Data-Driven Algorithm Design and Verification for Parametric Convex Optimization

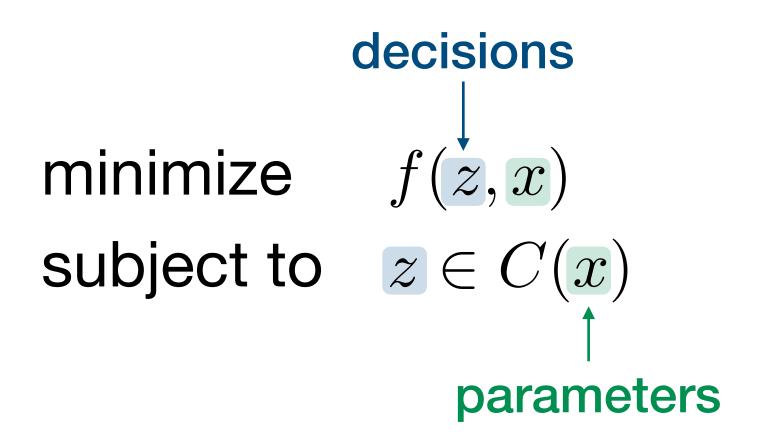
Bartolomeo Stellato

Department of Operations Research and Financial Engineering

Department of Electrical and Computer Engineering

Department of Computer Science

Real-time optimization can help us



objective f: energy consumption, costs **constraints** C: dynamics, physical limits

re-planning in real-time is the key to effective decision-making

How do we solve such problems?

First-order methods are now widely popular...

use only first-order information (e.g., gradients) to solve optimization problems

example projected gradient descent

 $\begin{array}{ll} \text{minimize} & f(z,x) \\ \text{subject to} & z \in C(x) \end{array}$

$$z^{k+1} = \Pi_{C(x)}(z^k - \theta \nabla f(z^k, x))$$

$$\uparrow \qquad \qquad \uparrow$$
 projection gradient step

benefits of first-order methods

- √ cheap iterations
- √ easy to warm-start

embedded optimization

large-scale optimization

...and they can solve many constrained convex problems!

Linear Programs

Applegate, Díaz, Hinder, Lu, Lubin, O'Donoghue, Schudy (2021)

Quadratic Programs

OSQP

Stellato, Banjac, Goulart, Bemporad, Boyd (2020)

Conic Programs

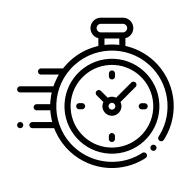
O'Donoghue, Chu, Parikh, Boyd (2016)

But they can converge slowly

major issue in safety-critical applications with

real-time requirements

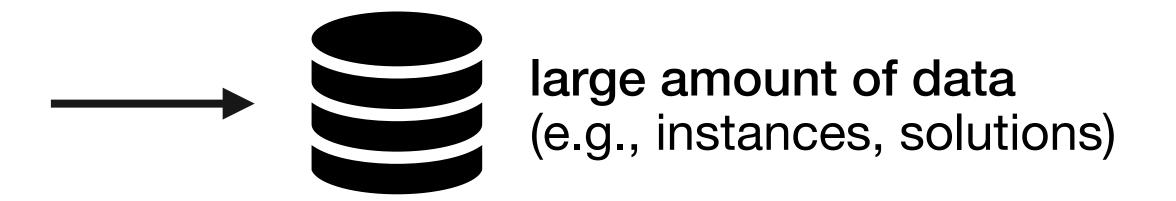
limited computing power



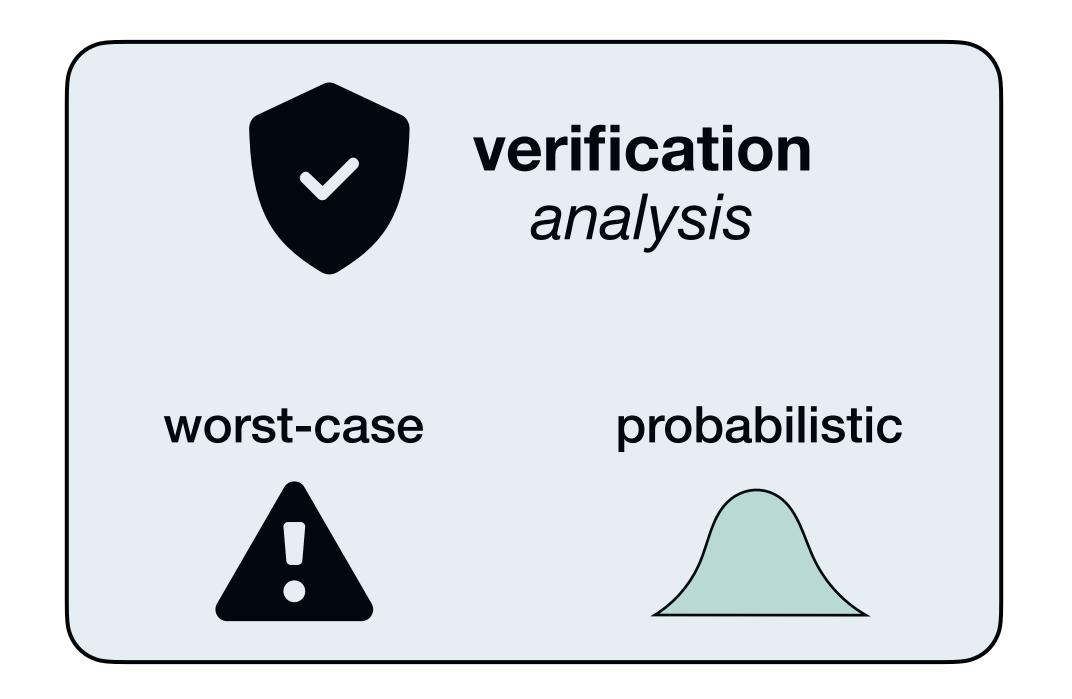
main idea

in most applications we repeatedly solve the same problem with varying parameters

minimize f(z, x) subject to $z \in C(x)$



First-order methods in parametric convex optimization



Performance verification

Convergence of first-order methods

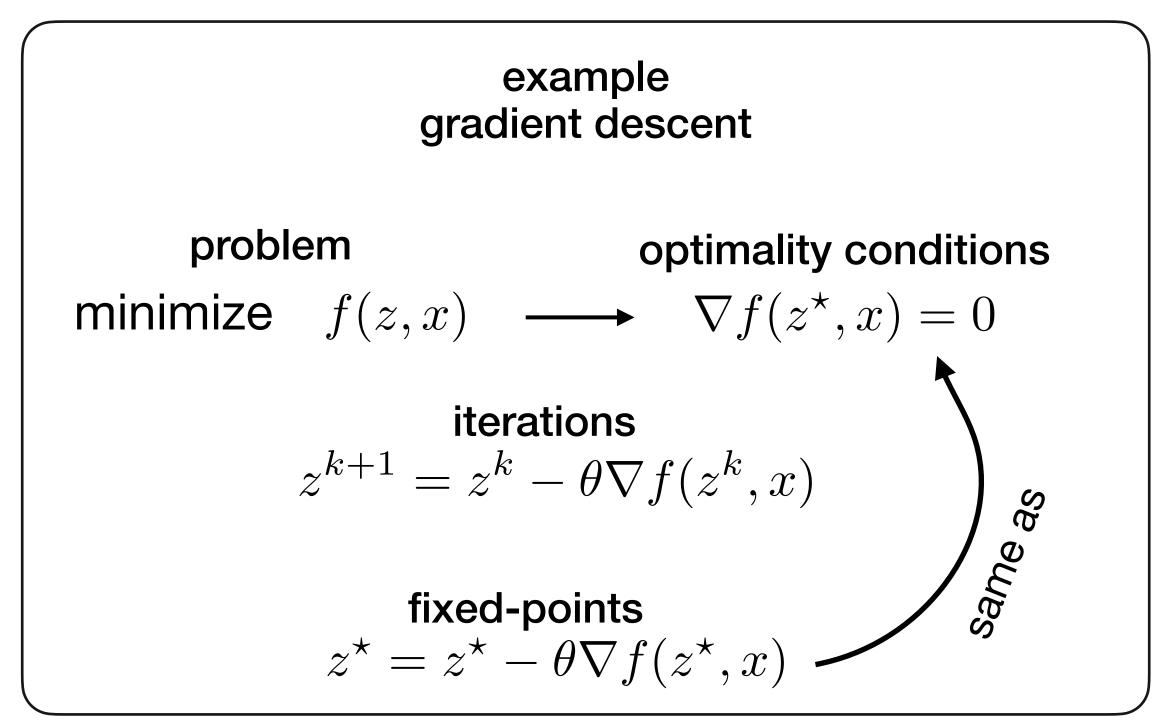
iterations

$$z^{k+1} = T(z^k, x)$$
 for $k = 0, 1, ...$ operator (e.g., contractive, averaged)

goal: find fixed-points

(converges to 0)

