful when we care only about the (N + 1)-th sample, e.g. when
performing receding horizon optimization. If we optimize at each time stage taking care of
only the next sample and then we optimize again, we do not need two layers of probability
describing all the future samples but just the N + 1-th. In the Applications part of this work,
we will show how this method performs in an MPC example where we optimize at each time
stage.
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4.2 Scenario Approach

Recently developed by Calafiore and Campi in [12] and then by Campi and Garatti in [14], the SA
has shown to be an intuitive and effective way to deal with chance constrained programs of the
form (1.3). Instead of solving the untractable problem (1.3), the SA defines a random program
based on the N i.i.d. samples ξ(1), . . . , ξ(N) ∈ Ξ ⊆ Rnξ of ξ.

RPN : minimize
x∈X

c⊤x

subject to: g(x, ξ(i)) ≤ 0, i = 1, . . . , N.
(4.26)

Although obtained based only on a finite number of samples, the solution x∗N to the random
program comes with precise guarantees about its feasibility for problem (1.3). There are few
assumptions on problem (1.3):

Assumption 4.2.1. Set X is convex and constraint g is convex in x. Moreover (4.26) admits an
unique feasible solution with probability one.

Here there are some definitions we will use to define the probabilistic guarantees of x∗.

Definition 4.2.1 (Violation probability [11]). The violation probability of an element x ∈ Rn is
the probability that there exists an element δ ∈ ∆ for which the constraints are not satisfied.

V (x) = P (ξ ∈ Rnξ : g(x, ξ) > 0)

As we are dealing with a random program, its solution x∗N is a random variable. In addition, the
violation probability of the solution V (x∗N ) is also a random variable.

Definition 4.2.2 (Support constraint [11]). A constraint ξ(r) with r ∈ {1, . . . , N} is a support
constraint for RPN if its removal changes the solution of RPN .

Definition 4.2.3 (Helly’s dimension [11]). Helly’s dimension of RPN is the least integer ζ such
that ess supξ∈Ξ |Sc (RPN ) | ≤ ζ holds for any finite N ≥ 1.

From [11, Lemma 2.2 and 2.3], ζ ≤ n if RPN is feasible with probability one, whereas ζ ≤ n+ 1
in all other cases.

The probabilistic guarantees of solution x∗N can be described in the following Theorem

Theorem 4.2.1 ([11, Theorem 3.3]). Consider problem (4.26) with N ≥ ζ. If Assumption 4.2.1
holds, then

PN
(
ξ(1), . . . , ξ(N) ∈ ΞN : P (V (x∗N )) > ϵ

)
≤

ζ−1∑
j=1

(
N

j

)
ϵj(1− ϵ)N−j .

Hence, we can bound the right-hand side by β as follows:

ζ−1∑
j=1

(
N

j

)
ϵj(1− ϵ)N−j ≤ β. (4.27)

If N, ϵ and β satisfy Equation (4.27), then with confidence 1−β, the solution x∗N of problem RPN

will satisfy the chance constraints of problem (1.3) with at probability 1 − ϵ. By consequence,
this theorem gives two layers probabilistic guarantees on x∗N .
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Equation (4.27) can be numerically inverted, or by using the Chernoff bound on the lower
binomial tail, can be rewritten as:

N ≥
e

e−1

ϵ

(
ζ − 1 + ln

1

β

)
. (4.28)

Since the minimum number of samples depends logarithmically on β−1, we can choose a very
high confidence without increasing the required samples too much. Unfortunately, this bound
still depends linearly on ϵ−1, and it can become computationally expensive when ϵ is chosen
small.

It is also possible to give one layer probabilistic guarantees on solution x∗N .

Theorem 4.2.2 ([10, Theorem 2.1]). Consider problem (4.26) with N ≥ ζ. If Assumption 4.2.1
holds, then

PN+1
(
ξ(1), . . . , ξ(N), ξ(N+1) ∈ ΞN+1 : P

(
g(x∗N , ξ

(N+1)) > 0
))
≤ ζ

N + 1
.

Hence, we can bound the right hand side by ϵ as follows:

ζ

N + 1
≤ ϵ =⇒ N ≥ ζ

ϵ
− 1. (4.29)

If ϵ and N satisfy Equation (4.29), then the probability of drawing N +1 samples, solving RPN

based on the first N ones obtaining x∗N that violates the constraint defined by ξ(N+1) is lower
than ϵ.

As discussed in the previous Section, this kind of guarantees are useful when dealing with receding
horizon optimization problems. In the Applications part of this work, we will show how this
method performs in a MPC control example.

Helly’s dimension ζ can be explicitly bounded by exploiting the problem structure. In this work,
as we assume affine dependence of the constraints with respect to the uncertainty, we will make
use of the following recent result by Zhang et al.,

Proposition 4.2.1 ([49, Proposition 3]). If problem (1.3) consists of ng joint chance constraints
with linear dependence on the uncertainty ξ ∈ Ξ ⊆ Rnξ , the Helly’s dimension can be bounded
by:

ζ ≤ ng(nξ + 1).

When dealing with decision variables of higher dimension than the uncertainty one, this result
can greatly reduce the number of samples required in order to have probabilistic guarantees.
Please note that there are also other results to limit the Helly’s dimension that in some situ-
ations can give better results than Proposition 4.2.1 such as the s-rank, see [41]. We will use
Proposition 4.2.1 in the applications discussed in this work.
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The problem of choosing a linear discriminant that minimizes the misclassification probabil-
ity of future data has been studied for decades in Machine Learning literature [7]. Traditional
approaches constructing optimal linear discriminants are based on SVMs: they build an op-
timization problem from labeled data points trying to classify correctly as many of them as
possible [7]. Unfortunately, this technique does not compute probabilistic guarantees of cor-
rectly classifying future data points. Lanckriet et al. [32] developed another approach to con-
struct linear discriminants giving probabilistic guarantees based on distributionally robust op-
timization. We will discuss how this method has been improved and reformulated in several
ways and how the probabilistic guarantees could benefit from the bounds proven in Chap-
ter 3.

5.1 Minimax Probability Machines (MPMs)

The approach defined by Lanckriet et al. [32] constructs Minimax Probability Machines (MPMs).
In this section the minimax formulation of linear classifiers is presented and rearranged using
our α-unimodality results.

Let x and y be random vectors in a binary classification problem modeling data from two classes
distributed respectively with mean and covariance matrix (x̄,Σx) and (ȳ,Σy), having x, x̄ ∈ X ⊆
Rn, y, ȳ ∈ Y ⊆ Rn and Σx,Σy ∈ Sn++. Let us define Pα(µ,Σ) from Equation (3.2) as the set of
α-unimodal distributions on Rn having mean µ and covariance matrix Σ. For simplicity, in this
section the two distributions are assumed to have the same α.

The goal of this optimization is to obtain an hyperplane H(a, b) = {z | a⊤z = b} where a ∈
Rn \ {0} and b ∈ R. Given the minimum probability of correct classification γ ∈ [0, 1), the MPM
can be modeled as

MPM : maximize γ

subject to: γ ∈ R+, a ∈ Rn \ {0}, b ∈ R
inf

P∈Pα(x̄,Σx)
P(a⊤x ≥ b) ≥ γ

inf
P∈Pα(ȳ,Σy)

P(a⊤y ≤ b) ≥ γ.

