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Most applications require fast and effective
decisions In real-time



Real-time optimization can help us

decisions

l

minimize  f(z,x)

subjectto 2z € C'(x)
T

parameters

objective f: energy consumption, costs
constraints (. dynamics, physical limits

re-planning in real-time How do we solve

such problems?

Is the key to effective
decision-making




First-order methods are now widely popular...

use only first-order information (e.g., gradients)
to solve optimization problems

example
projected gradient descent

minimize  f(z,x)
subjectto 2z € C(x)

2T =T (2" = 0V (2%, 2))

T T

projection gradient step

benefits of first-order methods
v cheap iterations
v easy to warm-start

embedded large-scale
optimization “Q‘t{mvlzatdl

a7




..and they can solve many constrained convex problems!

Linear Programs Quadratic Programs Conic Programs
Applegate, Diaz, Hinder, Lu, Lubin, Stellato, Banjac, Goulart, 0'Donoghue, Chu, Parikh, Boyd (2016)

O'Donoghue, Schudy (2021) Bemporad, Boyd (2020)



But they can converge slowly

major issue in safety-critical applications with

real-time limited
requirements computing power

>

. main idea

iINn most applications we repeatedly
solve the same problem with
varying parameters
minimize  f(z,x)
subjectto 2z € C'(x)

large amount of data
(e.g., instances, solutions)




First-order methods In parametric convex optimization

4 ) 4 )
verification design
analysis learning
with probabilistic
worst-case probabilistic guarantees
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Performance verification



Convergence of first-order methods

N
example
iterations gradient descent
k+1 _ k _ T ..
2Tt =T (2", z) fork=0,1,... problem optimality conditions
AN operator minimize f(z,x) —— Vf(z%,z) =0
(e.qg., contractive, averaged) orations
=28 9V (25, 2) 0
10
[ ] n Q)
Z*:T(Z*,QZ‘) g 2F=2" = 0Vf(z", x) )
performance metric
k _ k—1 kK—1| __ k k—1
r(z) = [[T(z"77) =25 7| = []2" = 27|
fixed-point residuM 10

(converges to 0)




Classical convergence bounds via Performance Estimation

perform_ance
maximize ||z — zK-1|| «—  metric

subject to rf cF ) write using
P _ . <—— |nterpolation
. — 2V, 21, ..., 2% iterates of algorithm 7 on f conditions
function class - /
(e.g., strongly-convex, H P - ZOH < r
smooth functions) — ~_ initial
condition

O3 ()T ()T

convex SDP | O — (Zl — ZO)Tgl Hgl H% (gl)TgO independent from
Gram matrix reformulation (2t — ZO)T a (gl)T q" 19°]5 iterate dimensions
- gradients ]

Drori and Teboulle (2014), Taylor, Hendrickx, Gilneur (2017), and many others including Ryu, De Klerk, Grimmer... 11



Classical worst-case convergence bounds can be very loose

Image deblurring problem
emnist dataset

ﬁ 101;:::: ..... I N
Rt 0_ v - N\, T~ __ ——
E} 10 'v.\\\\.\\ ...... .
"o _ .\'v.\\'\'\‘
© —1 .\'\ \\
0 10 "l
n . . 2 qb%:o 10—2 _ *\\\:‘\\
minimize HAZ — &L |2 =+ >\HZ|| 1 6:3 | ———- Theoretical worst-case bound “~._
" - -3 _ ————- '\'\.\\.k'\,\
sub je ctto 0 S ~ S 1 S 10 Sample average | AN
blurred -y —=+—- Sample 99th quantile Sy
///f 100 10! 10? 107 10"
deblurred iterations
Image

why are worst-case

bounds pessimistic?




Issues with classical convergence analysis

general function classes pessimistic bounds
(f is strongly convex and smooth...)

, Quadratic
/upper bound

f

quadratic worst-case
lower bound Initial point
we may never encounter we may never start
that function from that point
practical settings

C e same problem with

minimize f(Z, ZE) varying parameters
subjectto 2 € C(x) - z~P -

(unknown distribution)



Algorithms as fixed-length computational graphs

optimizer

_prcz(blem - _ _ ~ fixed-length
Instance iterations e

o ° ! 1 .0 g ) 1 K—1( ) ZK

° X warm start | 2> o >~

®© g &-f------- - > — Ty —  — 1y +—T+—

e .%o 29 . y
L ) \_ J
2V = Zy(x) L= Ty (2", x)

N e

algorithm parameters
(e.g., step-sizes, accelerations, warm-starts...)