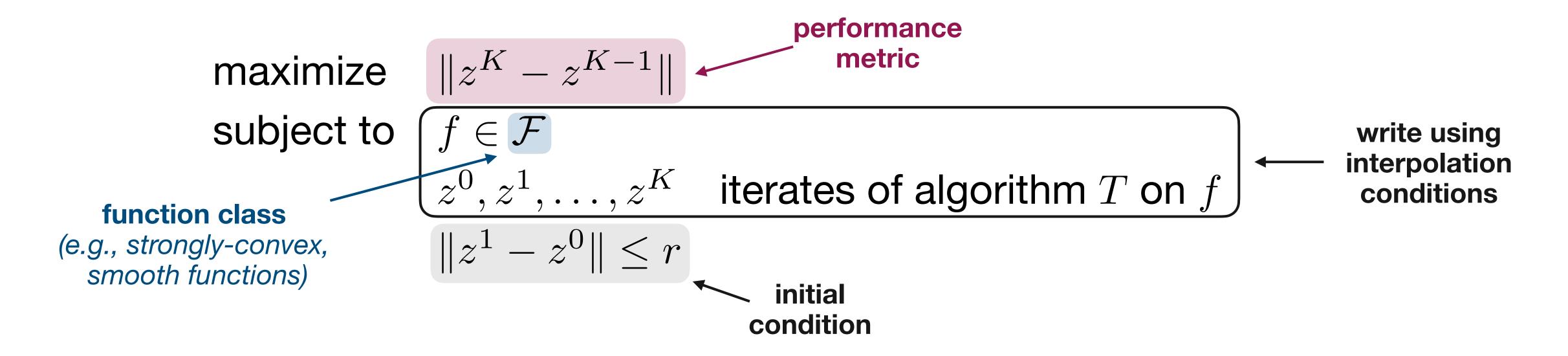
$$z^{\star} = T(z^{\star}, x)$$



performance metric

$$r^k(x) = \|T(z^{k-1}) - z^{k-1}\| = \|z^k - z^{k-1}\|$$
 fixed-point residual

Classical convergence bounds via Performance Estimation



Gram matrix reformulation

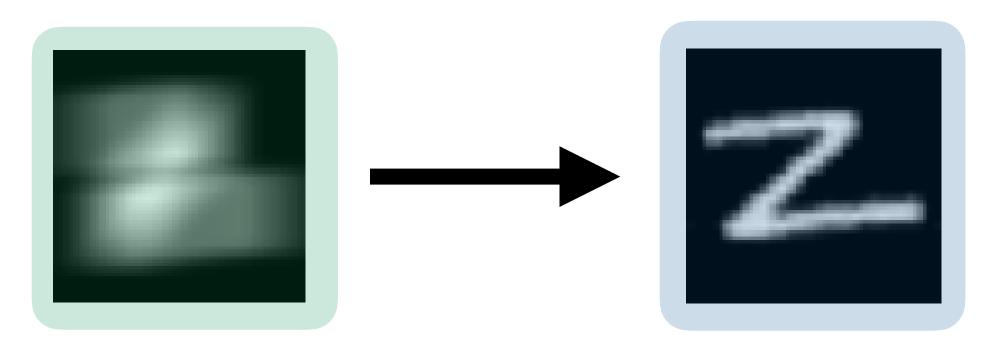
$$G = \begin{bmatrix} \|z^{1} - z^{0}\|_{2}^{2} & (z^{1} - z^{0})^{T}g^{1} & (z^{1} - z^{0})^{T}g^{0} \\ (z^{1} - z^{0})^{T}g^{1} & \|g^{1}\|_{2}^{2} & (g^{1})^{T}g^{0} \\ (z^{1} - z^{0})^{T}g^{0} & (g^{1})^{T}g^{0} & \|g^{0}\|_{2}^{2} \end{bmatrix}$$

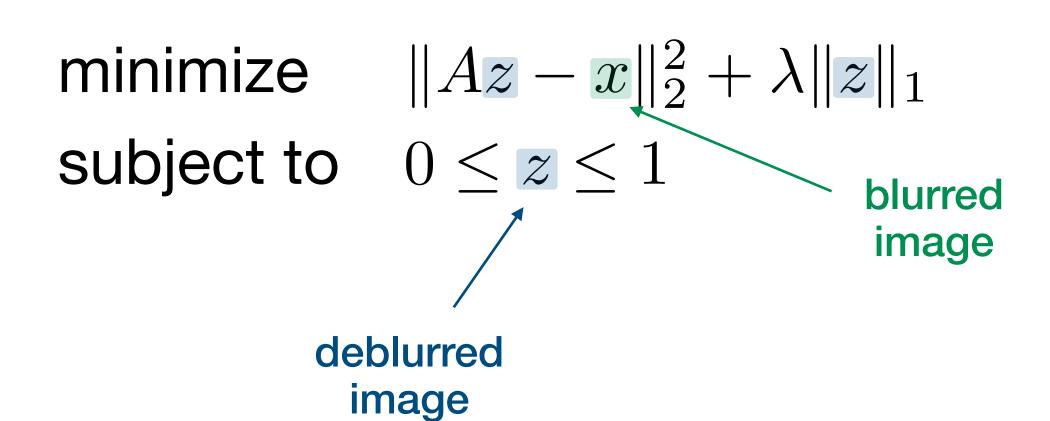
gradients

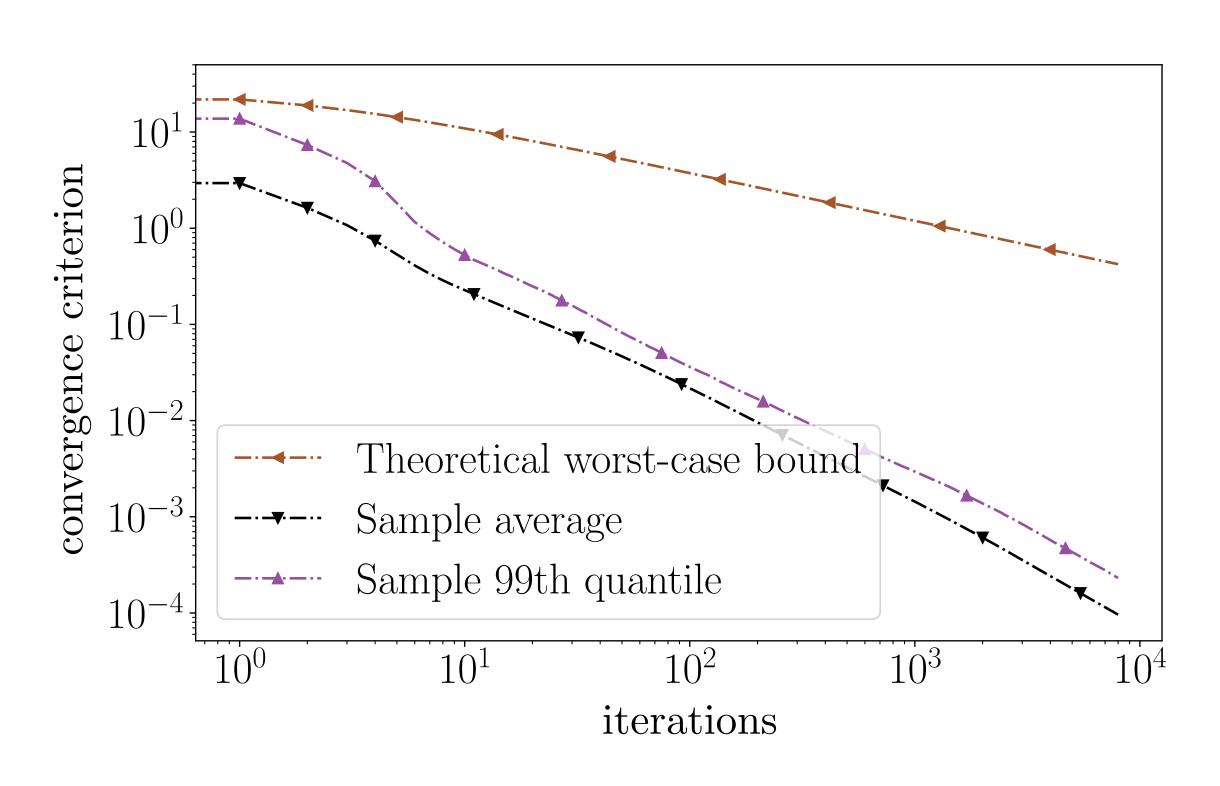
independent from iterate dimensions

Classical worst-case convergence bounds can be very loose

image deblurring problem emnist dataset





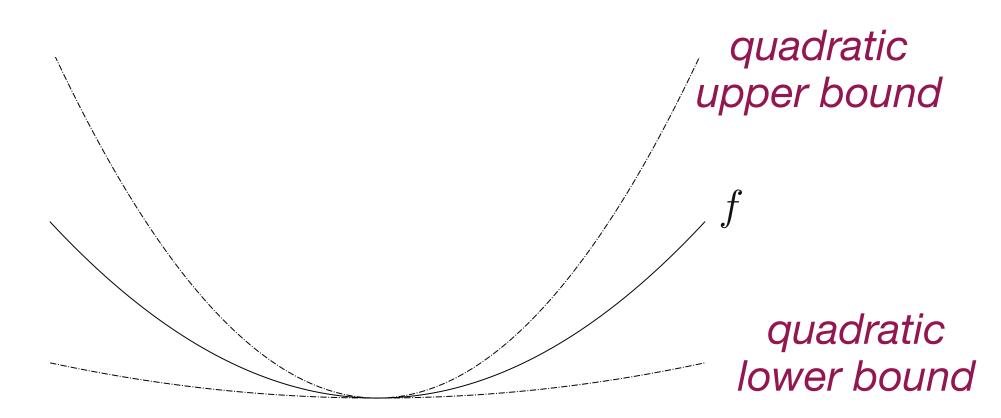


why are worst-case bounds pessimistic?

Issues with classical convergence analysis

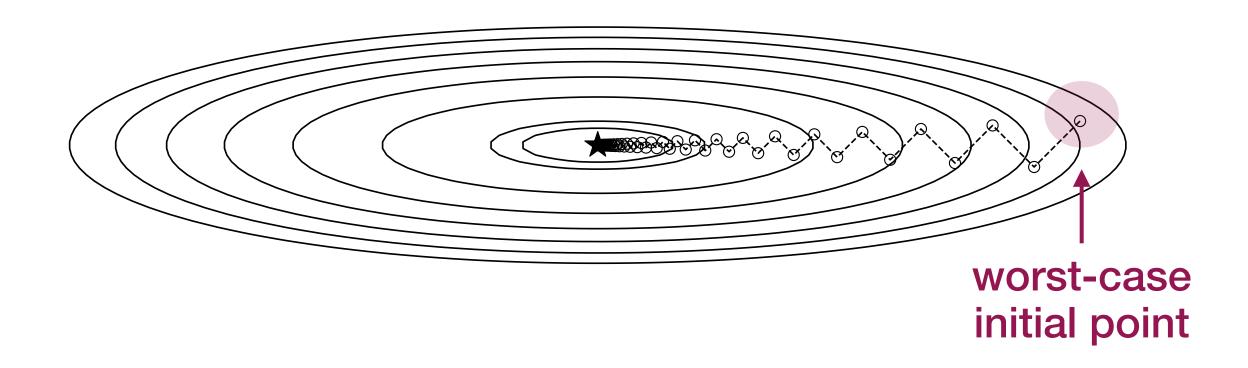
general function classes

(f is strongly convex and smooth...)