(5.1)
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We can rewrite the problem as

MPM ′ : maximize γ

subject to: γ ∈ R+, a ∈ Rn \ {0}, b ∈ R
sup

P∈Pα(x̄,Σx)

P(−a⊤x > −b) ≤ 1− γ

sup
P∈Pα(ȳ,Σy)

P(a⊤y > b) ≤ 1− γ,

(5.2)

where 1 − γ corresponds to the worst-case misclassification probability. Optimization prob-
lems MPM and MPM ′ are clearly chance constrained programs with two individual chance
constraints. Thus, by exploiting the results obtained in Section 4.1.1, it is possible to rewrite
MPM ′ as a SOCP in the following way:

maximize γ

subject to: γ ∈ R+, a ∈ Rn \ {0}, b ∈ R

− b+ a⊤x̄ ≥ f−1
α,os(1− γ)

∥∥∥Σ1/2
x a

∥∥∥
2

b− a⊤ȳ ≥ f−1
α,os(1− γ)

∥∥∥Σ1/2
y a

∥∥∥
2
,

(5.3)

where f−1
α,os has been defined in Equation (3.23) and introduces a margin influencing the 2-

norm in each one of the SOC constraints. In Figure 5.1 the margin behavior with respect to
γ is plotted as a monotonically increasing function. From what said in Section 4.1.1, assuming
“small” α is equivalent to assuming that the distributions are more concentrated around the
mode and reduces the margin in the SOCP reformulation. When α → ∞, the inverse function
limit is:

lim
α→∞

f−1
α,os (1− γ) =

√
γ

1− γ
.

0.25 0.5 0.75 1

2

4

6

α

γ

f−1
1,os(1− γ)

f−1
∞,os(1− γ)

Figure 5.1: Inverse one-sided bounds behavior with respect to α and 1− γ

Since f−1
α,os (1− γ) is monotonically increasing in γ, we can define a new optimization vari-

able
ω := f−1

α,os (1− γ) , (5.4)



5.1 Minimax Probability Machines (MPMs) 63

and rewrite our problem as

maximize ω

subject to: ω ∈ R+, a ∈ Rn \ {0}, b ∈ R

− b+ a⊤x̄ ≥ ω
∥∥∥Σ1/2

x a
∥∥∥
2

b− a⊤ȳ ≥ ω
∥∥∥Σ1/2

y a
∥∥∥
2
.

Given the optimum ω∗, a∗ and b∗, the worst-case correct classification probability can be calcu-
lated as:

γ∗ = 1− fα,os(ω∗), (5.5)

where fα,os is defined in (3.22). As the objective function is linear, the inequalities become tight
at the optimum, i.e.

b∗ = a∗⊤x̄− ω∗
∥∥∥Σ1/2

x a∗
∥∥∥
2
= a∗⊤ȳ + ω∗

∥∥∥Σ1/2
y a∗

∥∥∥
2
. (5.6)

By consequence, it is possible to neglect b and rewrite the optimization problem by summing the
two constraints:

maximize ω

subject to: ω ∈ R+, a ∈ Rn \ {0}

a⊤(x̄− ȳ) ≥ ω
(∥∥∥Σ1/2

x a
∥∥∥
2
+
∥∥∥Σ1/2

y a
∥∥∥
2

)
.

If x̄ = ȳ, then ω∗ = 0. By consequence also γ∗ = 0 and it is impossible to have a meaningful
solution. We will assume for the rest of this Chapter that x̄ ̸= ȳ.

In the case when x̄ ̸= ȳ, we notice that the constraint is positively homogeneous in a: if a
satisfies it, also qa does with q ∈ R+. Moreover, the constraint implies that a⊤(x̄− ȳ) ≥ 0 from
the definition of norm. Hence, we can impose a⊤(x̄ − ȳ) = 1 without loss of generality. This

implies a ̸= 0 and
∥∥∥Σ1/2

x a
∥∥∥
2
+
∥∥∥Σ1/2

y a
∥∥∥
2
̸= 0. Thus, we can write the optimization problem

as:
maximize ω

subject to: ω ∈ R+, a ∈ Rn \ {0}

ω ≤ 1∥∥∥Σ1/2
x a

∥∥∥
2
+
∥∥∥Σ1/2

y a
∥∥∥
2

a⊤(x̄− ȳ) = 1.

Also in this case the cost function is linear. We can eliminate variable ω and rewrite the problem
as follows:

minimize
∥∥∥Σ1/2

x a
∥∥∥
2
+
∥∥∥Σ1/2

y a
∥∥∥
2

subject to: a ∈ Rn \ {0}
a⊤(x̄− ȳ) = 1.

(5.7)

For positive definite Σx and Σy the problem is strictly convex and feasible for x̄ ̸= ȳ. Thus, the
optimal point is unique.
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Given the optimum a∗, it is possible to obtain the optimal values of the decision variables of the
initial problem (5.1) by computing:

ω∗ =
1∥∥∥Σ1/2

x a
∥∥∥
2
+
∥∥∥Σ1/2

y a
∥∥∥
2

and using Equations (5.5) and (5.6).

It is interesting to notice that the solution to problem (5.7) does not change with α. This is
due to the fact that we enforced γ being the same for both classes. Hence, even though we get
different probabilistic guarantees while assuming different α, the optimal hyperplane is always
the same independently from how unimodal the measures are.

5.2 Biased Minimax Probability Machines (BMPMs)

When one of the two classes is less important, it could be useful to reformulate the opti-
mization problem with two different probability guarantees for the two classes trying to max-
imize only one of them and having a predefined lower bound on the less important one. This
problem has been analyzed by Huang et al. in [29] without using unimodality assumption.
In this section we will deal with Biased Minimax Probability Machines (BMPMs) using α-
unimodality:

BMPM : maximize γ

subject to: γ ∈ R+, a ∈ Rn \ {0}, b ∈ R
inf

P∈Pαx (x̄,Σx)
P(a⊤x ≥ b) ≥ γ

inf
P∈Pαy (ȳ,Σy)

P(a⊤y ≤ b) ≥ δ0,

(5.8)

where δ0 is the fixed minimum probability of correct classification for class y. Please note that
now the two distributions are assumed to have two different α: αx and αy. Analogously to what
has been done in the previous Section, the chance constrained program can be formulated as a
SOCP:

maximize γ

subject to: γ ∈ R+, a ∈ Rn \ {0}, b ∈ R

− b+ a⊤x̄ ≥ f−1
αx,os(1− γ)

∥∥∥Σ1/2
x a

∥∥∥
2

b− a⊤ȳ ≥ f−1
αy,os(1− δ0)

∥∥∥Σ1/2
y a

∥∥∥
2
,

(5.9)

As f−1
αx,os(1−γ) is monotonically increasing in γ it is possible to define the optimization variable

ωγ := f−1
αx,os(1−γ) as we did in Equation (5.4). Please note that f−1

αy,os(1−δ0) is fixed by the values

of αy and δ0. For notational convenience, we will define also ωδ0 := f−1
αy,os(1− δ0). Moreover, as

the objective function is linear, it is possible to sum the two constraints and remove variable b
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using Equation (5.6). Then, the problem can be rewritten as:

maximize ωγ

subject to: ωγ ∈ R+, a ∈ Rn \ {0}

a⊤(x̄− ȳ) ≥ ωγ

∥∥∥Σ1/2
x a

∥∥∥
2
+ ωδ0

∥∥∥Σ1/2
y a

∥∥∥
2
.

In the same way as in Section 5.1, as the constraint is positively homogeneous in a, we can
rewrite the problem as

maximize ωγ

subject to: ωγ ∈ R+, a ∈ Rn \ {0}

1 ≥ ωγ

∥∥∥Σ1/2
x a

∥∥∥
2
+ ωδ0

∥∥∥Σ1/2
y a

∥∥∥
2

a⊤(x̄− ȳ) = 1.