4 )
example

projected gradient descent

P =T (2" — OV, f(25, 1))

\ _/




Verifying the algorithm performance after K iterations

goal
estimate norm of fixed-point residual
rt(z) = [l =25

A S\

worst-case probabillistic

ImMax TK (J}) S € P (TK (x) > g) S n - probability

cX bound
problem _— v \ / /

instances convergence

tolerance convergence

problem tolerance

Instances




Vinit Ranjan

Worst-case algorithm verification

Parametric quadratic optimization performance
— metric
max 7" (z) = maximize [|z% — K1
reX _ 1 I
subjectto zFT+ =Ty(2",2), k=0,..., K -1
0
2V = Zplx), € X problem
( ) T~ instances

directly encode proximal algorithms

without interpolation inequalities

step verification constraint
affine bt y
(e.qg., gradient, restarts, Dokt — ALk + Bax Dz = Az" + Bx similar constraints
linear SyStem SO/VGS) to neural network

. : verification
elementwise maximum o . AR | LA
(e.qg., separable projections, z Tl max{ 2 7()} bt INT /et 1 ; Liu et al. (2021), Albarghouthi (2021)
soft-thresholding,...) ~— (") (27T = 2%) =0
similar to 16

RelLU



Relaxing verification problem to an SDP

The verification problem is NP-hard
(by reduction from 0-1 integer programming)

convex semidefinite

program relaxation

step verification constraint relaxed constraint
k+1 > 0. k+1 > Sk
k+1 k+1 k ! —1/2
elementwise maximum 2z >0, =z > 2z tr M
(e.9., box projections, 2Pl = max{zk,()} ktINT k1 kY — __I/2 0 )
soft-thresholding,...) (z"77)" (2 —2") = _ _ T
k+1 k+1
z z
M = k k
T z z
|

depends on

Raghunathan et al. (2018), Dathathri et al. (2020),
Fazlyab et al. (2020), Chen et al. (2022), Brown et al. (2022)

iterate dimensions



o parameters
minimize (1/2):7 Pz + 2%z

verification problem

Unconstrained QP

Exact SDP reformulation

o B gradient
maximize |zf — 2B __— descent

subjectto 2Tt =2 —Q(P2F+2x2), k=0,..., K -1
N =Zy(x), z€X

rotated functions

warm-starts (- Zo(z) = {2 |||z — 0.9 1] < 0.1}
r N
| Z@($) = /41,49, Or Z3 casell xze A = {O}
kcase re X ={0} ) Py, P, rotations of P y
o
L -- 7,
L
3 _ — h
T% 107 é 10 . gzp
é ;?101
%1012 m
% %10—2
= =
_____ 2 4 6 8 10
K
18

PEP cannot distinguish warm-starts

PEP cannot distinguish quadratic functions



Nonnegative least-squares verification

projected

nonnegative least squares verification problem gradient

- . i 1 descent

minimize  (1/2)||Az — z||3 maximize |[z% —z |
subjectto 2z >0 x subject to  z*T! = max{(I — QAT A)zF +0(ATz),0}, k=0,...,K —1
parameters =10}, zeX={x||r—-30-1] <0.5}
Fixed step-size Fractal (silver) step-size
! \\ 10x-1000x reduction
102 - (exploiting parametric
\ —— Our SDP relaxation : structur e)

—e— Theoretical worst-case bound (PEP)

—»— Sample maximum
N\ J

p—

-

@)
H

computationally more
_ expensive than PEP
1 2 3 4 5 6 7 1 2 3 4 5 6 7 (up to 1000 seconds
for these instances)

Worst case fixed-point residual

[w] Verification of First-Order Methods for Parametric Quadratic Optimization
V. Ranjan and B. Stellato
arXiv e-prints:2403.03331 (2024) 19

Lz () github.com/stellatogrp/algorithm_verification




Verifying the algorithm performance after K iterations

goal
estimate norm of fixed-point residual
rt(z) = [l =25

A S\

worst-case probabillistic

ImMax TK (CE) S € P (TK (gg) > 6) S N - probability

cX bound
problem _— v \ / /

instances convergence

tolerance convergence

problem tolerance

Instances




Probabilistic analysis

goal
estimate probability of
computing bad-quality solutions

P(r™ (z) > €)

T

any metric
(e.q., fixed-point residual)

data

ISsue

we don’t know P! > D = {xi f;il

how can we bound

the true probability?