we may never encounter that function

pessimistic bounds



we may never start from that point

practical settings

minimize f(z,x)

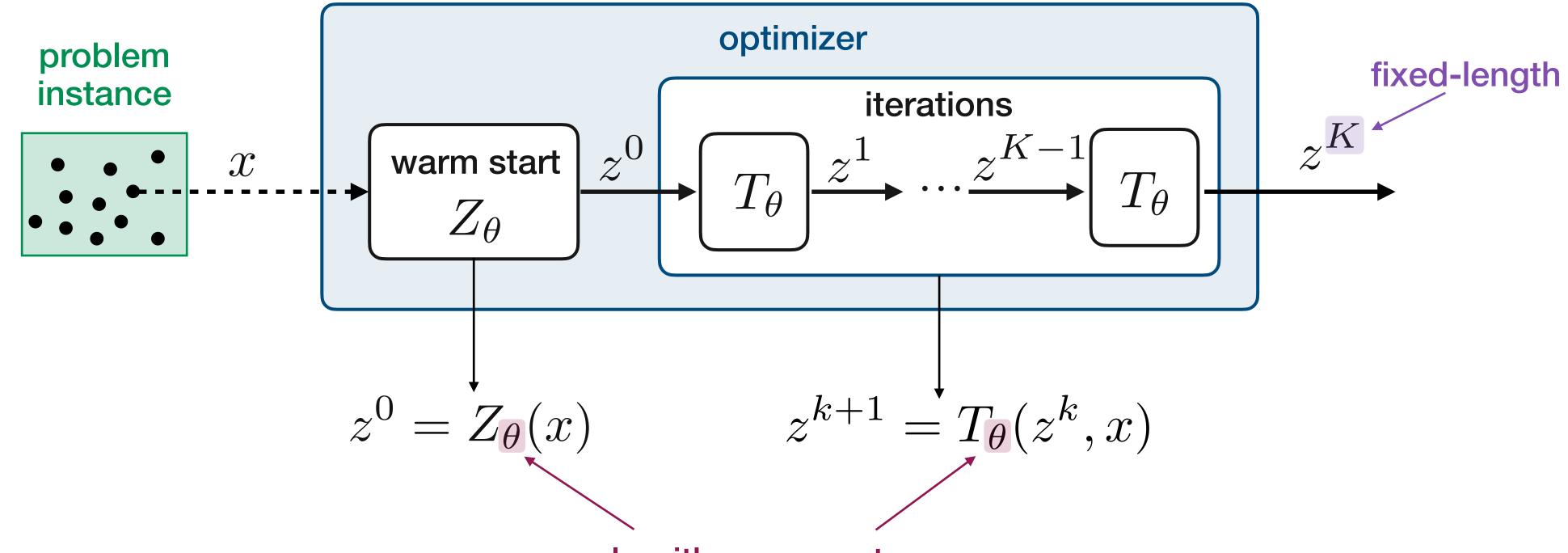
subject to $z \in C(x)$

same problem with varying parameters

 $x \sim \mathbf{P}$

(unknown distribution)

Algorithms as fixed-length computational graphs



algorithm parameters

(e.g., step-sizes, accelerations, warm-starts...)

example

projected gradient descent

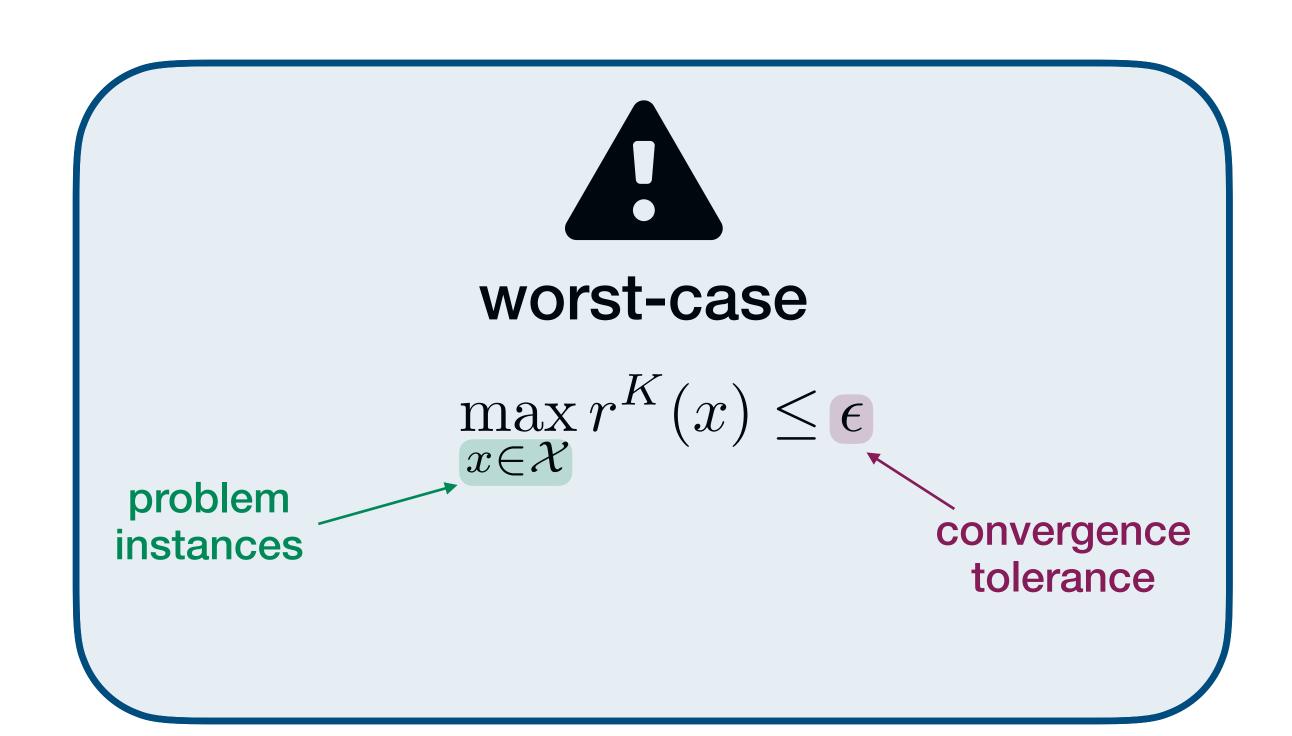
$$z^{k+1} = \Pi_{C(x)}(z^k - \theta \nabla_z f(z^k, x))$$

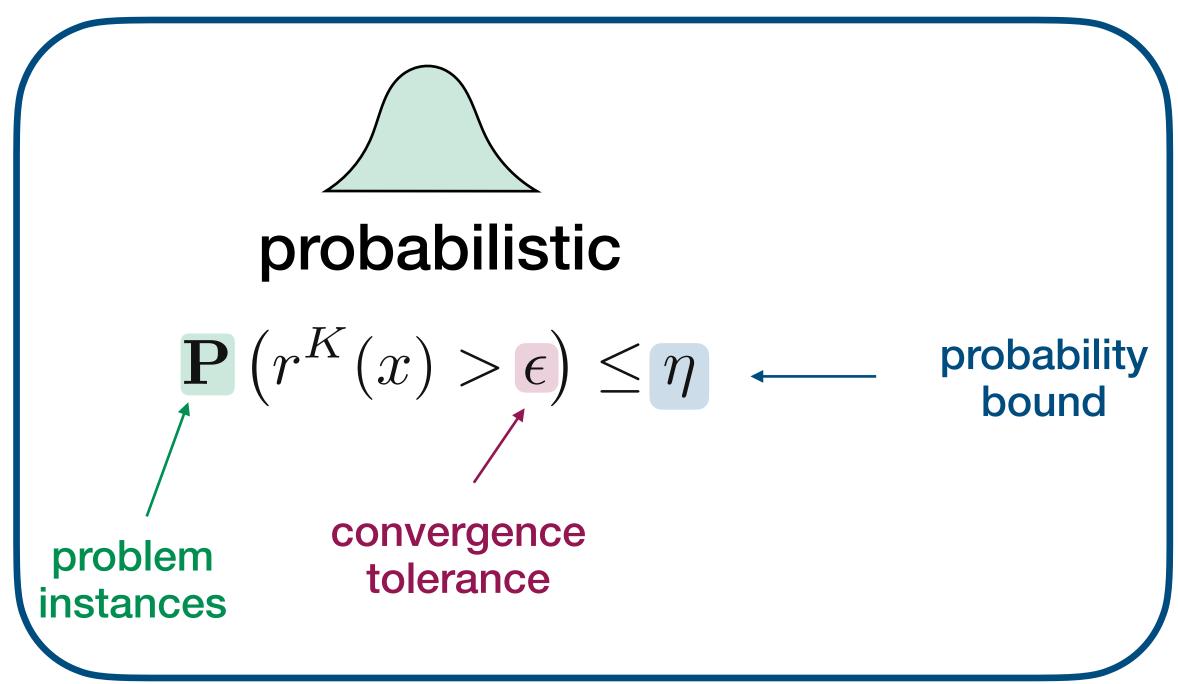
Verifying the algorithm performance after K iterations

goal

estimate norm of fixed-point residual

$$r^K(x) = ||z^K - z^{K-1}||$$





Vinit Ranjan

Worst-case algorithm verification

Parametric quadratic optimization

$$\max_{x \in \mathcal{X}} r^K(x) = \text{ maximize } \|z^K - z^{K-1}\|$$

$$\text{subject to } z^{k+1} = T_{\theta}(z^k,$$

maximize
$$\|z^K-z^{K-1}\|$$
 subject to $z^{k+1}=T_{ heta}(z^k,x),\quad k=0,\ldots,K-1$ $z^0=Z_{ heta}(x),\quad x\in\mathcal{X}$ problem instances

performance

metric

directly encode proximal algorithms without interpolation inequalities

step

verification constraint

affine

(e.g., gradient, restarts, linear system solves)

$$Dz^{k+1} = Az^k + Bz$$

$$Dz^{k+1} = Az^k + Bx \qquad Dz^{k+1} = Az^k + Bx$$

elementwise maximum

(e.g., separable projections, soft-thresholding,...)