Since Σx is assumed to be always positive definite, it is possible to rewrite the first constraint
as:

ωγ ≤
1− ωδ0

∥∥∥Σ1/2
y a

∥∥∥
2∥∥∥Σ1/2

x a
∥∥∥
2

.

As the objective function is linear in ωγ , the inequality becomes tight at the optimum and it is pos-
sible to optimize only over a by rewriting the problem as a Fractional Program (FP):

maximize
1− ωδ0

∥∥∥Σ1/2
y a

∥∥∥
2∥∥∥Σ1/2

x a
∥∥∥
2

subject to: a ∈ Rn \ {0}
a⊤(x̄− ȳ) = 1.

(5.10)

Since we assumed that x̄ ̸= ȳ, we can consider a ∈ Rn while enforcing a ̸= 0 with the equality
constraint. Hence, this FP is concave and, thus, every local optimum is a global optimum, see
Schaible [39]. In order to solve it, we transform it into an equivalent concave program. According
to [40, Equation (7)], by defining the transformation

p :=
1∥∥∥Σ1/2

x a
∥∥∥
2

a, t :=
1∥∥∥Σ1/2

x a
∥∥∥
2

,

the solution p∗ and t∗ of

maximize t− ωδ0

∥∥∥Σ1/2
y p

∥∥∥
2

subject to: p ∈ Rn \ {0}, t ∈ R
p⊤(x̄− ȳ) = t∥∥∥Σ1/2

x p
∥∥∥
2
≤ 1

t > 0,

gives an optimal solution to (5.10), with:

a∗ =
p∗

t∗
. (5.11)
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The optimal value of ωγ is given by:

ω∗
γ =

1− ωδ0

∥∥∥Σ1/2
y a∗

∥∥∥
2∥∥∥Σ1/2

x a∗
∥∥∥
2

.

Finally, the optimal values of b∗ and γ∗ can be computed from ω∗
γ using Equations (5.6) and

(5.5) respectively.

5.3 Minimum Error Minimax Probability Machines (MEMPMs)

Assuming the worst-case accuracies of the two classes to be the same as in the standard MPM
or fixing one probability guarantee as in the BMPM, does not assure to minimize the worst-case
error rate for future data. The problem of constructing the distributionally robust classifier
that minimizes the overall misclassification error has been formulated in [30] as Minimum Error
Minimax Probability Machine (MEMPM):

MEMPM : maximize θγ + (1− θ)δ
subject to: γ ∈ R+, δ ∈ R+, a ∈ Rn \ {0}, b ∈ R

inf
P∈Pαx (x̄,Σx)

P(a⊤x ≥ b) ≥ γ

inf
P∈Pαy (ȳ,Σy)

P(a⊤y ≤ b) ≥ δ,

(5.12)

where θ ∈ [0, 1] is the prior probability of class x and 1 − θ is the prior probability of class
y.

An interesting interpretation of the problem comes from the objective function. Maximizing
θγ+(1−θ)δ can be viewed as maximizing the worst case accuracy for future data. If we change,
without loss of generality, the objective function by inverting the sign, adding 1 and by adding
and subtracting θ, we get the following equivalent formulation

minimize θ(1− γ) + (1− θ)(1− δ).

By noting that 1−γ is the probability of miscalsification of class x and that 1−δ is the one of class
y, it is clear that the solution of problem (5.12) minimizes the maximum Bayes error constructing
the Bayes optimal hyperplane [7] in the worst-case scenario.

In Figure 5.2 the MPM and MEMPM classifiers are compared when the ambiguity sets for class
x and y contain only one distribution each (the drawn ones) and when prior probabilities are
equal, i.e. θ = 1−θ = 1/2. In the MPM case, the integrals of the two tails representing 1−γ and
1− δ are equal because in the problem formulation we enforce γ = δ. On the other hand, after
solving MEMPM the separating hyperplane falls in the point where the two densities intersect
because the prior probabilities are equal. This is also the most intuitive place where we would
put the classifier by looking at the two distributions.

Analogously to what discussed in the previous Section, we now reformulate the problem in
a tractable way using SOC constraints. The chance constrained program can be rewritten
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x
y1− γ 1− δ

δ = γ

x
y1− γ 1− δ

δ ̸= γ

Figure 5.2: Comparison MPM (left) and MEMPM (right) classifiers in one dimension when
prior probabilities are equal and the ambiguity sets for class x and y contain only
one distribution each. The black lines represent the optimal classifiers.

as:
maximize θγ + (1− θ)δ
subject to: γ ∈ R+, δ ∈ R+, a ∈ Rn \ {0}, b ∈ R

− b+ a⊤x̄ ≥ f−1
αx,os(1− γ)

∥∥∥Σ1/2
x a

∥∥∥
2

b− a⊤ȳ ≥ f−1
αy,os(1− δ)

∥∥∥Σ1/2
y a

∥∥∥
2
.

(5.13)

As f−1
αx,os(1 − γ) and f−1

αy,os(1 − δ) are monotonically increasing in γ and δ respectively, it is
possible to define two new variables

ωγ := f−1
αx,os(1− γ), and ωδ := f−1

αy,os(1− δ) (5.14)

such that:
γ = 1− fαx,os(ωγ), δ = 1− fαy,os(ωδ). (5.15)

We simplify b in the same way as we did deriving the MPM reformulation, by adding the con-
straints. Moreover, as in Section 5.1, we notice that the obtained constraint is homogeneous in
a and rewrite the problem as:

maximize θγ + (1− θ)δ
subject to: γ ∈ R+, δ ∈ R+, a ∈ Rn \ {0}

1 ≥ ωγ

∥∥∥Σ1/2
x a

∥∥∥
2
+ ωδ

∥∥∥Σ1/2
y a

∥∥∥
2

a⊤(x̄− ȳ) = 1.

(5.16)

In the following lemma we show that the solution is attained at the boundary of the feasible
region described by the two constraints.

Lemma 5.3.1 ([30, Lemma 3]). The maximum value of θγ + (1 − θ)δ under the constraints of
problem (5.16) is achieved when:

1 = ωγ

∥∥∥Σ1/2
x a

∥∥∥
2
+ ωδ

∥∥∥Σ1/2
y a

∥∥∥
2
.
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Proof. Assume that the maximum is achieved when

1 > ωγ

∥∥∥Σ1/2
x a

∥∥∥
2
+ ωδ

∥∥∥Σ1/2
y a

∥∥∥
2
.

A new solution constructed by increasing γ (or ωγ) by a small positive amount while mantaining
δ and a fixed can be constructed satisfying the constraints providing a higher cost function
value. ■

Using last lemma, we can write

ωγ =
1− ωδ

∥∥∥Σ1/2
y a

∥∥∥
2∥∥∥Σ1/2

x a
∥∥∥
2

.

In addition, if we fix δ = δ̄, the optimization problem can be transformed to:

maximize
1− ωδ̄

∥∥∥Σ1/2
y a

∥∥∥
2∥∥∥Σ1/2

x a
∥∥∥
2

subject to: a ∈ Rn \ {0}
a⊤(x̄− ȳ) = 1,

(5.17)

that is equivalent to the BMPM Fractional Program (5.10). Hence, it can be converted to an
equivalent concave program and solved efficiently. We can, then, update δ in order to find
the optimal one. We denote as γ∗

δ̄
the optimal value we obtain from problem (5.17) and the

function
g : [0, 1]→ [0, 1]

δ̄ 7→ θγ∗δ̄ + (1− θ)θ̄,
(5.18)

mapping from the fixed δ̄ to the relative MEMPM optimal cost. Hence, finding the optimal δ
corresponds to performing a line search over the function g(δ) that, instead of being explicitly
available, has to be computed from problem (5.18).

