Embedded Mixed-Integer Quadratic Optimization
Using the OSQP Solver

Bartolomeo Stellato, Vihangkumar V. Naik, Alberto Bemporad, Paul Goulart and Stephen Boyd

Abstract— We present a novel branch-and-bound solver for
mixed-integer quadratic programs (MIQPs) that efficiently
exploits the first-order OSQP solver for the quadratic program
(QP) sub-problems. Our algorithm is very robust, requires
no dynamic memory allocation and is division-free once an
initial factorization is computed. Thus, it suitable for embedded
applications with low computing power. Moreover, it does not
require any assumption on the problem data such as strict
convexity of the objective function. We exploit factorization
caching and warm-starting to reduce the computational cost
of QP relaxations during branch-and-bound and over repeated
solutions of parametric MIQPs such as those arising in em-
bedded control, portfolio optimization, and machine learning.
Numerical examples show that our method, using a simple high-
level Python implementation interfaced with the OSQP solver,
is competitive with established commercial solvers.

I. INTRODUCTION
A. Problem formulation

We are interested in solving the following MIQP

minimize %mTPx +qTz
subject to | < Ax < u, (1)
r, €7, Viel

with respect to the decision vector x € R™. The objective
function is defined by the symmetric positive semidefinite
matrix P’ € S and vector ¢ € R™, and the linear constraints
by the matrix A € R™*"™ and vectors [€ (RU{—o00})™
and v € (RU{+00})". The set I denotes the elements
of z constrained to take integer values, with p := |I] their
total number. We will refer to the cost function of (1) as
f(@) = 32" Pz +q"x.

Problems arising in many application domains can be ex-
pressed in the form (1), including portfolio optimization [1],
[2], [3], hybrid vehicle control [4], regressor selection [5],
hybrid model predictive control [6], geolocalization [7], and
power systems [8], [9].

Problem (1) is AP-hard in general since it in-
cludes mixed-integer linear programs (MILPs) as a special
case [10]. Nevertheless, in the last two decades both hard-
ware and software improvements have brought several orders

This work was supported by the People Programme (Marie Curie Actions)
of the European Unions Seventh Framework Programme (FP7/2007-2013)
under REA grant agreement no 607957 (TEMPO).

B. Stellato is with the Massachusetts Institute of Technology, 77 Mas-
sachusetts Ave, Cambridge MA 02139, USA. stellato@mit.edu

P. Goulart is with the University of Oxford, Parks Road, Oxford, OX1 3PJ,
UK. {bartolomeo.stellato, paul.goulart}@eng.ox.ac.uk

V. V. Naik and A. Bemporad are with IMT Institute for Ad-
vanced Studies Lucca, Piazza S. Francesco 19, 55100 Lucca, Italy.
{vihangkumar.naik, alberto.bemporad}@imtlucca.it

S. Boyd is with the Department of Electrical Engineering, Stanford
University, Stanford CA 94305, USA. boyd@stanford.edu

of magnitude improvements in computation time [11], [12].
However, state-of-the art-solvers are still not well-suited for
solving MIQPs on embedded platforms with low memory
resources.

B. Solution methods

There are many methods for computing the optimal so-
Iution to (1) exactly [13], [14]. When the set of discrete
variables is finite, the simplest approach is exhaustive-search,
consisting of the enumeration of all possible integer combi-
nations. The branch-and-bound algorithm instead searches
for the optimal solution over a tree by repetitively partition-
ing the feasible region of integer variables into sub-domains.
This technique was first introduced in the 1960s [15] to
solve MILPs and later extended to mixed-integer nonlin-
ear programs (MINLPs) [16]. Branch-and-cut [17] meth-
ods combine the benefits of branch-and-bound with cutting
plane [18], [19] methods by iteratively introducing additional
constraints to reduce the feasible region and thereby the num-
ber of nodes explored in the search tree. Other approaches
such as outer approximation or generalized Benders’ decom-
position exploit the structure of the problem by alternating
between the solution of a convex relaxation and of an MILP
containing the feasible region. However, branch-and-bound
is generally considered the most efficient algorithm available
to solve problems of the form (1) [20], and is currently
implemented in most commercial solvers [21].

