# Data-Driven Algorithm Design and Verification for Parametric Convex Optimization

Bartolomeo Stellato

Department of Operations Research and Financial Engineering

Department of Electrical and Computer Engineering

Department of Computer Science







## Real-time optimization can help us



**objective** f: energy consumption, costs **constraints** C: dynamics, physical limits

re-planning in real-time is the key to effective decision-making

How do we solve such problems?

## First-order methods are now widely popular...

use only first-order information (e.g., gradients) to solve optimization problems

example projected gradient descent

 $\begin{array}{ll} \text{minimize} & f(z,x) \\ \text{subject to} & z \in C(x) \end{array}$ 

$$z^{k+1} = \Pi_{C(x)}(z^k - \theta \nabla f(z^k, x))$$
   
 
$$\uparrow \qquad \qquad \uparrow$$
 projection gradient step

#### benefits of first-order methods

- √ cheap iterations
- √ easy to warm-start

embedded optimization



large-scale optimization



## ...and they can solve many constrained convex problems!

### Linear Programs



Applegate, Díaz, Hinder, Lu, Lubin, O'Donoghue, Schudy (2021)

### Quadratic Programs



OSQP

Stellato, Banjac, Goulart, Bemporad, Boyd (2020)

### **Conic Programs**



O'Donoghue, Chu, Parikh, Boyd (2016)

## But they can converge slowly

major issue in safety-critical applications with

real-time requirements

limited computing power





### main idea

in most applications we repeatedly solve the same problem with varying parameters

minimize f(z, x) subject to  $z \in C(x)$ 



## First-order methods in parametric convex optimization





## Performance verification

## Convergence of first-order methods

#### iterations

$$z^{k+1} = T(z^k, x)$$
 for  $k = 0, 1, ...$  operator (e.g., contractive, averaged)

goal: find fixed-points

(converges to 0)

$$z^{\star} = T(z^{\star}, x)$$



### performance metric

$$r^k(x) = \|T(z^{k-1}) - z^{k-1}\| = \|z^k - z^{k-1}\|$$
 fixed-point residual

## Classical convergence bounds via Performance Estimation



Gram matrix reformulation

$$G = \begin{bmatrix} \|z^{1} - z^{0}\|_{2}^{2} & (z^{1} - z^{0})^{T}g^{1} & (z^{1} - z^{0})^{T}g^{0} \\ (z^{1} - z^{0})^{T}g^{1} & \|g^{1}\|_{2}^{2} & (g^{1})^{T}g^{0} \\ (z^{1} - z^{0})^{T}g^{0} & (g^{1})^{T}g^{0} & \|g^{0}\|_{2}^{2} \end{bmatrix}$$

gradients

independent from iterate dimensions

### Classical worst-case convergence bounds can be very loose

### image deblurring problem emnist dataset







why are worst-case bounds pessimistic?

## Issues with classical convergence analysis

#### general function classes

(f is strongly convex and smooth...)



we may never encounter that function

#### pessimistic bounds



we may never start from that point

### practical settings

minimize f(z,x)

subject to  $z \in C(x)$ 

same problem with varying parameters

 $x \sim \mathbf{P}$ 

(unknown distribution)

## Algorithms as fixed-length computational graphs



algorithm parameters

(e.g., step-sizes, accelerations, warm-starts...)

#### example

projected gradient descent

$$z^{k+1} = \Pi_{C(x)}(z^k - \theta \nabla_z f(z^k, x))$$

## Verifying the algorithm performance after K iterations

### goal

estimate norm of fixed-point residual

$$r^K(x) = ||z^K - z^{K-1}||$$





#### **Vinit Ranjan**



## Worst-case algorithm verification

Parametric quadratic optimization

$$\max_{x \in \mathcal{X}} r^K(x) = \text{ maximize } \|z^K - z^{K-1}\|$$
 
$$\text{subject to } z^{k+1} = T_{\theta}(z^k,$$

maximize 
$$\|z^K-z^{K-1}\|$$
 subject to  $z^{k+1}=T_{ heta}(z^k,x),\quad k=0,\ldots,K-1$   $z^0=Z_{ heta}(x),\quad x\in\mathcal{X}$  problem instances

performance

metric

directly encode proximal algorithms without interpolation inequalities

#### step

#### verification constraint

#### affine

(e.g., gradient, restarts, linear system solves)

$$Dz^{k+1} = Az^k + Bz$$

$$Dz^{k+1} = Az^k + Bx \qquad Dz^{k+1} = Az^k + Bx$$

#### elementwise maximum

(e.g., separable projections, soft-thresholding,...)