$$z^{k+1} = \max\{z^k, 0\}$$

$$z^{k+1} \ge 0, \quad z^{k+1} \ge z^k$$

 $(z^{k+1})^T (z^{k+1} - z^k) = 0$

similar constraints to neural network verification

Liu et al. (2021), Albarghouthi (2021)

Relaxing verification problem to an SDP

The verification problem is NP-hard

(by reduction from 0-1 integer programming)

convex semidefinite program relaxation

step

verification constraint

relaxed constraint

elementwise maximum (e.g., box projections, soft-thresholding,...)

$$z^{k+1} = \max\{z^k, 0\}$$

$$z^{k+1} = \max\{z^k, 0\} \qquad z^{k+1} \ge 0, \quad z^{k+1} \ge z^k$$
$$(z^{k+1})^T (z^{k+1} - z^k) = 0$$

$$z^{k+1} \ge 0, \quad z^{k+1} \ge z^k$$

$$\mathbf{tr} \left(\begin{bmatrix} I & -I/2 \\ -I/2 & 0 \end{bmatrix} M \right) = 0$$

$$M \succeq \begin{bmatrix} z^{k+1} \\ z^k \end{bmatrix} \begin{bmatrix} z^{k+1} \\ z^k \end{bmatrix}^T$$

depends on iterate dimensions

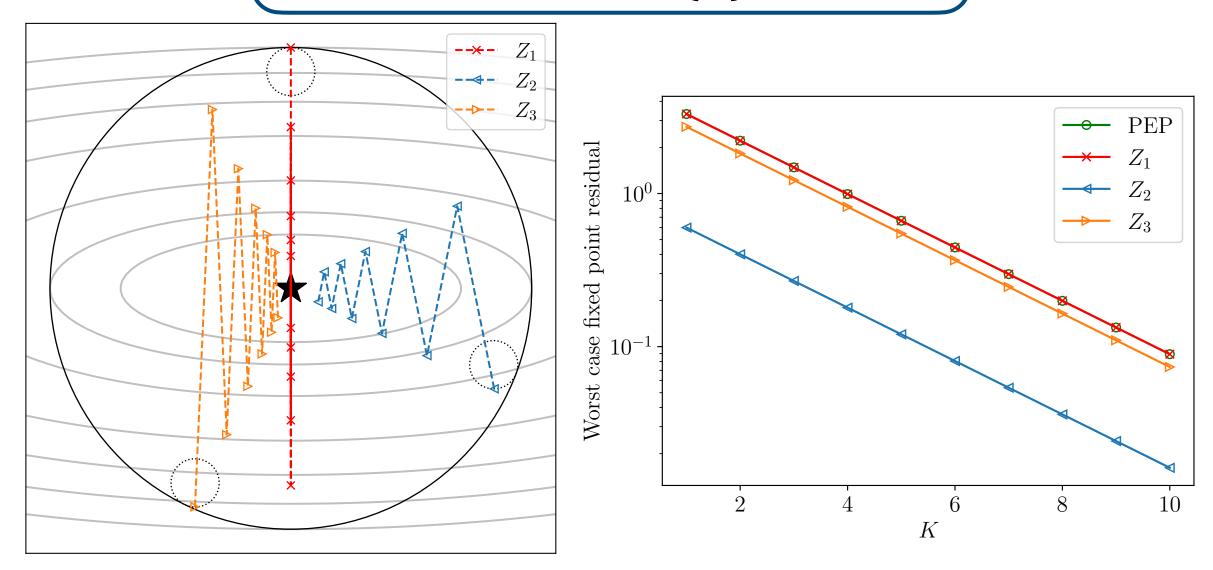
Unconstrained QP

Exact SDP reformulation

warm-starts

case I

$$Z_{ heta}(x)=Z_1,Z_2, \text{ or } Z_3$$
 $x\in\mathcal{X}=\{0\}$



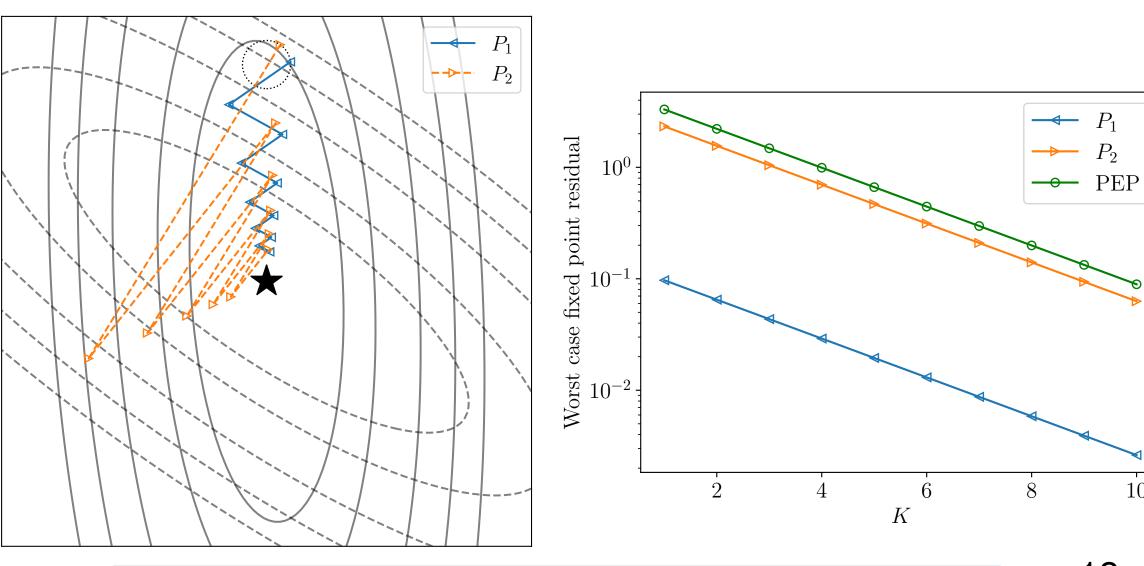
minimize $(1/2)z^TPz + x^Tz$ parameters

verification problem

maximize
$$\|z^K-z^{K-1}\|$$
 gradient descent subject to $z^{k+1}=z^k-\theta(Pz^k+x), \quad k=0,\ldots,K-1$ $z^0=Z_\theta(x), \quad x\in\mathcal{X}$

rotated functions

$$Z_{\theta}(x) = \{z \mid \|z - 0.9 \cdot \mathbf{1}\| \leq 0.1\}$$
 case II $x \in \mathcal{X} = \{0\}$
$$P_1, P_2 \quad \text{rotations of } P$$



Nonnegative least-squares verification

nonnegative least squares

$$\begin{array}{ll} \text{minimize} & (1/2) \|Az - \pmb{x}\|_2^2 \\ \text{subject to} & z \geq 0 & \uparrow \\ & \text{parameters} \end{array}$$

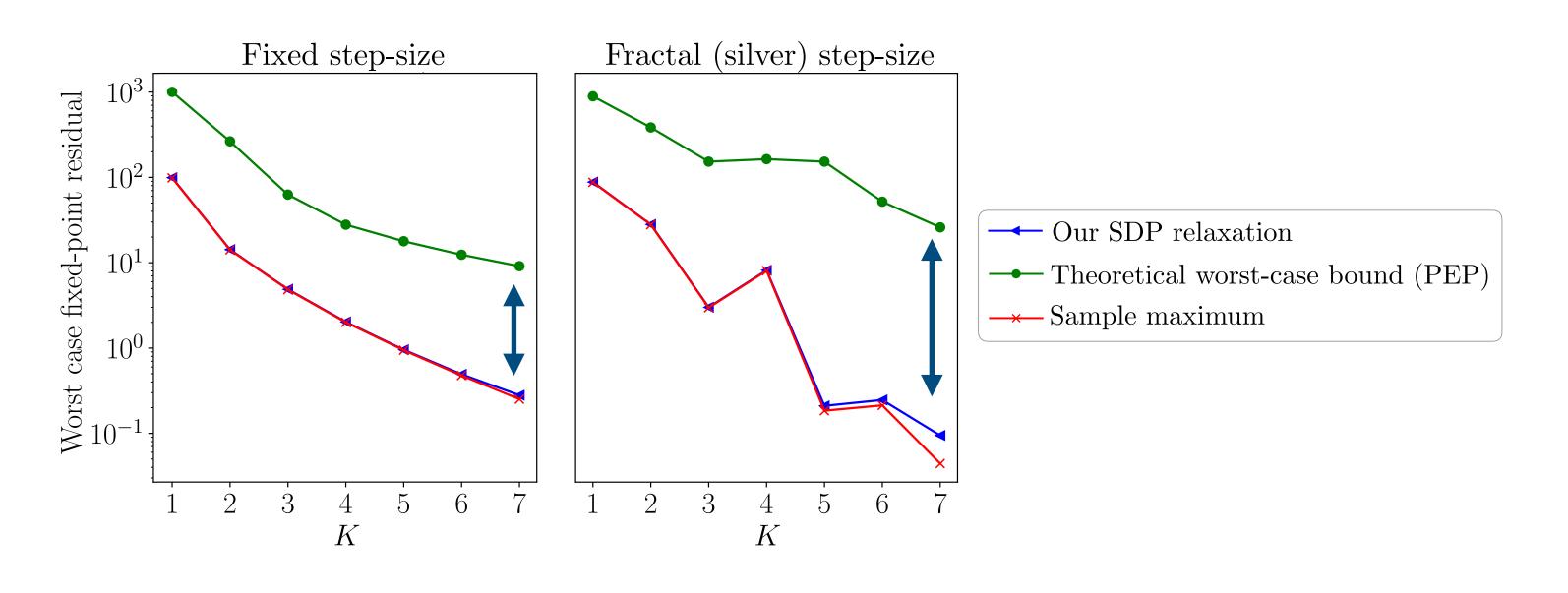
verification problem

maximize
$$\|z^K-z^{K-1}\|$$
 subject to $z^{k+1}=\max\{(I-\theta A^TA)z^k+\theta(A^Tx),0\}, \quad k=0,\dots,K-1$

projected

gradient

$$z^0 = \{0\}, \quad x \in \mathcal{X} = \{x \mid ||x - 30 \cdot \mathbf{1}|| \le 0.5\}$$



10x-1000x reduction (exploiting parametric structure)

computationally more expensive than PEP (up to 1000 seconds for these instances)