Several heuristics have been proposed to compute subop-
timal solutions to problem (1) when there is insufficient time
or computing power to solve it to optimality. The relax-and-
round heuristic solves a continuous relaxation of the MIQP
and then rounds the fractional components to the closest
integers. More advanced heuristics such as the feasibility
pump [22] search for a solution by iteratively solving linear
program (LP). Recently, an heuristic based on the alternating
direction method of multipliers (ADMM) [23] has shown
promising timing results relative to commercial solvers in
computing good quality feasible solutions. A similar method
has been proposed together with accelerated dual gradient
projection [24]. The main downside of these heuristics is
that they are not guaranteed to find a good solution, or even
a feasible one.

C. Embedded systems

The main focus of this work is on embedded applications
where the available time and computational power are both
limited and the same problem is solved many times for
varying parameters. In these cases the problem structure can
be exploited to accelerate subsequent solutions.

A significant part of the research on embedded optimiza-
tion to date has focused on tools for convex optimization
problems. Examples include the solvers CVXGEN [25],
ECOS [26] and FiOrdOs [27], OSQP code generation [28]
and the commercial solvers FORCES Pro [29] and ODYS
QP [30]. Significant advances were also obtained by applying
first-order methods to solve optimal control problems on
field-programmable gate arrays (FPGAs) [31], [32].

However, reliable numerical tools are still needed for
solving MIQPs on embedded systems. Some progress has
been made in developing MIQP solvers narrowly tailored to
control applications such as hybrid model predictive control
(MPC), including those based on interior-point optimiza-
tion [33], [29], active set methods [34], [35], and first-order
methods [36], [23]. In [35], [24], general branch-and-bound
solvers based on nonnegative least squares and dual gradient
projection were presented whose performance is competitive
with commercial solvers in relatively small problems, but
they require strict convexity of the objective function. Hybrid
MPC problems usually present a positive semidefinite matrix
P because some of the auxiliary integer variables are not
penalized. Thus, MIQP solvers requiring strict convexity of
the objective function must add a regularization term to P
which lowers the solution accuracy. The solver in [35] has
been recently extended using the QP solver in [37] to avoid
regularization and handle the positive semidefinite case.

D. Contributions

We propose a new robust branch-and-bound algorithm
based on the recently developed solver OSQP [38] to com-
pute the solutions to MIQPs of the form (1).

The OSQP solver is a new robust and efficient ADMM-
based QP solver written in C. It is able to recognize
primal and dual infeasible problems and does not require
any assumption on the problem data apart from convexity.
The OSQP solver is easily warm-started and thus efficiently
employed within branch-and-bound schemes so that only a
limited number of iterations are required to solve each sub-
problem.

The proposed algorithm is an adaptation of the standard
branch-and-bound method to efficiently exploit the linear
algebra operations and robustness of the OSQP solver. Our
approach requires only a single quasi-definite matrix fac-
torization that is then cached and reused in all ADMM
iterations of all QP sub-problems solved during branch-
and-bound. Moreover, the same factorization together with
the current optimal solution can also be reused in subse-
quent optimizations arising in parametric optimization. In
contrast to state-of-the-art MIQP algorithms based on first-
order methods such as [24], our approach does not require
any assumption on problem data such as specific structure,
positive definiteness of matrix P or linear independence of
the constraints.

Our method is suitable for embedded systems since, fol-
lowing an initial matrix factorization that can be performed
offline, it does not require dynamic memory allocation and
is division-free.

We prototyped the algorithm in Python interfacing to
the fast OSQP solver binaries. The code together with the

examples is available at [39]. Numerical results show that
our approach is faster than commercial packages in solving
small/medium-scale MIQPs arising in embedded optimiza-
tion.

II. MIQP SOLVER BASED ON OSQP

The branch-and-bound algorithm computes the optimal
solution z* by exploring the integer combinations in a
tree [40],[14, Sec 3.1]. The search is performed by repeatedly
solving QPs of the form

%:vTPx—l—qTa:
| <Az <wu,
z, < x; < 7Ty,

minimize
subject to

(QP(z, 7))
Viel

Each QP (z,T) is uniquely identified by the lower and upper
bounds (z,T) imposed on the integer variables.