Although there are many ways to solve the line search problem, we will refer to the Quadratic In-
terpolation (QI) method, see [4]. QI finds the maximum point by updating a three-point pattern
δ1, δ2, δ3 repeatedly. The new δ is denoted by δnew and computed using the quadratic interpo-
lation of the three-point pattern. At each iteration a new three point pattern is constructed
using δnew and two of δ1, δ2, δ3. It can be shown that this method converges superlinearly to a
local optimum point [4]. Moreover, as discussed in [30], although MEMPM does not guarantee
concavity in general, empirically it is often concave. Thus, the local optimum achieved using QI
will often be global optimum.

After finding the optimal values for δ∗ and γ∗, it is immediate to compute a∗ from (5.11). Then,
b∗ can be explicitly computed from (5.6).

5.4 Moment Uncertainty

Empirical estimates of mean and covariance could happen to be inaccurate because of wrong
data or limited data. In this case, the solution using plug-in estimates, could be unreliable and



5.4 Moment Uncertainty 69

δ1 δ2 δnew δ3

g(δ)

Figure 5.3: Example of QI line search method. The three-point pattern for the next iteration is
δ2, δnew, δ3.

the worst-case accuracy lower than the computed bounds. We will reformulate the MEMPM
using results from Section 4.1.3.

We will denote as x̂ and ŷ the empirical estimates of the mean of class x, y respectively and
Σ̂x and Σ̂y the ones of covariance matrix. By assuming the support of classes x and y to be
bounded by two balls of radiuses Rx and Ry respectively, we can reformulate Theorem 4.1.1 for
two classes as follows:

Theorem 5.4.1. Let x(1), . . . , x(Nx) ∈ X ⊆ Rn be i.i.d. random samples of x and y(1), . . . , y(Ny) ∈
Y ⊆ Rn be i.i.d. random samples of y such that

Rx = sup
x∈X
∥x∥2 , Ry = sup

y∈Y
∥y∥2

Then, provided that Nx, Ny >
(
2 +

√
2 ln 8

β

)2
, the following holds with confidence at least 1−β:

∥x̄− x̂∥2 ≤ r1,x r1,x =
Rx√
Nx

(
2 +

√
2 ln

4

β

)
∥∥∥Σx − Σ̂x

∥∥∥
F
≤ r2,x r2,x =

2R2
x√
Nx

(
2 +

√
2 ln

8

β

)
∥ȳ − ŷ∥2 ≤ r1,y r1,y =

Rx√
Ny

(
2 +

√
2 ln

4

β

)
∥∥∥Σy − Σ̂y

∥∥∥
F
≤ r2,y r2,y =

2R2
y√
Ny

(
2 +

√
2 ln

8

β

)
.

Using the same algebraic manipulations as in Equation (4.18), we can robustify problem (5.13)
as:
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maximize θγ + (1− θ)δ
subject to: γ ∈ R+, δ ∈ R+, a ∈ Rn \ {0}, b ∈ R

− b+ a⊤x̂− r1,x ∥a∥2 ≥ f
−1
αx,os(1− γ)

∥∥∥∥(Σ̂x + r2,xI
)1/2

a

∥∥∥∥
2

b− a⊤ŷ − r1,y ∥a∥2 ≥ f
−1
αy,os(1− δ)

∥∥∥∥(Σ̂y + r2,yI
)1/2

a

∥∥∥∥
2

.

(5.19)

As previously discussed, we can define ωγ and ωδ as in Equation (5.14) and add the constraints
to neglect b obtaining:

maximize θγ + (1− θ)δ
subject to: γ ∈ R+, δ ∈ R+, a ∈ Rn \ {0}

a⊤ (x̂− ŷ)− ∥a∥2 (r1,x + r1,y) ≥ ωγ

∥∥∥∥(Σ̂x + r2,xI
)1/2

a

∥∥∥∥
2

+ ωδ

∥∥∥∥(Σ̂y + r2,yI
)1/2

a

∥∥∥∥
2

.

(5.20)
Optimal b can be computed once we get the optimal solution a∗, ω∗

γ , ω
∗
δ as:

b∗ = a∗⊤ŷ + r1,y ∥a∗∥2 + ωδ

∥∥∥∥(Σ̂y + r2,yI
)1/2

a∗
∥∥∥∥
2

= a∗⊤x̂− r1,x ∥a∗∥2 − ωγ

∥∥∥∥(Σ̂x + r2,xI
)1/2

a∗
∥∥∥∥
2

.

(5.21)

Since the constraint is still positively homogeneous in a and the problem is equivalent to

maximize θγ + (1− θ)δ
subject to: γ ∈ R+, δ ∈ R+, a ∈ Rn \ {0}

1 ≥ ωγ

∥∥∥∥(Σ̂x + r2,xI
)1/2

a

∥∥∥∥
2

+ ωδ

∥∥∥∥(Σ̂y + r2,yI
)1/2

a

∥∥∥∥
2

a⊤ (x̂− ŷ)− ∥a∥2 (r1,x + r1,y) = 1

(5.22)

From Lemma 5.3.1, the solution is attained at the boundary of the feasible region where the
inequality is tight. Thus, by noting that ωγ is a positively increasing function of γ, by choos-
ing

ωγ =

1− ωδ

∥∥∥∥(Σ̂y + r2,yI
)1/2

a

∥∥∥∥
2∥∥∥∥(Σ̂x + r2,xI

)1/2
a

∥∥∥∥
2

,
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and by fixing δ = δ̄, the optimization problem becomes

maximize

1− ωδ

∥∥∥∥(Σ̂y + r2,yI
)1/2

a

∥∥∥∥
2∥∥∥∥(Σ̂x + r2,xI

)1/2
a

∥∥∥∥
2

subject to: a ∈ Rn \ {0}
a⊤ (x̂− ŷ)− ∥a∥2 (r1,x + r1,y) = 1,

(5.23)

which is a FP similar to the BMPM. Since we the probability that x̂ = ŷ is null, we can consider
a ∈ Rn while enforcing a ̸= 0 with the equality constraint. Thus, it is a concave FP and, thus,
every local optimum is a global optimum, see Schaible [39]. It can be rewritten as a concave
program using similar transformations to the ones in Section 5.2. According to [40, Equation
(7)], by defining the transformation

p :=
1∥∥∥(Σx + r2,xI)

1/2
a
∥∥∥
2

a, t :=
1∥∥∥(Σx + r2,xI)

1/2
a
∥∥∥
2

,

the solution p∗ and t∗ of

maximize t− ωδ̄

∥∥∥∥(Σ̂y + r2,yI
)1/2

p

∥∥∥∥
2

subject to: p ∈ Rn \ {0}, t ∈ R
p⊤(x̂− ŷ)− ∥p∥2 (r1,x + r1,y) = t∥∥∥∥(Σ̂x + r2,xI

)1/2
p

∥∥∥∥
2

≤ 1

t > 0,

gives an optimal solution to (5.23), with:

a∗ =
p∗

t∗
.

The optimal value of ωγ is given by:

ω∗
γ =

1− ωδ̄

∥∥∥∥(Σ̂y + r2,yI
)1/2

a∗
∥∥∥∥
2∥∥∥∥(Σ̂x + r2,xI

)1/2
a∗
∥∥∥∥
2

.

The optimal values of b∗ and γ∗ can be computed from ω∗
γ using Equations (5.21) and (5.15)

respectively.