Verification of First-Order Methods for Parametric Quadratic Optimization

V. Ranjan and B. Stellato

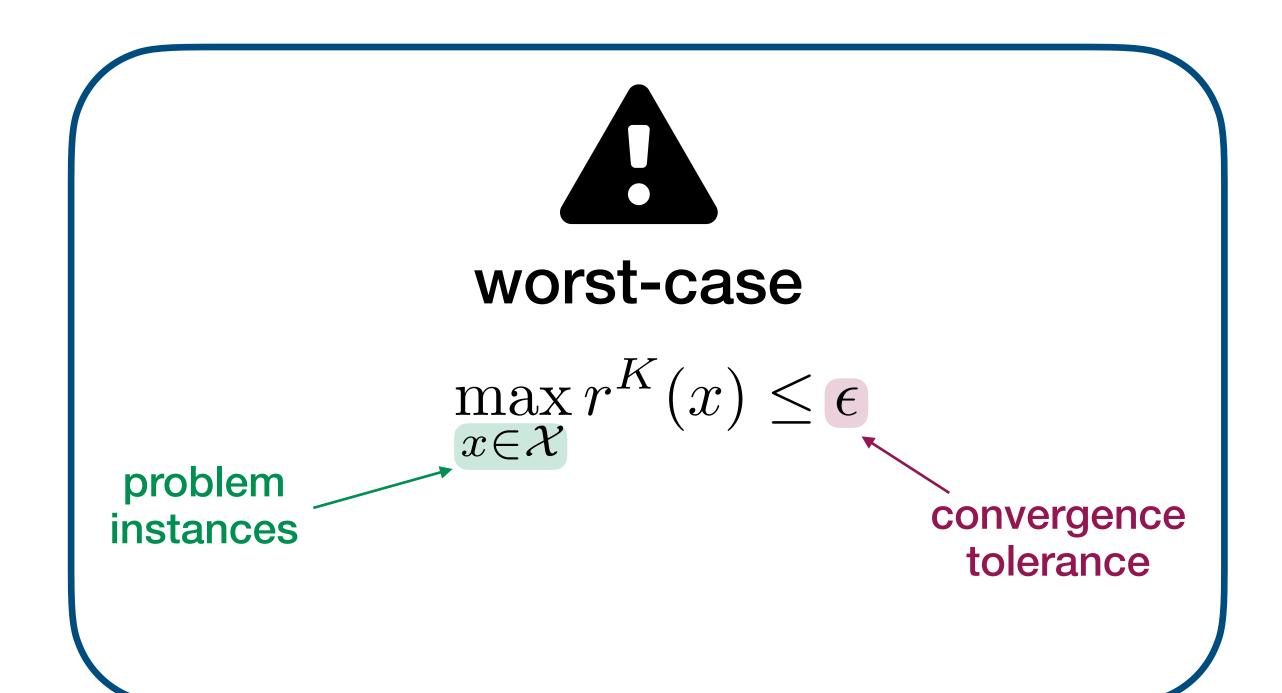
🛂 arXiv e-prints:2403.03331 (2024)

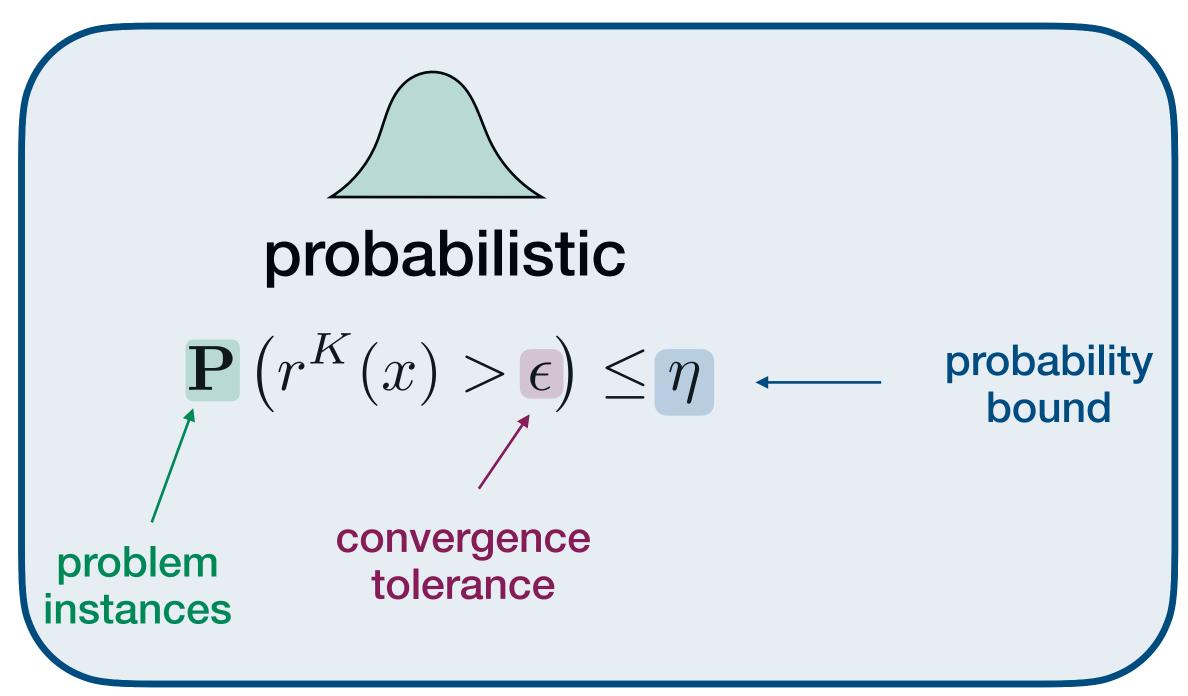
Verifying the algorithm performance after K iterations

goal

estimate norm of fixed-point residual

$$r^K(x) = ||z^K - z^{K-1}||$$





Probabilistic analysis

goal

estimate probability of computing bad-quality solutions

$$\mathbf{P}(r^K(x) > \epsilon)$$

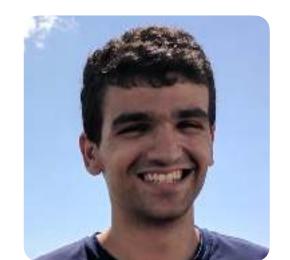
any metric (e.g., fixed-point residual)

data

issue we don't know P!

$$D = \{x^i\}_{i=1}^{N}$$

how can we bound the true probability?



Our recipe to bound performance

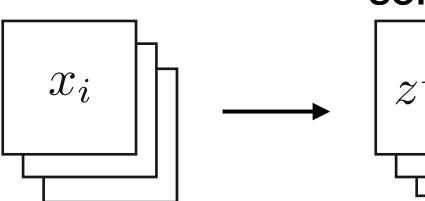
goal

estimate probability of computing bad-quality solutions

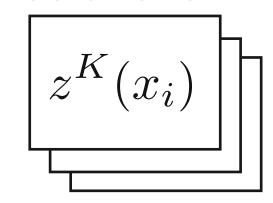
$$\mathbf{P}(r^K(x)>\epsilon) = \mathbf{E}(e(x))$$
 any metric error (e.g., fixed-point residual)
$$\mathbf{1}(r^K(x)>\epsilon)$$

 ${\rm run} \ K {\rm steps} \\ {\rm for} \ N {\rm parametric\ instances} \\$

instances



candidate solutions



step 2

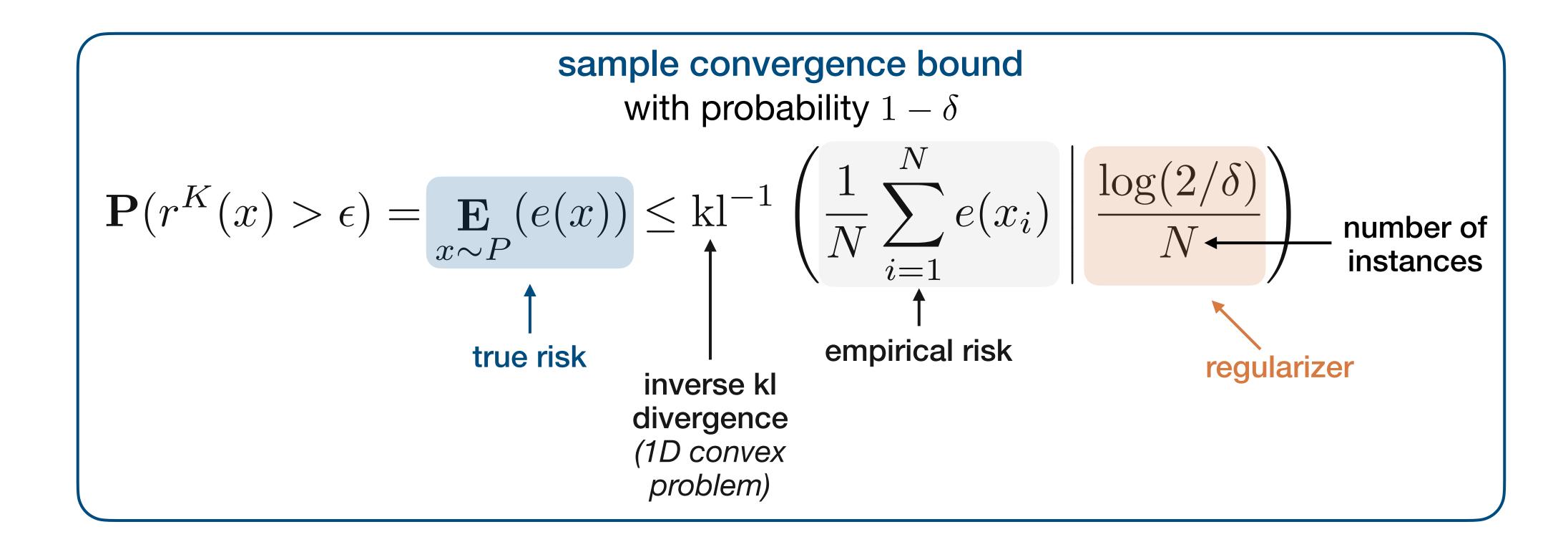
compute empirical risk

$$\frac{1}{N} \sum_{i=1}^{N} e(x_i)$$

step 3 bound true risk (next slide)