The algorithm starts by solving the continuous relaxation
of (1) at the root node, ie., QP(—o00,00), obtaining a
solution Z and a lower bound f (). If QP(—o00, 00) is primal
or dual infeasible, then MIQP (1) is also primal or dual
infeasible, respectively. If the solution satisfies all of the
integer restrictions it is said to be integer feasible and is
also a global solution of (1). Otherwise, the solution is said
to be fractional. In that case, the algorithm searches over
a tree whose nodes are sub-problems of the form QP (z,Z)
and whose edges are the branching decisions. It is typically
unnecessary to search over all possible integer combinations,
and the popularity of branch-and-bound is due in part to the
fact that some subtrees can be pruned before exploration. We
next briefly describe the branching and pruning process.

Given a problem QP(z,Z) with fractional solution, we
pick a non-integer element z;, ¢ € I, and branch creating
left (—) and right (4+) child nodes with the same variable
bounds (x,7T) as the parent. Then we set

(z7,7;) = (z, 1)) (&, 75) = ([z],%). @)

The lower bounds of both children are initialized with
the lower bound of their parent, so that lower bounds are
monotonically non-decreasing with tree depth. In practice,
we do not maintain the whole tree in memory but keep only
the leaves in the heap H.

Pruning rules allow us to discard tree branches based on
the optimality and feasibility of the current node QP(z,T).
Let us denote the upper bound on the objective value as U
and set it to oo at initialization. Pruning of branches occurs
in three cases:

o If the current node is infeasible, then we prune the
subtree since it contains only infeasible problems.

o If the optimal value f(Z) of the current node is worse
than the current upper bound U, i.e., f(Z) > U, then we
prune the node since any integer solution in the subtree
will not be better than the current best one.

« If the solution to the current node is integer feasible,
then we can prune the entire subtree because it cannot
contain better feasible solutions than Z. Moreover, if it
improves the current upper bound, that is f(Z) < U,
then we can update the optimal solution and the upper
bound with z* < & and U <« f(Z).

Since a good upper bound U allows the pruning of
unnecessary branches, it is useful to find a good quality
feasible solution as quickly as possible. In order to do so, at
each iteration we select a vector & whose elements z; 7 € I
are integer from the solution Z of the current node. If &
satisfies the linear constraints | < AZ < u, then it is feasible
for the original problem (1). If, in addition, f(&) improves
the current upper bound U, we can update the best known
solution and the upper bound with z* < & and U « f(Z).

The complete algorithm description can be found in Al-
gorithm 1. Note that if the QP solver used to solve the

Algorithm 1 MIQP branch-and-bound
initialize U < oo, H + QP (—00, c0)
while H # () do
pick and remove QP(z,Z) from H
Z, f(Z) + solve QP(z,T)
if QP(z,T) is infeasible then
prune current node
else if f(Z) > U then
prune current node
else if T is integer feasible then
U<+ f(&), 2"+ &
fathom nodes in H with lower bound > U
else
choose integer & from =
if & is feasible and f(Z) < U then
U<+ f(&), 2>+ &
fathom nodes in H with lower bound > U
branch node QP (z,T)

sub-problems is able to generate dual-feasible solutions, one
can stop solving the relaxation prematurely as soon as the
corresponding dual cost is larger than the best known upper
bound U [20], [35], [24], [34], [41].

A. Strategic decisions

Algorithm 1 presents three degrees of freedom that can
substantially change its performance depending on the prob-
lem instance.

1) Tree exploration: The way we pick the next
node QP(z,%) to explore from the heap H determines
how the tree exploration progresses. The two most common
strategies are best-bound and depth-first [14]. Best-bound
always chooses the node with the best lower bound, usually
resulting in a small number of nodes explored. Its drawback
is that large amounts of memory are required in general
because, in the worst-case, the whole tree is searched before
a feasible solution is found. In contrast, depth-first always
picks the deepest node (or one of the deepest nodes) in a
tree, with the advantage that the heap H is kept as small
as possible. However, depth-first search typically visits more
total nodes than the best-bound approach. In this work we
use a hybrid approach where depth-first is carried out until
a feasible solution is found. Then best-bound is used to
minimize the number of visited nodes.