Then, as we did in Section 5.3, we can update iteratively δ using a line search QI algorithm until
we find the optimal one giving the best worst-case accurancy.
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5.5 Benchmarks

We evaluate the MPM and the MEMPM algorithms against the standard SVM classifier on
two UCI machine learning repository datasets: Ionosphere and Prima diabetes. The prior prob-
abilities θ and 1 − θ are estimated from the proportion of data labeled as one class over the
other one. The used mean and covariance matrix of each class is the plug-in estimate from
data. The α-unimodality index is chosen equal to the dimension of the data vectors for both
classes.

Each dataset was randomly partitioned into 90% training and 10% test sets. The reported results
are averaged over 50 random partitions. In Tables 5.1 and 5.2 there is a comparison of the results
using each algorithm with the estimated Test Set Accuracy (TSA).

MEMPM

γ δ TSAx TSAy θγ + (1− θ)δ TSA

Ionosphere 44.98± 0.4% 94.73± 0.2% 67.77± 0.4% 99.02± 0.3% 76.89± 0.1% 87.64± 0.3%
Prima diabetes 18.39± 0.3% 66.20± 0.2% 57.77± 1.3% 86.35± 0.4% 49.53± 0.0% 76.25± 0.6%

Table 5.1: MEMPM classifier benchmarks.

The MPM approach has the worst performance together with the worst-case accuracy estimate
γ for both datasets because it enforces the same γ for both classes. On the other hand, the
MEMPM approach produces worst-case accuracy bounds much closer to the TSA for each class.
However, in the Prima diabetes dataset, the worst-case estimates are still far from the empirical
ones. This depends on the chosen α unimodality index which is probably lower than the one we
assumed.

We notice that, for these benchmark data, using plug-in estimates of mean and covariance ma-
trix without the robust formulation is successful because the TSA is always higher than the
estimated one for both classes. However, this does not always happen in general and hav-
ing poor mean and covariance estimates can produce a TSA lower than the estimated bound.

MPM SVM

γ TSA TSA

Ionosphere 63.19± 0.1% 84.16± 1.2% 87.46± 0.5%
Prima diabetes 32.13± 0.0% 75.89± 0.3% 77.11± 0.1%

Table 5.2: MPM and SVM classifiers benchmarks.

Finally, it is important to remark that this MEMPM implementation improves the worst-
case accuracy estimates for both classes compared to the ones in [30]. This is due to the
fact that Huang et al. did not take into account unimodality of the distributions (α = ∞).



6 Control

Another interesting application of optimization problems reformulations in Chapter 4 is the
control of dynamical systems. In this Chapter we will compare the derived joint chance con-
strained programs reformulations with the Scenario Approach in both open and closed loop
control schemes in water reservoir management setting.

6.1 Water Reservoir Problem

The model has been introduced by Andrieu et al. in [1] and modified by Zymler in [50] in a distri-
butionally robust optimization setting. We extend this model to multiple customers.

The system consists of a single water reservoir with m clients, see Figure 6.1. The water released
by the water reservoir at each time stage k is defined as uk ∈ Rm and is used to produce
electrical energy that is sold to each customer. The water level inside the reservoir is xk ∈ R+.
The system’s uncertainty comes from precipitations wk ∈ R that increase the water level. The
model dynamics can be written as

xk+1 = Axk +Buk + Fwk, A = 1, B = −1⊤, F = 1.

We will keep notation with A, B and F because the reformulation we will derive could be applied
also to more complex systems by directly changing the matrices describing the dynamics. The
initial water level is denoted by x(0).

Figure 6.1: Water Reservoir
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The control problem can be described in a Model Predictive Control (MPC) fashion as fol-
lows:

maximize
T−1∑
k=0

c⊤k uk

subject to: uk ∈ Rm, k = 1, . . . , T − 1

uk ≥ umin1, k = 0, . . . , T − 1

xk+1 = Axk +Buk + Fwk, k = 0, . . . , T − 1

x0 = x(0)

P
(
xk ≤ ub
xk ≥ lb

)
≥ 1− ϵ, k = 1, . . . , T

(6.1)

The objective is to maximize the profit by selling energy over the period T while ensuring that
each customer gets at least umin energy at each stage k. Moreover, the water level has to
be within the upper bound ub and the lower bound lb at each time stage in the horizon with
probability at least 1− ϵ.

It is possible to rewrite the problem in vector form in order to make the notation easier. We
define

x =
[
x1, . . . , xT

]⊤
, u =

[
u0, . . . , uT−1

]⊤
, w =

[
w0, . . . , wT−1

]⊤
, c =

[
c0, . . . , cT−1

]⊤
,

as the state, the decision, the uncertainty and the cost vectors respectively. We also introduce
matrices

A =

 A...
AT

 , B =


B 0 . . . 0
AB B 0 . . . 0
...

. . .
. . .

...
0

AT−1B AT−2B · · · B



F =


F 0 . . . 0
AF F 0 . . . 0
...

. . .
. . .

...
0

AT−1F AT−2F · · · F


system dynamics, can be trewritten as:

x = Ax0 + Bu+ Fw,

The single state xk in the horizon can be described using intermediate vectors

xk =
[
x1, . . . , xk

]⊤
, uk =

[
u0, . . . , uk−1

]⊤
, wk =

[
w0, . . . , wk−1

]⊤
,

and the rows of matrices A,B and F defined as follows:

Ak = Ak, Bk =
[
Ak−1B Ak−2B . . . B

]
, Fk =

[
Ak−1F Ak−2F . . . F

]
.

Then, we can write xk as:

xk = Akx0 + Bkuk + Fkwk. (6.2)



6.2 Reformulations 75

Hence, by plugging (6.2) inside problem (6.1) and by using the vector formulations explained
above, (6.1) can be rewritten as:

maximize c⊤u

subject to: u ∈ RmT

u ≥ umin1

P
(
Fkwk ≥ ub−Akx(0)− Bkuk

−Fkwk ≥ −lb+Akx(0) + Bkuk

)
≥ 1− ϵ, k = 1, . . . , T.

(6.3)

This is a LP with T −1 different chance constraints, each of them including two joint chance con-
straints. Thus, it can be analyzed with the methods described in Chapter 4.

6.2 Reformulations

Each chance constraint at time k depends on the uncertainty vector wk ∈ Rk. Hence, if the hori-
zon increases, also the dimension of the uncertainty inside the chance constraints related to the
last stages in the horizon T increases. We will denote by µk ∈ Rk and Σk ∈ Sk+ the mean and the

covariance ofwk. We haveNk samples of eachwk:
{
w

(1)
k , . . . ,w

(N)
k

}
.

If we assume the uncertainty wk acting on the single stage bounded by a ball in R of radius
R, we can bound each uncertainty vector wk by a ball in Rk of radius Rk =

√
kR. Then,

the robustifications of Bonferroni Approximation (BA) and Minimum Volume Ellipsoid Approx-
imation (MVEA) in Section 4.1.3.1 can be applied to problem (6.3) obtaining the following
LP:

maximize c⊤u

subject to: u ∈ RmT

u ≥ umin1

ub−Akx(0)− Bkuk −Fkµk − r1,k ∥Fk∥2 ≥ ρ
∥∥∥(Σk + r2,kI)

1/2 Fk

∥∥∥
2

k = 1, . . . , T

− lb+Akx(0) + Bkuk + Fkµk − r1,k ∥Fk∥2 ≥ ρ
∥∥∥(Σ + r2,kI)

1/2 Fk

∥∥∥
2

k = 1, . . . , T,

(6.4)
where r1,k and r2,k are the radiuses defined in Theorem 4.1.1 with respect to the empirical mean

µ̂k and covariance Σ̂k of uncertainty vector wk. Please note that, at each time stage k, the min-
imum number of samples of wk required by Theorem (4.1.1) is:

Nk >

(
2 +

√
2 ln

4

β

)2

.