$$\mathbf{E}_{x \sim P}(e(x)) \leq \mathsf{bound}$$

Statistical learning gives us probabilistic guarantees

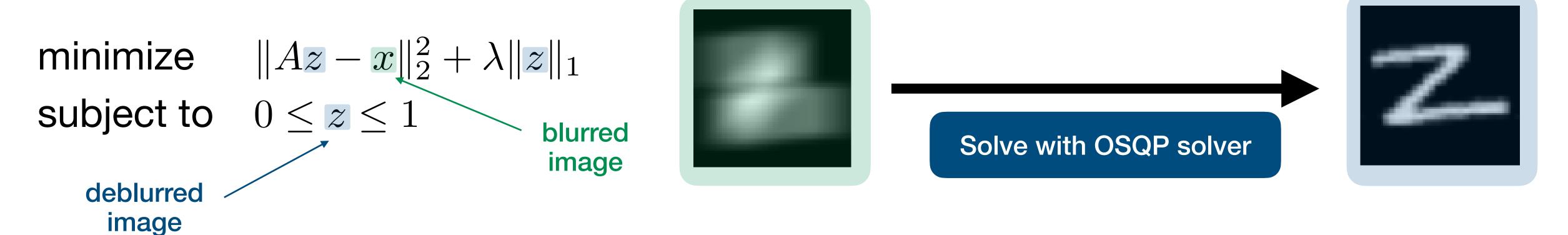


interpretation of bound equal to ${\cal B}$

With probability $1-\delta$, the fixed-point residual is above ϵ after K steps B fraction of times

Langford (2001)

Success rates for OSQP in image deblurring

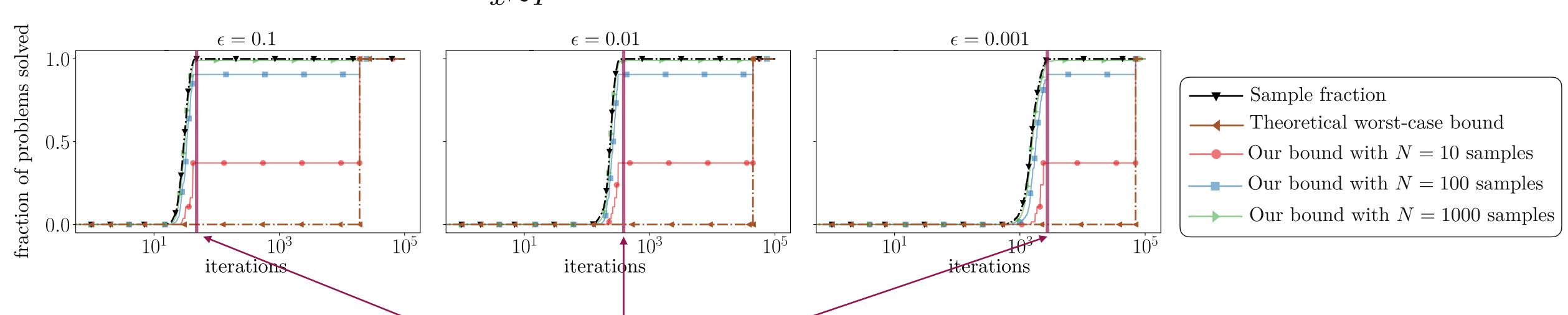


fraction of problems solved

iterations required

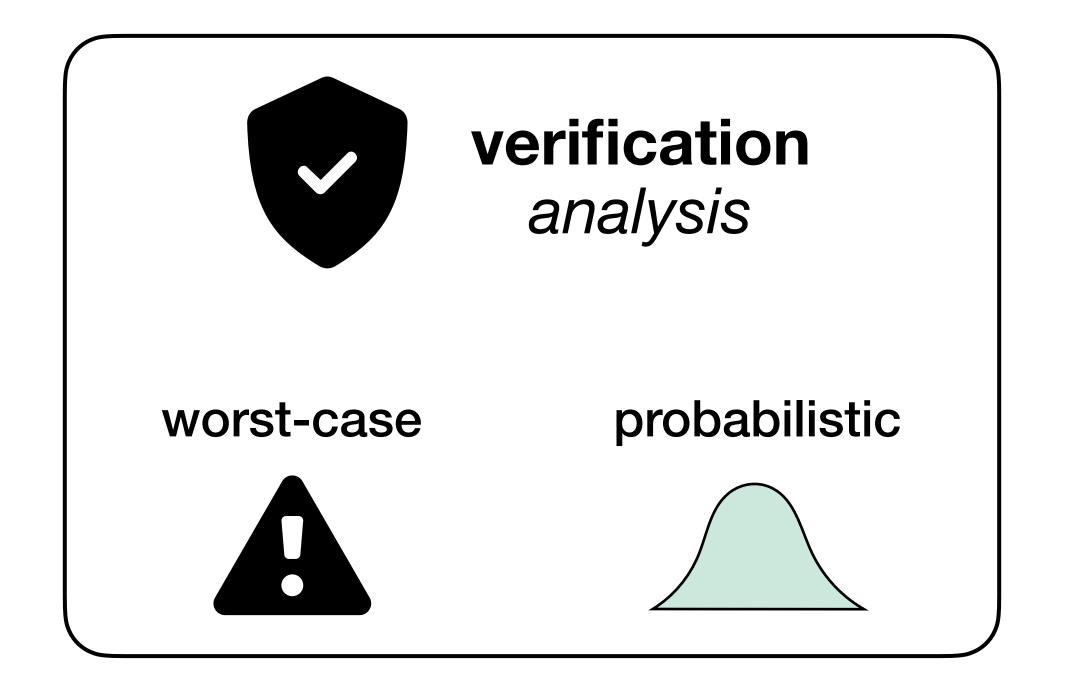
to solve all test instances

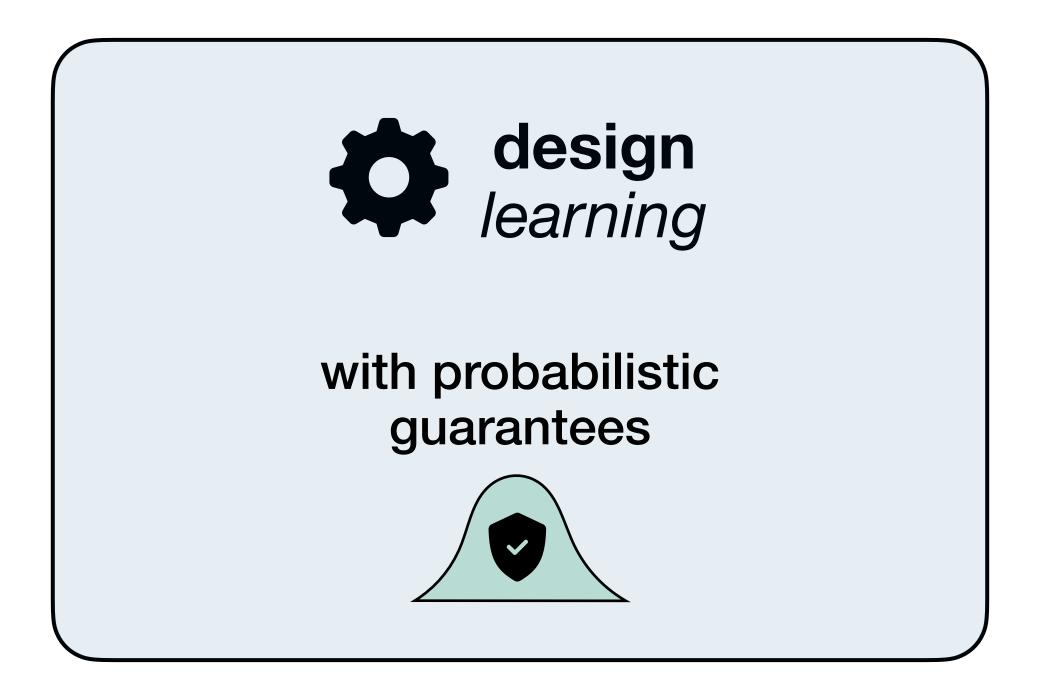
 $1 - \mathbf{E}_{x \sim P}(e(x)) - \mathbf{1}(r^K(x) > \epsilon)$



24

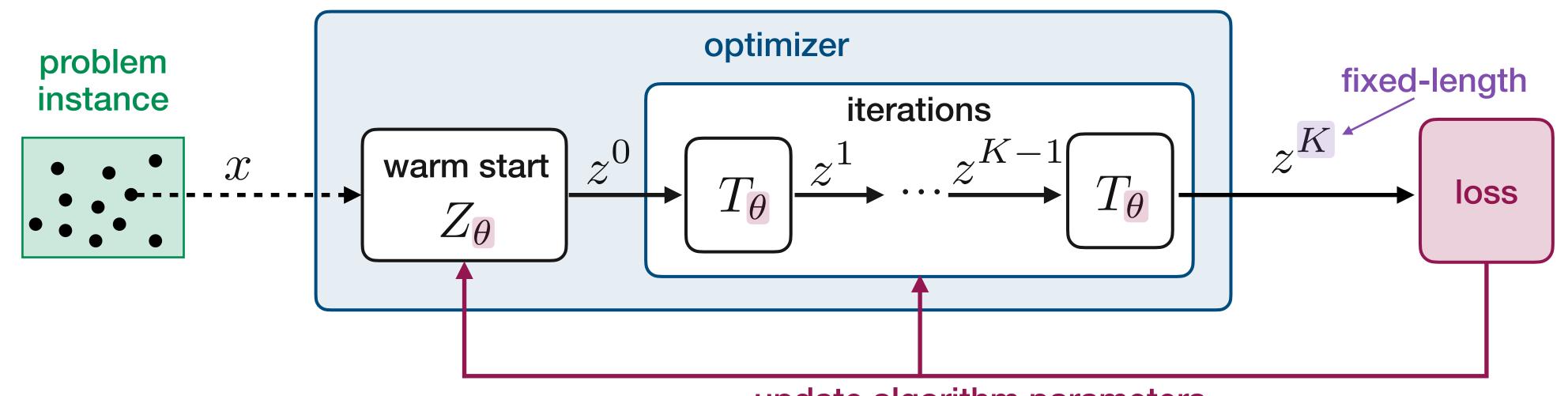
First-order methods in parametric convex optimization