2) Branching variable selection: When branching we
must choose amongst the candidate fractional elements of
Z to determine bounds for the new nodes as in (2). The goal

is to maximize the increase in the objective function with
the branching so that it becomes easier to fathom nodes in
the subtrees. In this work we use a maximum fractional part
branching rule, i.e., we select the variable with maximum
integer violation [42], [20]. More sophisticated branching
heuristics like strong branching or pseudocost branching [14]
can be chosen to predict the increase in the value function
in the child nodes, but it is not clear that they improve the
practical performance [20], [43] and we do not employ them.

3) Compute an integer solution: Each time we compute
a relaxed solution Z, we also search for an integer feasible
solution & with the help of a heuristic. The main idea is to
quickly find good upper bounds allowing us to prune as many
nodes as possible [14]. We use nearest-neighbor rounding by
computing a simple rounding of the fractional elements of
z. However, the rounded vector produced by this method
may not be feasible, and more sophisticated heuristics can
be applied to ensure that a feasible solution will be found;
see MILP-based rounding [44] or the feasibility pump [22].
We do not to use these heuristics because they require
solving several LPs that might be more expensive than just
progressing in the tree search, since the required matrix
factorization would be different than the one in Algorithm 2.
Note that in the case of purely binary variables, tailored
schemes such as sum-up-rounding could also be applied [45].

B. The OSQP solver

In order to solve the sub-problems in Algorithm (1), we
require an efficient QP solver able both to compute optimal
solutions or to certify infeasibility. Moreover, the QP solver
should support warm-starting of the solution from parent to
children nodes to exploit the structural similarity between
sub-problems.

The OSQP solver [38] is a new efficient solver based
on the ADMM [46] that fits all the requirements for being
efficiently embedded into a branch-and-bound scheme. The
OSQP solver computes the solution to QPs of the form

minimize
subject to

%.ITP.I‘ +¢7x

| < Az < wu, @)

where the parameters P, q, A, [, u are the same as in prob-
lem (1). Note that every sub-problem (QP(z,T)) can be
written in this form by including the bounds z and T in
the linear constraints.

The OSQP solution procedure can be found in Algo-
rithm 2. Scalars p,0 > 0 are the step-size parameters

Algorithm 2 OSQP solver
given initial values 2°, 2°,9° and parameters p, o,
repeat
P+ol AT [zk+1 oxk —¢q
solve |- i _ig| | k1T ok — Lok
P SR %(kal — M) P
ol aaftl 4 (1 - a)2k
LTI (2P 4 (1 —)2 + %yk
YRl gk S p (aR L 4 (1 — a)zk = 2R)
until termination conditions are satisfied

and a € (0,2) is the relaxation-parameter. The operator
II is the projection onto the element-wise separable set
{z € R™ || < z < u} with the closed-form solution

II(z) = max (min (z,u),1).

The most expensive part of the algorithm is the solution
of the linear system in the first step that is via permuted
sparse LDLT factorization [47] followed by forward and
backward substitution. Since the coefficient matrix in this
linear system is quasi-definite it always has a well-defined
LDLY factorization, with L being a lower triangular matrix
with unit diagonal elements and D a diagonal matrix with
nonzero diagonal elements [48]. Note that the matrix does
not change as it does not depend on the bounds z and T of the
sub-problems defining each node of the branch-and-bound
tree. It must therefore be factorized only once before the
first iteration. This factorization is then cached and used in all
subsequent ADMM iterations. In addition, it does not change
when we solve problem (1) for varying vectors ¢, !, u. The
other algorithm steps are computationally much cheaper and
involve only scalar-vector multiplications, vector additions
and element-wise projections (clipping).

At each iteration, the algorithm produces iterates
(xF, 2%, y*) whose primal and dual residuals are defined as

rr]frim = Azk — 2F

Fawar = P2" +q + ATy".

If problem (3) is solvable, the residuals converge to zero as
k — oo [46]. The algorithm stops when the Euclidean norm
of the residuals is below predefined tolerances ep,i > 0 and
€dual > 0. Note that €p,1im, £4ual are often chosen relative to
the scaling of problem iterates, see [46, Sec. 3.3].

If the problem is primal infeasible, the algorithm produces
a vector v € R™ serving as a certificate of infeasibility, i.e.,

ATy =0, wlvy +1Tv_ <0,

where v; = max(v,0) > 0 and v_ = min(v,0) < 0. On the
other hand, if the problem is dual infeasible, the algorithm
generates a vector s € R™ certifying dual infeasibility, i.e.,

0 li,uiGR
>0 wu;=-+4o0,l; €R.
<0 l;=—-o00,u; €ER

Ps=0, q¢'s<0, (As); =

For more details we refer the reader to [38].