This formulation is simpler than the SOCP we would expect from Equation (4.12) because in this
case ã(x) defined in Chapter 4 is constant. This happens because the control input has no feed-
back and acts in open-loop. Hence, the optimization is even faster.

Coefficient ρ is the one defined in Table 4.1 depending on the approximation used: BA or MVEA.
Please note that this formulation can be used within the IEA. The solution u to problem (6.4)
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will satisfy each of the chance constraints in (6.3) with probability at least 1− ϵ with confidence
1− β.

Alternatively, by using the Multivariate Sampled Chebyshev Approximation (MSCA) from Sec-
tion 4.1.3.2, it is possible to reformulate problem (6.3) using directly plug-in estimates µ̂k and
Σ̂k obtaining:

maximize c⊤u

subject to: u ∈ RmT

u ≥ umin1

ub−Akx(0)− Bkuk −Fkµ̂k ≥ λk
∥∥∥Σ̂1/2

k Fk

∥∥∥
2
, k = 1, . . . , T

− lb+Akx(0) + Bkuk + Fkµ̂k ≥ λk
∥∥∥Σ̂1/2Fk

∥∥∥
2
, k = 1, . . . , T,

(6.5)

where, from Equation (4.24)

λk =

√
k(N2 − 1)

N(ϵN − k)
, k = 1, . . . , T,

and the minimum number of samples ofwk required at each stage is:

Nk >
k

ϵ
, k = 1, . . . , T.

Also in this case, we get a LP instead of a SOCP because the input does not include any
feedback. The optimization is, thus, faster. The solution to problem (6.5) will have the
following probabilistic guarantees: optimal u will violate the chance constraint of problem

(6.3) at each stage k defined by the N + 1-th sample w
(N+1)
k , with probability lower than

ϵ.

6.3 Benchmarks

In this section we compare the algorithms in simulation. The chosen uncertainty wk is an uniform
distribution with mean 2 and support length 0.1. We set ub = 9 and lb = 1.

The tests are executed on a Macbook Pro with Intel 2.8GHz i7 processor and 16GB of RAM. We
used solver MOSEK interfaced with MATLAB 2014a. The obtained computation times include
only the solver execution and sampling times, but not the problem formulation.

6.3.1 Open-loop

We compare in open loop four different data-driven approaches with ϵ = 0.1, β = 0.01 and the
same number of samples Nk per stage:

• Bonferroni Approximation (BA) assuming α =∞

• Bonferroni Approximation (BA) assuming α = 1

• Minimum Volume Ellipsoid Approximation (MVEA) assuming α = 1



6.3 Benchmarks 77

• Iterative Ellipsoid Approximation (IEA) assuming α = 1

• Scenario Approach (SA) with two layers of probability

The results are averaged 102 times and the behavior is displayed in in Figure 6.2. The SA water
level is the closest one to the boundaries while the others are more conservative keeping the water
level far from the constraints.
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Figure 6.2: Water Reservoir open-loop behaviors
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Figure 6.3: Water Reservoir open-loop profits

The obtained profits are displayed in Figure 6.3. The BA provide good results because the
number of joint chance constraints per each stage are only ng = 2. Thus, from what discussed
in Section 4.1.2, it performs better than the MVEA. Moreover, BA with α = 1 improves over
the case when α = ∞ because of the unimodality assumption. The MVEA not only provides
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worse performances with respect to the BA, but it provides the worst performances between all
the compared methods. This happens because it depends on the dimension of the uncertainty
ωk that grows along the horizon until dimension T . The IEA, while still optimizing over the
ellipsoid, provides better performances than the BA and the MVEA because of the iterative
reshaping explained in Section 4.1.2. The SA shows best performances in terms of profits.
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Figure 6.4: Water Reservoir open-loop computation times

Computation times are displayed in Figure 6.4. Since both the BA and MVEA solve a LP,
on average their computation time is the same. Please note that these methods can all be
solved within less than 20ms and thus, they could be applied to systems with fast dynamics like
quadrocopters or autonomous race cars. The SA shows higher computation times due to the
fact that it solves a big LP with Nk constraints per stage. The IEA is not shown in the table
because it provides the worst computation time of 5 sec and it cannot be displayed correctly in
scale with the other methods. Please note that optimizing the solution times for these algorithms
is beyond the scope of this work, and these computation times could be greatly improved for
each algorithm.

6.3.2 Closed-loop

All the approaches of the previous section could be compared also in closed loop, but their prof-
its would then be influenced by the closed-loop interaction of the controller with system dynamics.
For this reason, even though important, this comparison is not fair.

In this section we will compare only two probabilistic methods we presented with one layer of
probability ϵ = 0.1 and the same samples Nk at each stage:

• Multivariate Sampled Chebyshev Approximation (MSCA)

• Scenario Approach (SA)
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The results are averaged 102 times and the behavior displayed in Figure 6.5. Compared to the
open-loop results in Figure 6.2, these benchmarks show a water level behavior much closer to
the boundaries because the information about the current position is updated at each stage k
and the input computed acccordingly.
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Figure 6.5: Water Reservoir closed-loop results

The profits for both methods are shown in Figure 6.6. The MSCA outperforms the SA. It is
important to underline, however, that at each stage k, the SA has a better open-loop performance
that decreases when closing the loop. This is one of the cases where a more conservative approach
in open-loop (the MVEA) performs in a better way when the loop is closed. Please note this is
does not happen always in general.
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Figure 6.6: Water Reservoir closed-loop profits

The computation times are shown in Figure 6.7. Since the samples required for these approaches
with one layer of probability are lower than the ones for the two layers, the computation times are
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Figure 6.7: Water Reservoir closed-loop computation times

reduced. The MSCA does not change complexity, so on average it requires the same computation
time as the other methods in Figure 6.4. The SA, on the other hand, reduce the computational
effort to 21.2ms.



7 Conclusions

We presented different methods to reformulate uncertain optimization programs with chance
constraints. By extending Gauss inequalities first to the α-unimodality framework and then to
multiple dimensions, we derived linear chance constraints reformulations. We exactly reformu-
lated distributionally robust single linear chance constraints as Second-Order Cone (SOC) ones
using α-unimodality and then, we extended this result to multiple chance constraints using two
approaches. The first one is based on Bonferroni inequality dealing with each chance constraint
independently and the second one makes use of ellipsoidal uncertainty sets having probabilistic
guarantees. Moreover, we generalized these results to data-driven settings using two approaches.
The first method is based on an extension of Hoeffding’s inequality for vectors and matrices in
order to describe and include in the SOCPs our degree of knowledge of the distribution mo-
ments. The second method makes use of a generalization of the empirical Chebyshev inequality
in multiple dimensions.

Afterwards, these methods are compared against state of the art approaches in two different
research fields.

We applied single linear chance constrained reformulations to the Machine Learning problem
of linear binary classifications in two real world datasets and compared the solution to the
standard Support Vector Machines (SVMs). The results showed a very similar Test Set Accuracy
(TSA) on cross-validation data between the two methods. In addition, from the structure of our
optimization problem, the obtained results come with probabilistic guarantees of worst-case
misclassification and do not require any additional cross-validation test as usually done with
SVMs.