$$z^{k+1} = \max\{z^k, 0\}$$

$$z^{k+1} \ge 0, \quad z^{k+1} \ge z^k$$
  
 $(z^{k+1})^T (z^{k+1} - z^k) = 0$ 

similar constraints to neural network verification

Liu et al. (2021), Albarghouthi (2021)

## Relaxing verification problem to an SDP

The verification problem is NP-hard

(by reduction from 0-1 integer programming)

convex semidefinite program relaxation

step

verification constraint

relaxed constraint

elementwise maximum (e.g., box projections, soft-thresholding,...)

$$z^{k+1} = \max\{z^k, 0\}$$

$$z^{k+1} = \max\{z^k, 0\} \qquad z^{k+1} \ge 0, \quad z^{k+1} \ge z^k$$
$$(z^{k+1})^T (z^{k+1} - z^k) = 0$$

$$z^{k+1} \ge 0, \quad z^{k+1} \ge z^k$$

$$\mathbf{tr} \left( \begin{bmatrix} I & -I/2 \\ -I/2 & 0 \end{bmatrix} M \right) = 0$$

$$M \succeq \begin{bmatrix} z^{k+1} \\ z^k \end{bmatrix} \begin{bmatrix} z^{k+1} \\ z^k \end{bmatrix}^T$$

depends on iterate dimensions

## **Unconstrained QP**

### **Exact SDP reformulation**

#### warm-starts

case I

$$Z_{ heta}(x)=Z_1,Z_2, \text{ or } Z_3$$
  $x\in\mathcal{X}=\{0\}$ 



minimize  $(1/2)z^TPz + x^Tz$  parameters

#### verification problem

maximize 
$$\|z^K-z^{K-1}\|$$
 gradient descent subject to  $z^{k+1}=z^k-\theta(Pz^k+x), \quad k=0,\ldots,K-1$   $z^0=Z_\theta(x), \quad x\in\mathcal{X}$ 

#### rotated functions

$$Z_{\theta}(x) = \{z \mid \|z - 0.9 \cdot \mathbf{1}\| \leq 0.1\}$$
 case II  $x \in \mathcal{X} = \{0\}$  
$$P_1, P_2 \quad \text{rotations of } P$$



## Nonnegative least-squares verification

#### nonnegative least squares

$$\begin{array}{ll} \text{minimize} & (1/2) \|Az - \pmb{x}\|_2^2 \\ \text{subject to} & z \geq 0 & \uparrow \\ & \text{parameters} \end{array}$$

verification problem

maximize 
$$\|z^K-z^{K-1}\|$$
 subject to  $z^{k+1}=\max\{(I-\theta A^TA)z^k+\theta(A^Tx),0\}, \quad k=0,\dots,K-1$ 

projected

gradient

$$z^0 = \{0\}, \quad x \in \mathcal{X} = \{x \mid ||x - 30 \cdot \mathbf{1}|| \le 0.5\}$$



10x-1000x reduction (exploiting parametric structure)

computationally more expensive than PEP (up to 1000 seconds for these instances)



Verification of First-Order Methods for Parametric Quadratic Optimization

V. Ranjan and B. Stellato

🛂 arXiv e-prints:2403.03331 (2024)

## Verifying the algorithm performance after K iterations

### goal

estimate norm of fixed-point residual

$$r^K(x) = ||z^K - z^{K-1}||$$





## Probabilistic analysis

### goal

estimate probability of computing bad-quality solutions

$$\mathbf{P}(r^K(x) > \epsilon)$$

any metric (e.g., fixed-point residual)

data



issue we don't know P!

$$D = \{x^i\}_{i=1}^{N}$$

how can we bound the true probability?