III. NUMERICAL RESULTS

Our algorithm, named miOSQP, has been implemented
in Python and interfaced to the OSQP compiled binaries
from [38]. Timing benchmarks are compared to GUROBI
Optimizer v7.0.2 [21] with the default options on a Mac-
book Pro 2.8GHz Intel Core i7 with 16GB RAM running
Python 3.5. In addition, both algorithms are executed single-
threaded for fairness. The code and all benchmark examples
are available at [39].

TABLE I
TIMINGS IN ms FOR RANDOM MIQPS WITH VARYING n, m AND ¢

miOSQP GUROBI
n m p tavg tmax tOSQP [%] tavg tmax
10 5 2 6.81 54.72 4.60 1.94 3.22
10 100 2 240 3.79 2741 12.43 17.49
50 25 5 4.69 795 39.31 20.19 22.18
50 200 10 52.97 142.93 74.06 110.15 149.42
100 50 2 6.05 9.10 59.16 53.06 72.38
100 200 15 103.03 343.42 68.21 258.66 390.91
150 100 5 38.06 61.45 63.10 263.04 340.43
150 300 20 349.97 700.15 68.40 932.16 1327.71

A. Random MIQPs

We generated random MIQPs with varying dimensions
n,m and number of integer variables p. The entries of
P are computed as P = MM7T where M € R™ " is
generated from the uniform distribution 2/(0,1) with 70%
nonzero elements and the linear part of the cost ¢ with the
normal distribution A/(0,1). The constraints are generated
as A ~U(0,1), I ~U(0,1) —2 and | ~ U(0,1) + 2. Each
problem is solved 10 times, from which we compute both
the average and the maximum execution times. The results
are shown in Table I. miOSQP usually outperforms GUROBI
with up to 7x improvements in computation time. We also
reported the percentage of the miOSQP computation time
used by the inner QP solutions. Depending on the problem
size, the Python overhead can be significant. For example,
when (n,m,p) = (10,5,2) OSQP takes only 4.6 % of the
total computation time and GUROBI turns out to be faster.
This suggests that further speedups could be obtained by
using a low-level branch-and-bound implementation.

B. Power converter control

We consider the hybrid system model of a three-level
voltage source converter driving a medium-voltage induction
machine [9]. The system dynamics can be described as a
discrete-time linear system with integer inputs

Tiy1 = Azy + Buy

where the state z; has dimension 12 representing the in-
ternal motor currents and voltages [9]. The input vector
has dimension 6 including the three semiconductor devices
positions with possible values {—1,0,1} and three addi-
tional binary components required to model the system,
up € {—1,0,1}3 x {0,1}3. We would like to compute the
optimal inputs so that the internal currents track the reference
sinusoids. This can be obtained by solving:

YoVl @) + 4TV (wr)

Tig1 = Axt + Buy

To = Tinit €]
lur — w—1]|oo <1

up € {—1,0,1}3 x {0,1}3

minimize
subject to

where v € (0,1) is a discount factor and I(z;) a quadratic
state penalty cost penalizing the currents’ deviation from the
reference sinusoids. Note that the reference sinusoids are
embedded into the system dynamics so that (4) becomes

a regulation problem. The third constraint is enforced to
avoid shoot-through in the inverter positions (changes from
—1 to 1 or vice-versa) that could damage the components.
The states x; are for ¢ = 0,1,...,7T and the inputs u; for
t =0,1,...,T — 1. The initial state is denoted x;,;;. The
function V represents the final stage cost approximating an
infinite horizon cost.

Since the computational cost grows exponentially with
the horizon length 7', the authors of [9] computed a final
stage cost V' using the approximate dynamic programming
(ADP) approach to shorten the horizon length to 7' = 1
or 2. This allows good control performance while keeping
the number of input combinations manageable to enable
exhaustive search. This technique becomes prohibitive for
longer horizons because the number of input combinations
grows exponentially with 7. By using our proposed approach
we show that the computation time can be kept in the ms
time-scale even with longer horizons.