Multiple linear chance constraints reformulations were applied to a water reservoir management
example formulated as an MPC control problem. The results are compared to the Scenario
Approach (SA) in both open and closed-loop. In open-loop, even though the SA showed better
performance in term of cost function, our methods gave slightly more conservative solution while
keeping the computation time within 20ms per optimization. Moreover, the results from the
closed-loop comparison not only showed better computational performances, but also a better
cost function outperforming the SA.

7.1 Directions for Future Work

There are several ways to improve and generalize our results.

Our methods assumed to know the α-unimodality index being usually equal to the dimension
of the uncertainty. Even though this case corresponds to the intuitive notion of unimodality in
multiple dimensions, in practice distributions might have a smaller α that would lead to less
pessimistic chance constrained approximations. It would be interesting to develop algorithms to
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estimate the minimum α from the available historical data and to include this information in
our reformulations.

In addition, the empirical Chebyshev inequality extension we derived does not require any as-
sumption on the distribution. Even though this result is remarkably general, the unimodality
assumption would definitely improve the related bounds. Thus, combining an empirical estimate
of α to the empirical Chebyshev inequality taking into account unimodality, would give differ-
ent data-driven results that could outperform the proposed multivariate empirical Chebyshev
inequality.

Finally, other kinds of uncertainty sets (e.g. boxes) with probabilistic guarantees could be ana-
lyzed and compared to the ellipsoidal ones used in this work. This would give us the freedom
to choose between several kinds of sets using the ones performing better in the considered opti-
mization problem.



Appendices





A Mathematical tools for Linear Matrix
Inequalities

A.1 Schur Complement

The Schur complements arise in several contexts, and appear in many formulas and theorems in a
wide range of scientific fields. The basic definition is the following (see [9]):

Definition A.1.1 (Schur Complement). Consider a matrix X ∈ Sn partitioned as:

X =

[
A B
B⊤ C

]
, (A.1)

where A ∈ Sk. If A is invertible, the matrix

S = C −B⊤A−1B (A.2)

is called the Schur complement of A in X.

The Schur complement is useful to determine the conditions of positive definiteness or semidefi-
niteness of block matrix X. In particular:

X ≻ 0 ⇐⇒ A ≻ 0 and S ≻ 0, (A.3)

and
A ≻ 0 =⇒ X ⪰ 0 ⇐⇒ S ⪰ 0. (A.4)

A.2 S-procedure

In this work there are often constraints enforcing a quadratic function (or quadratic form) to be
negative whenever other quadratic functions (or quadratic forms) are all negative. This condition
can be usually casted into a LMI, see [8]:

Theorem A.2.1 (S-procedure). Let Φ1, . . . ,Φp be quadratic functions of the variable ζ ∈ Rn:

Φi(ζ) := ζ⊤Aiζ + 2b⊤i ζ + ci, i = 0, . . . , p, (A.5)

where Ai = A⊤
i . Then, the condition

Φ0(ζ) ≥ 0 ∀ζ such that Φi(ζ) ≥ 0, i = 1, . . . , p, (A.6)

holds if

∃τ1, . . . , τp ≥ 0 such that ∀ζ, Φ0(ζ)−
p∑

i=1

τiΦi(ζ) ≥ 0. (A.7)
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Using LMI formulation, condition (A.7) can be rewritten as:[
A0 b0
b⊤0 c0

]
−

p∑
i=1

τi

[
Ai bi
b⊤i ci

]
≥ 0, i = 1, . . . , p. (A.8)

Remark If p = 1 and ∃ ζ0 such that Φ1(ζ0) > 0, then conditions (A.6) and (A.7) are equivalent.



B Ellipsoid Representations

Ellipsoids are convex sets that are widely used in robust optimization. We parametrize them in
four different ways as done in [9].

The first is the most common one:

E1 = {x | (x− xc)⊤P−1(x− xc) ≤ 1} (B.1)

where P = P⊤ ≻ 0. The vector xc ∈ Rn is the center of the ellipsoid while the matrix P
determines how far the ellipsoid extends in every direction from xc. The lengths of the semi-
axes of E are given by the square roots of the eigenvalues of P , while the relative eigenvectors
determine the directions. The volume of the ellipsoid is computed, from this parametrization,
as:

Vol(E1) =
4

3
π
√
detP (B.2)

The second parametrization is obtained by rewriting the following inequality

(x− xc)⊤P−1(x− xc) ≤ 1 ⇐⇒ ∥P−1/2(x− xc)∥2 ≤ 1

⇐⇒ ∥P−1/2︸ ︷︷ ︸
A

x− P−1/2xc︸ ︷︷ ︸
b

∥2 ≤ 1

⇐⇒ ∥Ax− b∥2 ≤ 1

Hence, the ellipsoid parametrization becomes:

E2 = {x | ∥Ax− b∥2 ≤ 1} (B.3)

where A⊤ = A = P−1/2 ≻ 0. From the definition of A, we know that detP = (detA−1)2. Thus,
the volume of the ellipsoid computed with this parametrization is:

Vol(E2) =
4

3
π detA−1. (B.4)

The third ellipsoid parametrization can be obtained by rearranging the inequality used for the
previous ones, in another way:

(x− xc)⊤P−1(x− xc) ≤ 1 ⇐⇒ ∥P−1/2(x− xc)︸ ︷︷ ︸
u

∥2 ≤ 1 ⇐⇒ ∥u∥2 ≤ 1,

where
u = P−1/2(x− xc) and then x = xc + P 1/2︸︷︷︸

B

u = xc +Bu.

The shape matrix is nowB = P 1/2 ≻ 0. The parametrization, in this case, is:

E3 = {xc +Bu | ∥u∥2 ≤ 1}. (B.5)
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From the definition of B, we have that detP = (detB)2. Thus, the volume with respect to this
parametrization is

Vol(E3) =
4

3
π detB. (B.6)

The fourth parametrization is useful when it is necessary to describe the ellipsoid with convex
quadratic inequalities. By manipulating representation (B.3) we get:

∥Ax− b∥2 ≤ 1 ⇐⇒ x⊤A⊤A︸ ︷︷ ︸
C

x+2 (−A⊤b)⊤︸ ︷︷ ︸
d⊤

x+ b⊤b− 1︸ ︷︷ ︸
e

≤ 0 ⇐⇒ x⊤Cx+2d⊤x+ e ≤ 0, (B.7)

where C = A⊤A = P−1 ≻ 0. The parametrization, in this case is:

E4 = {x | x⊤Cx+ 2d⊤x+ e ≤ 0} (B.8)

From the definition of C, detP = detC−1. In this way the ellipsoid is represented as the level
sets of a quadratic function. The volume, then, becomes:

Vol(E4) =
4

3
π
√
detC−1. (B.9)



Notation

Probability

Ω space of elementary events

F σ-algebra of subsets of Ω

Q probability measure on (Ω,F)
P probability distribution (Rn,B (Rn))

E expected value operator

Var variance operator

δx Dirac distribution in x

Sets

N the natural numbers

Z the integer numbers

R the real numbers

R+ the nonnegative real numbers

R++ the positive real numbers

Rn the vectors with real numbers components with dimension n× 1

Rn×n the matrices with real numbers components with dimension n× n
Sn the symmetric matrices in Rn×n

Sn+ the symmetric positive semidefinite matrices in Rn×n

Sn++ the symmetric positive definite matrices in Rn×n

|A| cardinality of set A

1A indicator function of set A

Ac complement of set A: Rn \A
(a, b) open line segment between a and b, with a, b ∈ Rn