## Our recipe to bound performance

goal

estimate probability of computing bad-quality solutions

$$\mathbf{P}(r^K(x)>\epsilon) = \mathbf{E}(e(x))$$
 any metric error (e.g., fixed-point residual) 
$$\mathbf{1}(r^K(x)>\epsilon)$$



 ${\rm run} \ K {\rm steps} \\ {\rm for} \ N {\rm parametric\ instances} \\$ 

instances



candidate solutions



step 2

compute empirical risk

$$\frac{1}{N} \sum_{i=1}^{N} e(x_i)$$

step 3 bound true risk (next slide)

$$\mathbf{E}_{x \sim P}(e(x)) \leq \mathsf{bound}$$

## Statistical learning gives us probabilistic guarantees



#### interpretation of bound equal to ${\cal B}$

With probability  $1-\delta$ , the fixed-point residual is above  $\epsilon$  after K steps B fraction of times

Langford (2001)

## Success rates for OSQP in image deblurring



fraction of problems solved

iterations required

to solve all test instances

 $1 - \mathbf{E}_{x \sim P}(e(x)) - \mathbf{1}(r^K(x) > \epsilon)$ 



24

## First-order methods in parametric convex optimization





# Algorithm design

## Training algorithms as fixed-length computational graphs



update algorithm parameters (step-sizes, accelerations, warm-starts)

example projected gradient descent 
$$z^{k+1} = \Pi_{C(x)}(z^k - \theta \nabla_z f(z^k, x))$$

## Learning can accelerate optimizers

#### Combinatorial optimization

B. Dilkina, E. Khalil, A. Lodi, P. Van Hentenryck, P. Bonami, S. Jegelka, ...



#### our previous contributions

#### The voice of optimization

D. Bertsimas, B. Stellato *Machine Learning (2021)* 

### Online mixed-integer optimization in milliseconds

D. Bertsimas, B. Stellato INFORMS Journal on Computing (2022)

#### Continuous optimization

W. Yin, B. Amos, Z. Kolter, M. Andrychowicz, C. Finn, P. Van Hentenryck ...



#### our previous contributions

Accelerating quadratic optimization with reinforcement learning
J. Ichnowski, P. Jain, B. Stellato, ... et al. NeurIPS (2021)

No performance guarantees

Can we build rigorous and data-driven performance guarantees?

## Statistical learning theory for optimization algorithms

|            | supervised learning       | learning to optimize                              |
|------------|---------------------------|---------------------------------------------------|
| input      |                           | problem instance<br>(with parameter x)            |
| hypothesis | cat                       | residual $r_{\theta}^{K}(x)$                      |
| error      | 0 (1 if wrong)            | $e_{\theta}(x) = 1(r_{\theta}^{K}(x) > \epsilon)$ |
| guarantees | expected loss on new data | expected loss on new problem instances            |

algorithm parameters
(step-sizes,
accelerations,
warm-starts)

## PAC-Bayes generalization bounds

### learning task

 $\underset{\Theta}{\mathsf{minimize}} \, \underset{\theta \sim \Theta}{\mathbf{E}} \, \underset{x \sim P}{\mathbf{E}}(e_{\theta}(x))$ 

distribution of algorithm parameters (step-sizes, accelerations, warm-starts)

- 1. Pick prior  $\Theta_0$  before observing data
- 2. Observe data  $D = \{x^i\}_{i=1}^{N}$
- 3. Learn posterior  $\Theta$ :  $\theta \sim \Theta$

can be

anything

4. Bound performance  $\mathbf{P}^N\left(\mathbf{E}_{\theta \sim \Theta} \mathbf{E}_{x \sim P}(e_{\theta}(x)) \leq \hat{t}_N\right) \geq 1 - \delta$ 

### data-driven bound

regularizer

$$\hat{t}_N = \text{kl}^{-1} \left( \frac{1}{N} \sum_{i=1}^N \mathbf{E}_{\theta \sim \Theta} (e_{\theta}(x_i)) \middle| \frac{\text{KL}(\Theta||\Theta_0) + \log(2\sqrt{N}/\delta)}{2N} \right)$$



## Learning optimizers with guarantees

### minimize data-driven upper bound

with stochastic gradient methods



$$\frac{\mathrm{KL}(\Theta||\Theta_0) + \log(2\sqrt{N}/\delta)}{2N}$$

regularizer

derivative through convex optimization problem

Reeb et al. (2018)