21



Rajiv Sambharya

Our recipe to bound performance

goal
estimate probability of
computing bad-quality solutions

P(r(z) >¢) = E (e(z))

T x~ P T

any metric error
(e.g., fixed-point residual) 1(TK($) > ¢)
~
step 1
run K steps - N - ~
for N parametric instances step 2 step 3
compute empirical risk bOUﬂdt’fry{cej risk
instances ‘:;‘)rl‘gt'%it: —_— | (next slide)
) ) 1 Z (o E (e(z)) < bound
Lq | ZK(QjZ) | N P x~ P
\_ J \_ .
v, 22




Statistical learning gives us probabilistic guarantees

g sample convergence bound A
with probability 1 — o

PO () > ) = B (@) <7 1D ew) | B ) e
N

P Instances
true risk e empirical risk regularizer
divergence
(1D convex
roblem)
- 7 J

interpretation of bound equal to B

With probability 1 — 9, the fixed-point residual is above ¢ after K steps
B fraction of times

Langford (2001)

23



Success rates for OSQP in image deblurring

minimize || Az — z||5 + \||z||: ‘:Z
subjectto 0<z<1 blurred

/ iImage
deblurred

Image

Solve with OSQP solver

fraction of problems solved error

K
1— E (e(x)) 1(rE(z) > €)
r~ P
Fﬂg e = 0.1
r—d 10_ PR A " SN Sp—
£ i i i i II - . N
< | —— Sample fraction
,%é | —¢— Theoretical worst-case bound
2 0 e i Our bound with N = 10 samples
E : Our bound with V = 100 samples
= _ e Our bound with N = 1000 samples
3 OO -—l——!-—l-—‘-—-—< - < . - —a— | L J
E 10! 103 10°

1teratio 1terations

iterations required 24

to solve all test instances



4 )

verification
analysis

worst-case probabilistic

First-order methods In parametric convex optimization

\_ A /\ _J

design
learning

with probabilistic
guarantees

Jo\

25



Algorithm design



Training algorithms as fixed-length computational graphs

optimizer

_prciblem - _ _ N fixed-length

Instance iterations _
r 1 2 h
of — ) .1 K—1( K

e o *° | I warm start | > > > Z

o g &-f------- - > —> Tp —>  ———| g |[TT——>| loss
e .%o . 29 ) L y . ) . )

update algorithm parameters
(step-sizes, accelerations, warm-starts)
4 R

example
projected gradient descent

2 =T (2" — OV, f(25, 1))

\ J




Learning can accelerate optimizers

Combinatorial optimization

B. Dilkina, E. Khalil, A. Lodi, P. Van
Hentenryck, P. Bonami, S. Jegelka, ...

our previous contributions

The voice of optimization
D. Bertsimas, B. Stellato
Machine Learning (2021)

Online mixed-integer optimization in
milliseconds

D. Bertsimas, B. Stellato

INFORMS Journal on Computing (2022)

Continuous optimization

W. Yin, B. Amos, Z. Kolter,
M. Andrychowicz, C. Finn,
P. Van Hentenryck ...

our previous contributions

Accelerating quadratic optimization
with reinforcement learning

J. Ichnowski, P. Jain, B. Stellato, ... et al.

NeurlPS (2021)

No performance
guarantees

Can we build
rigorous and data-driven
performance guarantees?

28



Statistical learning theory for optimization algorithms

supervised learning learning to optimize
Ut “! e problem instance
inpu T ) (with parameter x)
4
hypothesis cat residual 7“5{ (x) (algorithm parameters
(step-sizes,
: K accelerations,
error 0 (1 If Wrong) €H (QZ) — 1(7‘9 (.CE) > E) _ warm-starts) y
expected loss
on new data on new problem instances

29



PAC-Bayes generalization bounds

learning task distribution of algorithm parameters
(step-sizes, accelerations, warm-starts)

can be

minimize E E (eg(x))
anything \ © QN@{ /

Pick prior ©y before observing data

2. Observe data D = {z'}:Y,
3. Learn posterior ©: 6 ~ ©

4. Bound performance P* ( E E (eg(x)) < fN) >1-—9

McAllester (1999), Maurer (2004) O~ x~P o

data-driven bound

tn =kl (% ;91{3@ (eg(Ti)) RLEO1ISo) ;\lfog(zm/é))

empirical risk regularizer




Rajiv Sambharya

Learning optimizers with guarantees

minimize data-driven upper bound
with stochastic gradient methods

( ] & KL(©||00) + 1og(2\/N/5))

minimize kI7' [ — Z-
N 2 E (eo(xi)) N

O
/ empirical risk regularizer

derivative through

convex optimization problem
Reeb et al. (2018)

results

D . numerical
distribution over

performance

algorithm parameters bounds

0 ~0 =N(u )