[a, b] closed line segment between a and b, with a, b ∈ Rn

Vol(A) volume of set A

Inequalities

A ≤ B element-wise inequality between A and B



90 Notation

A < B strict element-wise inequality between A and B

A ⪯ B conic inequality between symmetric matrices: B −A ⪰ 0

A ≺ B strict conic inequality between symmetric matrices: B −A ≻ 0

Vectors and Matrices

In identity matrix in Rn×n

1 vector of ones of appropriate dimension

A⊤ transpose of the matrix A

tr(A) trace of the matrix A

Ai ith row of the matrix A

⟨A,B⟩ inner product between matrices A and B defined as ⟨A,B⟩ := tr (AB)

Other notation

⌈t⌉ smallest integer not less than t

⌊t⌋ largest integer not more than t

Acronyms

Probability Theory

PDF Probability density function

CDF Cumulative distribution function

MVE Minimum Volume Ellipsoid

Optimization Programs

LP Linear Program(ming)

QP Quadratic Program(ming)

SOC Second-Order Cone

SOCP Second-Order Cone Program(ming)

FP Fractional Program(ming)

SDP Semidefinite Program(ming)

LMI Linear Matrix inequality

SOS Sum-Of-Squares
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Uncertain Programs Approximations

BA Bonferroni Approximation

MVEA Minimum Volume Ellipsoid Approximation

IEA Iterative Ellipsoid Approximation

MSCA Multivariate Sampled Chebyshev Approximation

Others

SA Scenario Approach

SVM Support Vector Machine

MPM Minimax Probability Machine

BMPM Biased Minimax Probability Machine

MEMPM Minimum Error Minimax Probability Machine

QI Quadratic Interpolation

TSA Test Set Accuracy

MPC Model Predictive Control
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[26] C. E. Garćıa, D. M. Prett, and M. Morari. Model predictive control: Theory and practice
- A survey. Automatica, 25(3):335–348, May 1989.

[27] C. F. Gauss. Theoria Combinationis Observationum Erroribus Minimis Obnoxiae, Pars
Prior. Commentationes Societatis Regiae Scientiarum Gottingensis Recentiores, 33:321–327,
1821.

[28] J. Goh and M. Sim. Distributionally Robust Optimization and Its Tractable Approxima-
tions. Operations Research, 58(4-part-1):902–917, Apr. 2010.

[29] K. Huang, H. Yang, I. King, and M. R. Lyu. Learning Classifiers from Imbalanced Data
Based on Biased Minimax Probability Machine. Proceedings of the 2004 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., 2:558–
563, 2004.

[30] K. Huang, H. Yang, I. King, M. R. Lyu, and L. Chan. The Minimum Error Minimax
Probability Machine. The Journal of Machine Learning Research, 5:1253–1286, 2004.

[31] P. Kali and S. W. Wallace. Stochastic programming. Wiley, Chichester, 1994.

[32] G. Lanckriet, L. El Ghaoui, C. Bhattacharyya, and M. I. Jordan. A Robust Minimax
Approach to Classification. The Journal of Machine Learning Research, 3:555–582, 2002.

[33] J. B. Lasserre. Global optimization with polynomials and the problem of moments. SIAM
Journal on Optimization, 11(3):796–817, 2001.

[34] A. Nemirovski and A. Shapiro. Convex Approximations of Chance Constrained Programs.
SIAM Journal on Optimization, 17(4):969–996, Dec. 2006.

[35] R. R. Phelps. Lectures on Choquet’s Theorem, volume 1757. Springer, 2001.

[36] I. Popescu. A Semidefinite Programming Approach To Optimal Moment Bounds for Convex
Classes of Distributions. Mathematics of Operations Research, 30(3):632–657, 2005.



Bibliography 95

[37] R. Rockafellar and S. Uryasev. Optimization of conditional value-at-risk. Journal of risk,
pages 21–41, 2000.

[38] J. G. Saw, M. C. K. Yang, and T. C. Mo. Chebyshev Inequality With Estimated Mean and
Variance. The American Statistician, 38(2):130–132, 1984.

[39] S. Schaible. Fractional programming. Zeitschrift für Operations Research, 27(1):39–54, 1983.

[40] S. Schaible and J. Shi. Recent developements in fractional programming: single ratio and
max-min case. Nonlinear analysis and convex analysis, (2):1–11, 2004.

[41] G. Schildbach, L. Fagiano, and M. Morari. Randomized Solutions to Convex Programs with
Multiple Chance Constraints. SIAM Journal on Optimization, 23(4):2479–2501, Jan. 2013.

[42] A. Shapiro. On duality theory of conic linear problems. Nonlinear Optimization and its
Applications, 57:135-155, 2001.

[43] J. Shawe-Taylor and N. Cristianini. Estimating the moments of a random vector with
applications. Proceedings of GRETSI Conference, I:47–52, 2003.

[44] A. L. Soyster. Convex Programming with Set-Inclusive Constraints and Applications to
Inexact Linear Programming. Operations Research, 21(5):1154–1157, 1973.

[45] B. P. G. Van Parys, P. J. Goulart, and D. Kuhn. Generalized Gauss Inequalities via Semidef-
inite Programming. optimization-online.org, 2014.

[46] B. P. G. Van Parys, D. Kuhn, P. J. Goulart, and M. Morari. Distributionally robust control
of constrained stochastic systems. optimization-online.org, 2013.

[47] L. Vandenberghe and S. Boyd. Semidefinite Programming. SIAM Review, 38(1):49–95, Mar.
1996.

[48] L. Vandenberghe, S. Boyd, and K. Comanor. Generalized Chebyshev Bounds via Semidefi-
nite Programming. SIAM Review, 49(1):52–64, Jan. 2007.

[49] X. Zhang, S. Grammatico, G. Schildbach, P. J. Goulart, and J. Lygeros. On the Sample Size
of Random Convex Programs with Structured Dependence on the Uncertainty. Automatica
(submitted), 2014.

[50] S. Zymler, D. Kuhn, and B. Rustem. Distributionally robust joint chance constraints
with second-order moment information. Mathematical Programming, 137(1-2):167–198, Nov.
2011.


	Introduction
	Data-driven Tractable Reformulations
	Organization
	Mathematical Preliminaries

	Theoretical Results
	bold0mu mumu Dudley2002-Unimodality
	Unimodality
	Choquet Representations
	Unimodality Characterization Using a Positive Index

	Probability Bounds and Ellipsoidal Uncertainty Sets
	Moment Problems
	Multivariate Generalized Gauss Inequality
	Dual Program Reformulation
	Primal Program Reformulation

	Univariate Generalized Gauss Inequality
	Double-Sided Problem
	One-Sided Formulation
	Inverse Bounds

	Minimum Volume Ellipsoid Containing a Certain Amount of Probability Mass
	Multivariate Gauss Inequality over Ellipsoids
	Multivariate Ellipsoidal Sampled Chebyshev Inequality
	Proof of the Inequality


	Chance Constrained Linear Programs
	Distributionally Robust Approach
	Single Linear Chance Constraint
	Multiple Linear Chance Constraints
	Bonferroni Approximation
	Ellipsoid Approximation

	Moment Uncertainty
	Reformulations Using Moments Robustification
	Multivariate Sampled Chebyshev Approach


	Scenario Approach


	Applications
	Machine Learning
	Minimax Probability Machines (MPMs)
	Biased Minimax Probability Machines (BMPMs)
	Minimum Error Minimax Probability Machines (MEMPMs)
	Moment Uncertainty
	Benchmarks

	Control
	Water Reservoir Problem
	Reformulations
	Benchmarks
	Open-loop
	Closed-loop



	Conclusions
	Directions for Future Work

	Appendices
	Mathematical tools for Linear Matrix Inequalities
	Schur Complement
	S-procedure

	Ellipsoid Representations

	Notation
	Bibliography