Algorithm design

Training algorithms as fixed-length computational graphs



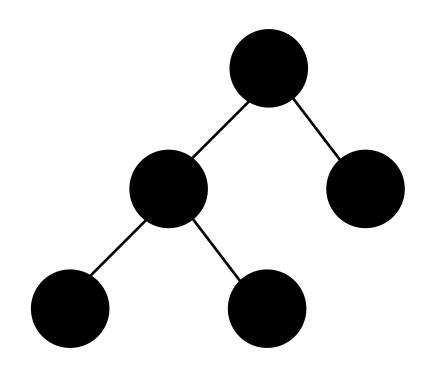
update algorithm parameters (step-sizes, accelerations, warm-starts)

example projected gradient descent
$$z^{k+1} = \Pi_{C(x)}(z^k - \theta \nabla_z f(z^k, x))$$

Learning can accelerate optimizers

Combinatorial optimization

B. Dilkina, E. Khalil, A. Lodi, P. Van Hentenryck, P. Bonami, S. Jegelka, ...



our previous contributions

The voice of optimization

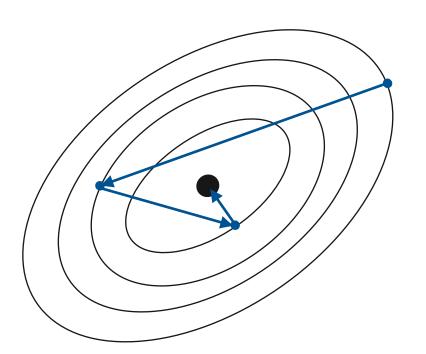
D. Bertsimas, B. Stellato *Machine Learning (2021)*

Online mixed-integer optimization in milliseconds

D. Bertsimas, B. Stellato INFORMS Journal on Computing (2022)

Continuous optimization

W. Yin, B. Amos, Z. Kolter, M. Andrychowicz, C. Finn, P. Van Hentenryck ...



our previous contributions

Accelerating quadratic optimization with reinforcement learning
J. Ichnowski, P. Jain, B. Stellato, ... et al. NeurIPS (2021)

No performance guarantees

Can we build rigorous and data-driven performance guarantees?

Statistical learning theory for optimization algorithms

	supervised learning	learning to optimize
input		problem instance (with parameter x)
hypothesis	cat	residual $r_{\theta}^{K}(x)$
error	0 (1 if wrong)	$e_{\theta}(x) = 1(r_{\theta}^{K}(x) > \epsilon)$
guarantees	expected loss on new data	expected loss on new problem instances

algorithm parameters
(step-sizes,
accelerations,
warm-starts)

PAC-Bayes generalization bounds

learning task

 $\underset{\Theta}{\mathsf{minimize}} \, \underset{\theta \sim \Theta}{\mathbf{E}} \, \underset{x \sim P}{\mathbf{E}}(e_{\theta}(x))$

distribution of algorithm parameters (step-sizes, accelerations, warm-starts)

- 1. Pick prior Θ_0 before observing data
- 2. Observe data $D = \{x^i\}_{i=1}^{N}$
- 3. Learn posterior Θ : $\theta \sim \Theta$

can be

anything

4. Bound performance $\mathbf{P}^N\left(\mathbf{E}_{\theta \sim \Theta} \mathbf{E}_{x \sim P}(e_{\theta}(x)) \leq \hat{t}_N\right) \geq 1 - \delta$

data-driven bound

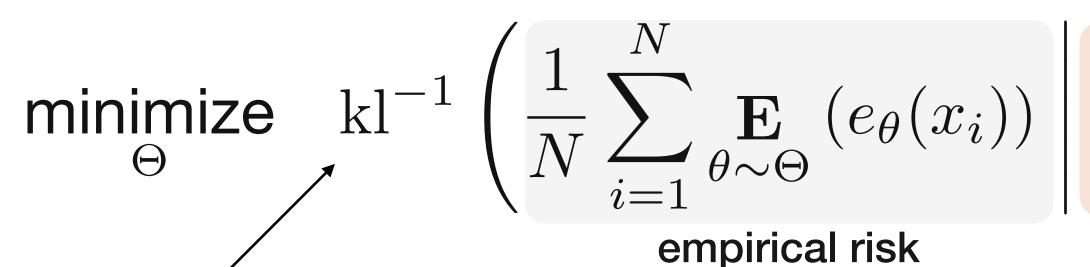
regularizer

$$\hat{t}_N = \text{kl}^{-1} \left(\frac{1}{N} \sum_{i=1}^N \mathbf{E}_{\theta \sim \Theta} (e_{\theta}(x_i)) \middle| \frac{\text{KL}(\Theta||\Theta_0) + \log(2\sqrt{N}/\delta)}{2N} \right)$$

Learning optimizers with guarantees

minimize data-driven upper bound

with stochastic gradient methods



$$\frac{\mathrm{KL}(\Theta||\Theta_0) + \log(2\sqrt{N}/\delta)}{2N}$$

regularizer

derivative through convex optimization problem

Reeb et al. (2018)

results

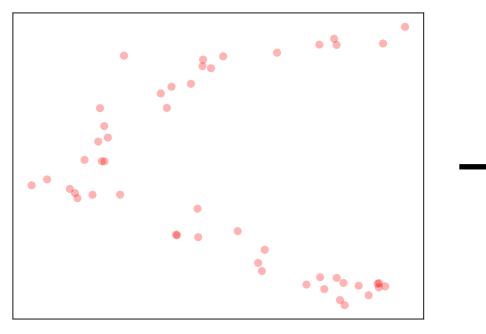
distribution over algorithm parameters

$$\theta \sim \Theta = \mathcal{N}(\mu, \lambda I)$$
 (e.g., sequence of step-sizes)

numerical performance bounds

Robust Kalman Filtering with learned warm starts

noisy trajectory



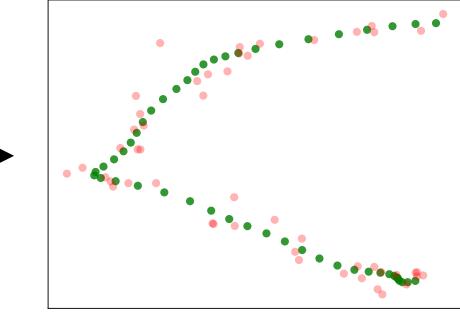
$$x = \{y_t\}_{t=0}^{T-1}$$

second-order cone program solver (SCS)

minimize
$$\sum_{t=0}^{T}\|w_t\|_2^2 + \psi(v_t)$$
 subject to
$$s_{t+1} = As_t + Bw_t, \quad t=0,\ldots,T-1$$

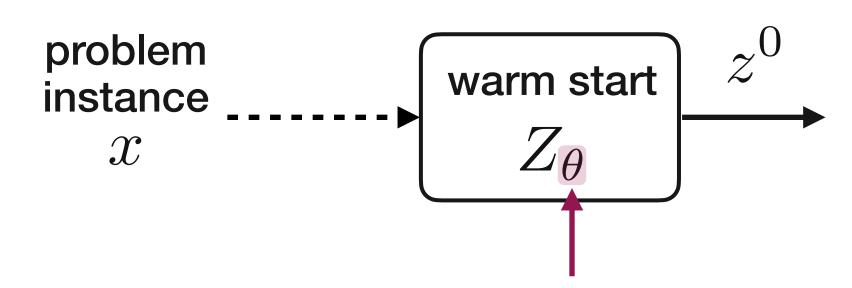
$$y_t = Cs_t + v_t, \qquad t=0,\ldots,T$$

recovered trajectory



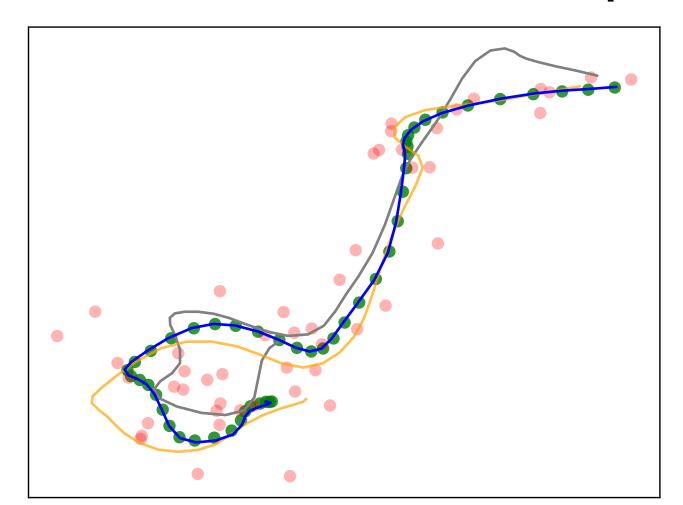
$$z^* = \{s_t^*, w_t^*, v_t^*\}_{t=0}^{T-1}$$