By eliminating the states, problem (4) can be rewritten in
the form (1) with all variables being integer, i.e., n = p, and
solved with miOSQP.

We performed closed-loop simulations for horizons
T=1,2,...,5 for 3 periods each; one for reaching the
steady state behavior and two for the actual simulation.
Each period has 800 time steps. The computation times are
averaged over all the solutions for each simulation. Both
GUROBI and our algorithm were warm-started with the
solution at the previous time step. The timings are shown
in Figure 2. The currents and inputs behavior are shown in
Figure 1.

The timing comparison shows a consistently better behav-
ior of miOSQP compared to GUROBI: approximately 3x
improvements across all the horizon lengths. Note that the
problem has 27 integer feasible input combinations per stage
which, for horizon 5 amounts to a total of 14, 348, 907 worst
case number of nodes to be evaluated. However, miOSQP
always computes the optimal input after searching only a
few hundred nodes. In addition, thanks to the warm-starting
capabilities of OSQP only 30 ADMM iterations are required
on average to solve each individual QP. Note that the average
computation time required to solve the QP sub-problems
amounts to 30 % of the miOSQP solution time.

IV. CONCLUSION

This paper has proposed a new MIQP algorithm based on
branch-and-bound combined to the OSQP solver. Thanks to
factorization caching and warm starting, our method is able
to efficiently compute globally optimal solutions. Moreover,
it is very robust and division-free and thereby suitable for
embedded architectures. Numerical examples show that our
method with a simple, high-level implementation shows
better timing benchmarks than commercial solvers for small
to medium-size problems arising in embedded applications.

The algorithm still has considerable scope for performance
improvement. In particular, a C implementation will greatly
reduce the computation time. From the Python overhead
seen in our examples, we expect to gain at least 50 %
time reduction with a tailored serial implementation. Parallel
solution of the branch-and-bound nodes will also bring

significant speedups. In addition, advanced branching tech-
niques together with cutting planes generation and heuristics
will reduce the number of visited nodes. We could also
obtain performance improvements from premature pruning
of the branch-and-bound nodes in case the dual cost during
the sub-problems iterations exceeds the best known upper
bound. At the moment our algorithm does not exploit this
feature because OSQP produces dual feasible solutions only
at convergence and not during the iterations. Finally, it
would be interesting to compare miOSQP with other problem
sets such as the QPLIB [49] or the portfolio optimization
problems in [3].

REFERENCES

[1] D. Bienstock, “Computational study of a family of mixed-integer
quadratic programming problems,” Mathematical Programming,
vol. 74, no. 2, pp. 121-140, 1996.

[2] P. Bonami and M. A. Lejeune, “An exact solution approach for port-
folio optimization problems under stochastic and integer constraints,”
Operations Research, vol. 57, no. 3, pp. 650-670, 2009.

[3] J. P. Vielma, S. Ahmed, and G. L. Nemhauser, “A lifted linear
programming branch-and-bound algorithm for mixed-integer conic
quadratic programs,” INFORMS Journal on Computing, vol. 20, no. 3,
pp. 438-450, 2008.

[4] N. Murgovski, L. Johannesson, J. Sjberg, and B. Egardt, “Component
sizing of a plug-in hybrid electric powertrain via convex optimization,”
Mechatronics, vol. 22, no. 1, pp. 106 — 120, 2012.

[5] D. Bertsimas, A. King, and R. Mazumder, “Best subset selection via a
modern optimization lens,” Ann. Statist., vol. 44, no. 2, pp. 813-852,
04 2016.

[6] A. Bemporad and M. Morari, “Control of systems integrating logic,
dynamics, and constraints,” Automatica, vol. 35, no. 3, pp. 407427,
1999.

[7]1 P. Teunissen, “The least-squares ambiguity decorrelation adjustment:
a method for fast GPS integer ambiguity estimation,” Journal of
Geodesy, vol. 70, no. 1-2, pp. 65-82, 1995.

[8] T. Geyer and D. E. Quevedo, “Multistep finite control set model
predictive control for power electronics,” IEEE Transactions on Power
Electronics, vol. 29, no. 12, pp. 6836-6846, Dec 2014.

[9] B. Stellato, T. Geyer, and P. J. Goulart, “High-speed finite control set
model predictive control for power electronics,” IEEE Transactions on
Power Electronics, vol. 32, no. 5, pp. 4007-4020, May 2017.