#### results

distribution over algorithm parameters

$$\theta \sim \Theta = \mathcal{N}(\mu, \lambda I)$$
 (e.g., sequence of step-sizes)

numerical performance bounds

## Robust Kalman Filtering with learned warm starts

#### noisy trajectory



$$x = \{y_t\}_{t=0}^{T-1}$$

#### second-order cone program solver (SCS)

minimize 
$$\sum_{t=0}^{T}\|w_t\|_2^2 + \psi(v_t)$$
 subject to 
$$s_{t+1} = As_t + Bw_t, \quad t=0,\ldots,T-1$$
 
$$y_t = Cs_t + v_t, \qquad t=0,\ldots,T$$

#### recovered trajectory



$$z^* = \{s_t^*, w_t^*, v_t^*\}_{t=0}^{T-1}$$

## goal learn warm-start mapping



## Robust Kalman Filtering with learned warm starts

#### two example trajectories





#### points

- noisy trajectory
- optimal solution

Solution after 5 fixed-point iterations with different warm-starts

- nearest neighbor
- previous solution
- $\blacksquare$  learned K=5

with learning, we can estimate the state well

we also showed

warm-start specific

PAC Bayes generalization

guarantees



Learning to Warm-Start Fixed-Point Optimization Algorithms R. Sambharya, G. Hall, B. Amos, and B. Stellato *Journal of Machine Learning Research (2024)*github.com/stellatogrp/l2ws

## Signal reconstruction with learned optimizer



performance metric normalized mean squared error

$$NMSE_{dB}(z) = 10 \log_{10} \left( ||z - \overline{z}||^2 / ||\overline{z}||^2 \right)$$
ground truth

### classical algorithm (ISTA)

$$z^{k+1} = \phi_{\lambda t} \left( z^k - t2D^T (Dz^k - x) \right)$$

shrinkage operator

$$\phi_{\lambda t}(v) = \max\{v, \lambda t\} - \max\{-v, \lambda t\}$$

### learned variants (e.g., ALISTA)

$$z^{k+1} = \phi_{\gamma^k} \left( z^k - \psi^k W^T (Dz^k - x) \right)$$
 algorithm parameters

$$\theta = \{\gamma^k, \psi^k\}_{k=0}^{K-1}$$

### Success rates for learned optimizers in signal reconstruction

### fraction of problems solved

$$1 - \mathbf{E}_{\theta \sim \Theta} \mathbf{E}_{x \sim P} (e_{\theta}(x)) \longleftarrow e_{\theta}(x) = \mathbf{1}(\text{NMSE}_{dB}(z^{K}(x)) > \epsilon)$$





our bound are close to the empirical performance

learned optimizers provably perform well in just 10 iterations



#### Data-Driven Performance Guarantees for Classical and Learned Optimizers

R. Sambharya and B. Stellato *arxiv.org: 2404.13831 (2024)* 

github.com/stellatogrp/data\_driven\_optimizer\_guarantees

## Conclusions

### Algorithm Design and Verification for Parametric Convex Optimization

- 1. parametric structure matters
- 2. data can help us
  - design optimization algorithms
  - verify their performance
- 3. we should rethink optimization algorithms

### traditional view



- general-purpose one-size-fits all





#### new view

- task-specific
- trainable
- deployable anywhere





# Backup

## PAC-Bayes generalization guarantees for learned warm starts

$$eta$$
-contractive case  $||Tx-Ty||_2 \leq eta ||x-y||_2 \quad \forall x,y$   $eta \in (0,1)$ 

**Theorem:** for any  $\gamma>0$  with probability at least  $1-\delta$ 

$$\frac{\mathbf{E}}{x \sim \mathcal{X}} \ell_{\theta}^{k}(x) \leq \frac{1}{N} \sum_{i=1}^{N} \ell_{\theta}^{k}(x_{i}) + 2\beta^{k} \gamma + \mathcal{O}\left(\frac{\beta^{k}}{\gamma}(2D+1)\sqrt{\frac{c_{2}(\theta) + \log(\frac{LN}{\delta})}{N}}\right)$$
risk empirical risk penalty term bound on  $\|z^{\star}(x)\|_{2}$ 

As the number of iterations  $k \to \infty$  the penalty term goes to zero

The contractive factor  $\beta$  directly affects the penalty term

We combine operator theory with PAC-Bayes theory to get the bound

## Computing the KL Inverse with Convex Optimization

KL divergence between Bernoulli distributions

$$kl(q || p) := KL(Bernoulli(q), Bernoulli(p))$$

Many PAC-Bayes-type bounds bound the risk implicitly

$$kl(q||p) \leq c$$

empirical risk risk regularizer

### Inverting the KL divergence

$$p^{\star} = \text{kl}^{-1}(q \mid c) = \text{maximize} \quad p$$
 
$$\text{subject to} \quad q \log(\frac{q}{p}) + (1-q)\log(\frac{1-q}{1-p}) \leq c$$
 
$$0 \leq p \leq 1$$