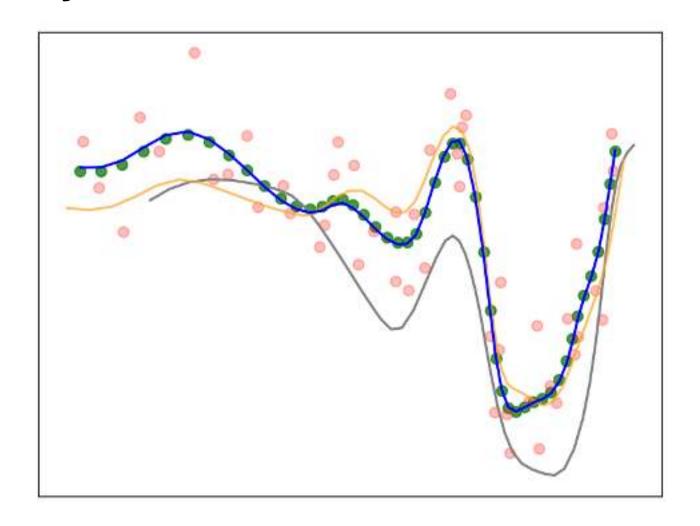
goal learn warm-start mapping



Robust Kalman Filtering with learned warm starts

two example trajectories





points

- noisy trajectory
- optimal solution

Solution after 5 fixed-point iterations with different warm-starts

- nearest neighbor
- previous solution
- \blacksquare learned K=5

with learning, we can estimate the state well

we also showed

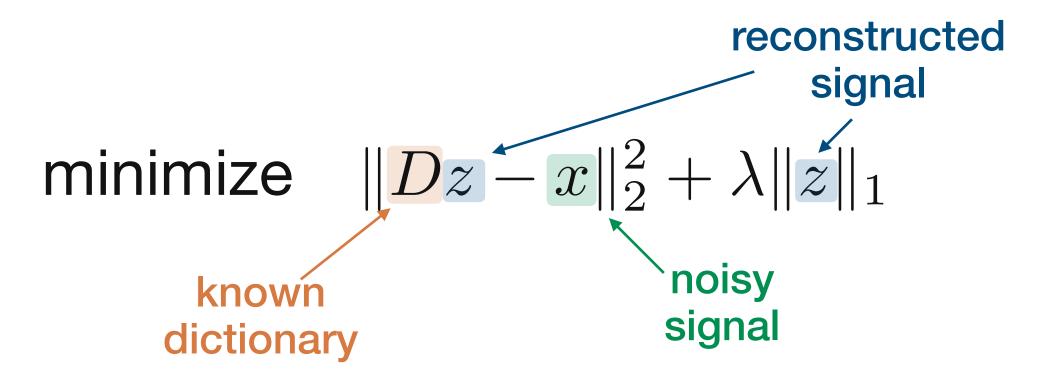
warm-start specific

PAC Bayes generalization

guarantees

Learning to Warm-Start Fixed-Point Optimization Algorithms R. Sambharya, G. Hall, B. Amos, and B. Stellato *Journal of Machine Learning Research (2024)*github.com/stellatogrp/l2ws

Signal reconstruction with learned optimizer



performance metric normalized mean squared error

$$NMSE_{dB}(z) = 10 \log_{10} \left(||z - \overline{z}||^2 / ||\overline{z}||^2 \right)$$
ground truth

classical algorithm (ISTA)

$$z^{k+1} = \phi_{\lambda t} \left(z^k - t2D^T (Dz^k - x) \right)$$

shrinkage operator

$$\phi_{\lambda t}(v) = \max\{v, \lambda t\} - \max\{-v, \lambda t\}$$

learned variants (e.g., ALISTA)

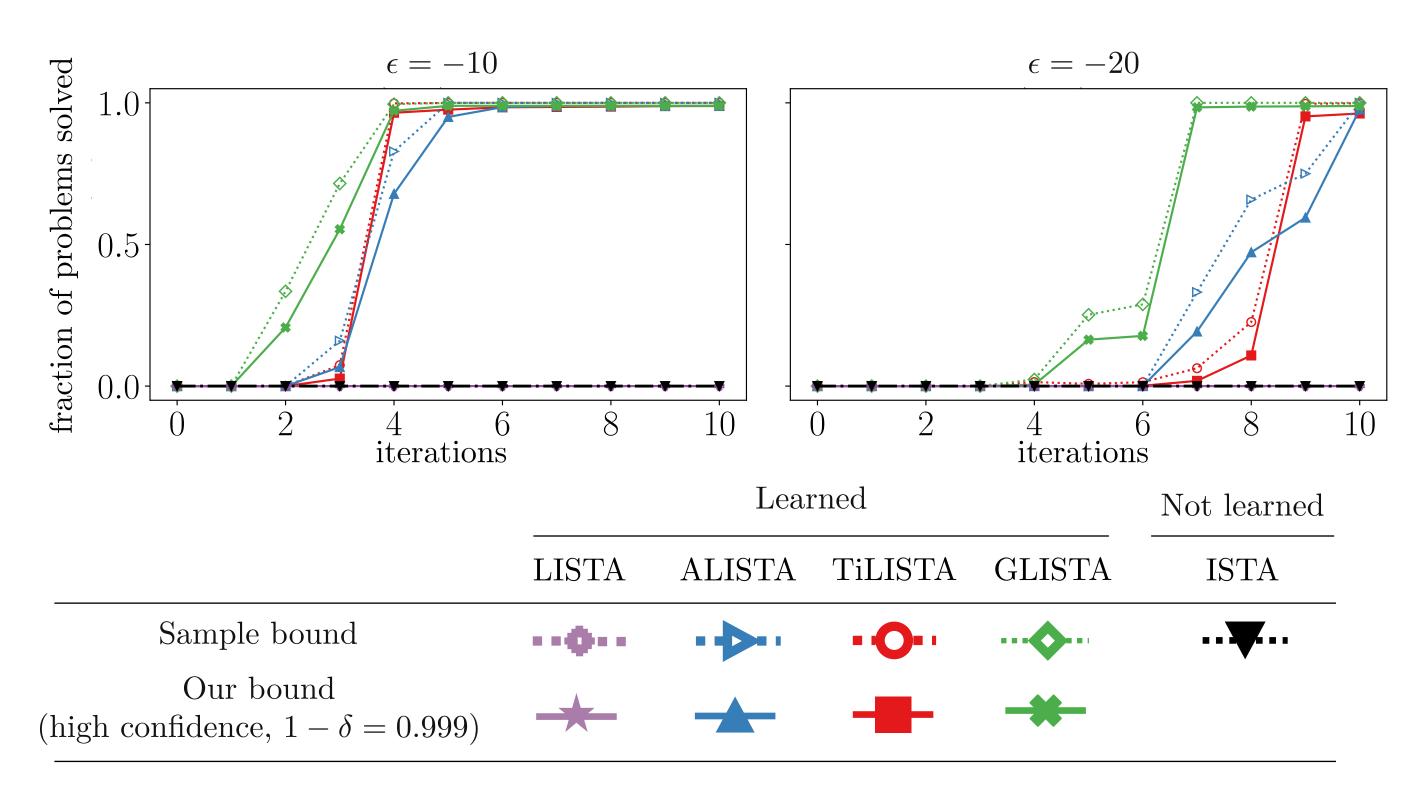
$$z^{k+1} = \phi_{\gamma^k} \left(z^k - \psi^k W^T (Dz^k - x) \right)$$
 algorithm parameters

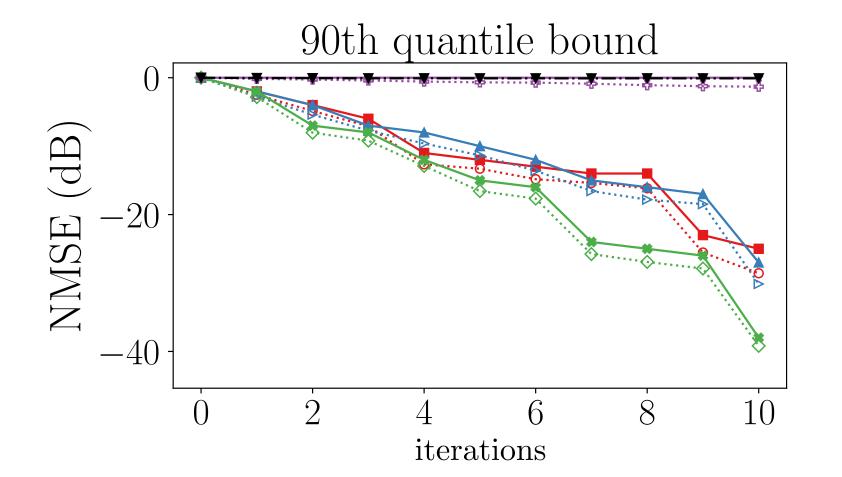
$$\theta = \{\gamma^k, \psi^k\}_{k=0}^{K-1}$$

Success rates for learned optimizers in signal reconstruction

fraction of problems solved

$$1 - \mathbf{E}_{\theta \sim \Theta} \mathbf{E}_{x \sim P} (e_{\theta}(x)) \longleftarrow e_{\theta}(x) = \mathbf{1}(\text{NMSE}_{dB}(z^{K}(x)) > \epsilon)$$





our bound are close to the empirical performance

learned optimizers provably perform well in just 10 iterations

Data-Driven Performance Guarantees for Classical and Learned Optimizers

R. Sambharya and B. Stellato *arxiv.org: 2404.13831 (2024)*

github.com/stellatogrp/data_driven_optimizer_guarantees

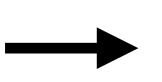
Conclusions

Algorithm Design and Verification for Parametric Convex Optimization

- 1. parametric structure matters
- 2. data can help us
 - design optimization algorithms
 - verify their performance
- 3. we should rethink optimization algorithms

traditional view

- general-purpose one-size-fits all



new view

- task-specific
- trainable
- deployable anywhere

Backup

PAC-Bayes generalization guarantees for learned warm starts

$$eta$$
-contractive case $||Tx-Ty||_2 \leq eta ||x-y||_2 \quad \forall x,y$ $eta \in (0,1)$

Theorem: for any $\gamma>0$ with probability at least $1-\delta$

$$\frac{\mathbf{E}}{x \sim \mathcal{X}} \ell_{\theta}^{k}(x) \leq \frac{1}{N} \sum_{i=1}^{N} \ell_{\theta}^{k}(x_{i}) + 2\beta^{k} \gamma + \mathcal{O}\left(\frac{\beta^{k}}{\gamma}(2D+1)\sqrt{\frac{c_{2}(\theta) + \log(\frac{LN}{\delta})}{N}}\right)$$
risk empirical risk penalty term bound on $\|z^{\star}(x)\|_{2}$

As the number of iterations $k \to \infty$ the penalty term goes to zero

The contractive factor β directly affects the penalty term

We combine operator theory with PAC-Bayes theory to get the bound

Computing the KL Inverse with Convex Optimization

KL divergence between Bernoulli distributions

$$kl(q || p) := KL(Bernoulli(q), Bernoulli(p))$$

Many PAC-Bayes-type bounds bound the risk implicitly

$$kl(q||p) \leq c$$

empirical risk risk regularizer

Inverting the KL divergence

$$p^{\star} = \text{kl}^{-1}(q \mid c) = \text{maximize} \quad p$$

$$\text{subject to} \quad q \log(\frac{q}{p}) + (1-q)\log(\frac{1-q}{1-p}) \leq c$$

$$0 \leq p \leq 1$$