[10] G. Nemhauser and L. Wolsey, Computational Complexity. John Wiley
& Sons, Inc., 1988, pp. 114-145.

[11] R.E. Bixby, “A brief history of linear and mixed-integer programming
computation,” Documenta Mathematica, pp. 107-121, 2010.

[12] G. Nemhauser, “Integer programming: a global impact,” in EURO,
INFORMS, Rome, Italy, 2013.

[13] Lee, Jon and Leyffer, Seven, Mixed Integer Nonlinear Programming,
ser. The IMA Volumes in Mathematics and its Applications, J. Lee
and S. Leyffer, Eds. New York, NY: Springer New York, 2012, vol.
154.

[14] P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, and
A. Mahajan, “Mixed-integer nonlinear optimization,” Acta Numerica,
vol. 22, pp. 1-131, Apr. 2013.

[15] A. H. Land and A. G. Doig, An Automatic Method for Solving
Discrete Programming Problems. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 105-132.

[16] R.J. Dakin, “A tree-search algorithm for mixed integer programming
problems,” The Computer Journal, vol. 8, no. 3, pp. 250-255, 1965.

[17] R. A. Stubbs and S. Mehrotra, “A branch-and-cut method for 0-1
mixed convex programming,” Mathematical Programming, vol. 86,
no. 3, pp. 515-532, 1999.

[18] R. E. Gomory, “Outline of an algorithm for integer solutions to linear
programs,” Bulletin of the American Mathematical Society, vol. 64,
no. 5, pp. 275-278, 09 1958.

[19] V. Chvatal, W. Cook, and M. Hartmann, “On cutting-plane proofs in
combinatorial optimization,” Linear Algebra and its Applications, vol.
114, pp. 455 — 499, 1989.

[20] R. Fletcher and S. Leyffer, “Numerical experience with lower bounds
for MIQP branch-and-bound,” SIAM Journal on Optimization, vol. 8,
no. 2, pp. 604-616, 1998.

[21] Gurobi Optimization Inc., “Gurobi optimizer reference manual,”
2016. [Online]. Available: http://www.gurobi.com

Time [ms]

Fig. 1.
1073 .
I —— miOSQP |
—— GUROBI
—4 | | | | |
10 1 2 3 4 5

Horizon length T°

Fig. 2. Average power converter MIQP solution time comparison between
miOSQP and GUROBI

[22]

[23]

[24]

[25]

[26]

(27]

[28]

[29]
(30]

[31]

(32]

M. Fischetti, F. Glover, and A. Lodi, “The feasibility pump,” Mathe-
matical Programming, vol. 104, no. 1, pp. 91-104, 2005.

R. Takapoui, N. Moehle, S. Boyd, and A. Bemporad, “A simple ef-
fective heuristic for embedded mixed-integer quadratic programming,”
International Journal of Control, pp. 1-11, 2017.

V. V. Naik and A. Bemporad, “Embedded mixed-integer quadratic
optimization using accelerated dual gradient projection,” in 20th IFAC
World Congress, Toulouse, France, 2017.

J. Mattingley and S. Boyd, “CVXGEN: A code generator for em-
bedded convex optimization,” Optimization and Engineering, vol. 13,
no. 1, pp. 1-27, 2012.

A. Domahidi, E. Chu, and S. Boyd, “ECOS: An SOCP solver for
embedded systems,” in 2013 European Control Conference (ECC),
July 2013, pp. 3071-3076.

F. Ullmann, “FiOrdOs: A Matlab Toolbox for C-Code Generation for
First Order Methods,” Master’s thesis, ETH Ziirich, 2011.

G. Banjac, B. Stellato, N. Moehle, P. Goulart, A. Bemporad, and
S. Boyd, “Embedded code generation using the OSQP solver,” in IEEE
Conference on Decision and Control (CDC), Dec. 2017.