(e.g., sequence
of step-sizes)

Bottou et al (2018), Dziugaite et al (2017), Bartlett et al (2017, 2018), Jiang (2020), Majumdar et al (2021) 31



Robust Kalman Filtering with learned warm starts

noisy trajectory recovered trajectory
a second-order cone program solver (SCS) A
. A@er loss
— 5 | minimize Y, ||w||3 + ¥ (o) — .
SUbjeCt to St4+1 :Ast—l—Bwt, t:O,,T— 1 -
\_ Yy = Csy + vy, t=20,...,7T y e
T—1 T—
L = {yt t=0 Z* = {Sszz(?U;}t:Ol
goal
learn warm-start mapping
problem r 1l S0
instance . __ j|warm start L,
XL Z@

B

32



Robust Kalman Filtering with learned warm starts

two example trajectories

we also showed
with learning, we can warm-start specific

estimate the state well PAC Bayes generalization
guarantees

points
noisy trajectory
® optimal solution

Solution after 5 fixed-point iterations

with different warm-starts

nearest neighbor

=== previous solution
== [carned K = 5

[=] Learning to Warm-Start Fixed-Point Optimization Algorithms
2 R. Sambharya, G. Hall, B. Amos, and B. Stellato

Journal of Machine Learning Research (2024)
() github.com/stellatogrp/I12ws

33


http://github.com/stellatogrp/l2ws

Signal reconstruction with learned optimizer

reconstructed performance metric
/ signal normalized mean squared error

minimize ||Dz = z||5 + ||z ||1 NMSEgg(z) = 10logy, (|2 — 2[|°/||z]]?)

N noisy N\ /

known ground

dictionary signal truth

classical algorithm (ISTA) learned variants (e.g., ALISTA)

2Pl =y (zk — 12D (Dz" — :13)) Rl — ¢v kWT(Dz — a?))

shrinkage operator \ /

— — —v, At
dxt(v) = max{v, At} — max{—v, At} algorithm
parameters

_ k —
Gregor and LeCun (2010), Liu et al. (2019) 0 = {ﬁy 7¢ }k:O 34



Success rates for learned optimizers in signal reconstruction
fraction of problems solved

b= HP@ xPp(ee (x)) - eo () = 1(1\?&%&@1}3(2[{(@) > €)

90th quantile bound

1.0

0.5

fraction of problems solved

0.01 = 4 R o S S —
0

2 A 6 3 0 0 2 A 6 3 10 0 2 A 6 3 10

iterations 1terations iterations
Learned Not learned
LISTA ALISTA TiLISTA GLISTA ISTA our bound are close to
the empirical
Sample bound n nilln n . ; o - A
° - O g ¥ performance

Our bound

(high confidence, 1 — 6 — 0.999) —re—  —h— -l ¥

learned optimizers
provably perform well
In just 10 iterations

El w.oufm] Data-Driven Performance Guarantees for Classical and Learned Optimizers
- R. Sambharya and B. Stellato
arxiv.org: 2404.138317 (2024)

35




Conclusions



Algorithm Design and Verification for Parametric Convex Optimization

1. parametric structure matters
2. data can help us
* design optimization algorithms ﬁ

* verify their performance v

3. we should rethink optimization algorithms

s traditional view A : | new view A
4 p. -+ task-specific

% Qener?”-pft_ltrpOﬁe — » trainable
- one-size-fits a J . @ - deployable anywhere Y

AAN

N stellato.10

X @b_stellato

W% bstellato@princeton.edu






PAC-Bayes generalization guarantees for learned warm starts

/y
empirical risk penalty term

bound on HZ*(x) ||2

As the number of iterations & — o0 the penalty term goes to zero

The contractive factor 5 directly affects the penalty term

We combine operator theory with PAC-Bayes theory to get the bound



Computing the KL Inverse with Convex Optimization

KL divergence between Bernoulli distributions
kl(q || p) := KL(Bernoulli(g), Bernoulli(p))

Many PAC-Bayes-type bounds bound the risk implicitly
kl(g ||p) < ¢

empirical risk  risk regularizer

Inverting the KL divergence

p* =kl7 ' (¢ | ¢) = maximize p
subject to  glog(1) + (1 — g) log(}_;g) <c
0<p<1