A. Domahidi and J. Jerez, “FORCES Professional,” embotech GmbH
(http://embotech.com/FORCES-Pro), Jul. 2014.

G. Cimini, A. Bemporad, and D. Bernardini, “ODYS QP Solver,”
ODYS S.rl. (http://odys.it/qp), Sep. 2017.

J. Jerez, P. Goulart, S. Richter, G. Constantinides, E. Kerrigan, and
M. Morari, “Embedded online optimization for model predictive
control at megahertz rates,” IEEE Transactions on Automatic Control,

vol. 59, no. 12, li:? 3238-3251, 2014.
M. Rubagotti, P. Patrinos, A. Guiggiani, and A. Bemporad, “Real-time

model predictive control based on dual gradient projection: Theory and

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

| R
L] [N B
e s e s— . . .
0 5 10 15 20
1_
0_
—11 I I ! ! I
0 5 10 15 20
1_
0_
—11 I I I ! I
0 5 10 15 20

Time [ms]

Power converter simulation results with miOSQP solver and N = 3

fixed-point FPGA implementation,” International Journal of Robust
and Nonlinear Control, vol. 26, no. 15, pp. 3292-3310, 2016.

D. Frick, A. Domahidi, and M. Morari, “Embedded optimization for
mixed logical dynamical systems,” Computers & Chemical Engineer-
ing, vol. 72, pp. 21 — 33, 2015.

D. Axehill and A. Hansson, “A mixed integer dual quadratic program-
ming algorithm tailored for MPC,” in Proceedings of the 45th IEEE
Conference on Decision and Control, Dec 2006, pp. 5693-5698.

A. Bemporad, “Solving mixed-integer quadratic programs via nonneg-
ative least squares,” IFAC-PapersOnlLine, vol. 48, no. 23, pp. 73 — 79,
2015.

D. Frick, J. L. Jerez, A. Domahidi, A. Georghiou, and M. Morari,
“Low-complexity iterative method for hybrid MPC,” ArXiv e-prints,
2016.

A. Bemporad, “A numerically stable solver for positive semi-definite
quadratic programs based on nonnegative least squares,” I[EEE Trans-
actions on Automatic Control, vol. 63, no. 2, pp. 525-531, 2018.

B. Stellato and G. Banjac, “OSQP: An operator splitting
solver for quadratic programs,” GitHub, 2017. [Online]. Available:
https://github.com/oxfordcontrol/osqp

B. Stellato, “MIQP solver based on osqp,” GitHub, 2017. [Online].
Available: https://github.com/OxfordControl/miosqp

S. Boyd and J. Mattingley, “Branch
Methods,” Lecture notes, 2010. [Online].
https://stanford.edu/class/ee364b/lectures/bb_notes.pdf
C. Buchheim, M. De Santis, S. Lucidi, F. Rinaldi, and L. Trieu, “A
feasible active set method with reoptimization for convex quadratic
mixed-integer programming,” SIAM Journal on Optimization, vol. 26,
no. 3, pp. 1695-1714, 2016.

R. Breu and C.-A. Burdet, Branch and bound experiments in zero-one
programming. Berlin, Heidelberg: Springer Berlin Heidelberg, 1974,
pp- 1-50.

O. K. Gupta and A. Ravindran, “Branch and bound experiments in
convex nonlinear integer programming.” Management Science, vol. 31,
no. 12, pp. 1533-1546, 1985.

G. Nannicini and P. Belotti, “Rounding-based heuristics for nonconvex
MINLPs,” Mathematical Programming Computation, vol. 4, no. 1, pp.
1-31, 2012.

S. Sager, M. Jung, and C. Kirches, “Combinatorial integral approxima-
tion,” Mathematical Methods of Operations Research, vol. 73, no. 3,
p. 363, 2011.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction
method of multipliers,” Foundations and Trends in Machine Learning,
vol. 3, no. 1, pp. 1-122, 2011.

T. Davis, Direct Methods for Sparse Linear Systems.
Industrial and Applied Mathematics, 2006.

R. Vanderbei, “Symmetric quasi-definite matrices,” SIAM Journal on
Optimization, vol. 5, no. 1, pp. 100113, 1995.

F. Furini, E. Traversi, P. Belotti, A. Frangioni, A. Gleixner,
N. Gould, L. Liberti, A. Lodi, R. Misener, H. Mittelmann,
N. Sahinidis, S. Vigerske, and A. Wiegele, “QPLIB: A library of
quadratic programming instances,” February 2017. [Online]. Available:
http://www.optimization-online.org/DB_HTML/2017/02/5846.html

Bound
Available:

and

Society for

