Real-Time Decision-Making for Clean and Resilient Energy Systems

Bartolomeo Stellato

Texas Power Grid collapsed after winter storm

Satellite images of Houston

Statewide power outages

Food/water shortages

Property damage: \$195 bln

Deaths: 246 - 702 (estimate)

"Extreme Winter Weather Causes U.S. Blackouts". earthobservatory.nasa.gov. February 16, 2021.

Future energy grids must be resilient

Green energy transition

PEV

Uncertainty

Climate change

Resilient grids via Real-Time Optimization

Re-planning in real-time is the key to adaptive resilient systems

Stellato research group @ Princeton University

Develop data-driven decision-making tools for real-time optimization, machine learning, and optimal control.

My recipe to tackle modern grid challenges

Data-driven robust decision-making

Optimizing energy consumption with Medium Voltage Drives

Optimal Control via Approximate Dynamic Programming

minimize
$$\sum_{t=0}^{\infty} \gamma^t \ell(x_t) \longleftarrow \text{ discounted objective } \\ \text{THD} + \delta f_{\text{sw}} \\ x_0 = x_{\text{init}} \\ x_t \in X, \quad u_t \in \{-1,0,1\}^3 \longleftarrow \text{ mixed-integer optimization } \\ \text{(challenging to solve in real-time!)}$$

Approximate Dynamic Programming approximate minimize
$$\sum_{t=0}^{N-1} \gamma^t \ell(x_t) + \gamma^N V(x_t)$$
 — value function (computed offline)

Real-time combinatorial optimization

Massively parallel FPGA implementation

Solution time under $25 \mu s$

Significant improvements

lifespan of the electric motor

High-Speed Finite Control Set Model Predictive Control for Power Electronics

First Place Paper Prize in IEEE Transactions in Power Electronics

My recipe to tackle modern grid challenges

PEV Renewables

Fast optimization algorithms

Data-driven robust decision-making

Quadratic optimization

Quadratic Optimization

minimize $(1/2)x^TPx + q^Tx$

subject to $l \leq Ax \leq u$

Numerous applications

Core component in real-time optimization

OSQP Solver

Problem

minimize
$$(1/2)x^TPx + q^Tx$$
 subject to
$$l \leq Ax \leq u$$

Algorithm in a nutshell

Linear system solve

Easy operations

$$x^{k+1} \leftarrow \text{Solve} \quad (P + \sigma I + \rho A^T A)x = \sigma x^k - q + A^T (\rho z^k - y^k)$$

$$z^{k+1} \leftarrow \Pi(Ax^{k+1} + \rho^{-1}y^k)$$

$$y^{k+1} \leftarrow y^k + \rho(Ax^{k+1} - z^{k+1})$$
 always solvable!

Efficient

Robust

OSQP

Academia

Industry

[https://pepy.tech/project/osqp]

OSQP: An Operator Splitting Solver for Quadratic Programs

B. Stellato, G. Banjac, P. Goulart, A. Bemporad, S. Boyd *Mathematical Programming Computation*, 2020 *(600 citations in 2 years)*

OSQP solver for sustainable energy

Optimal Trajectory Generation for Autonomous Vehicles

Electricity markets operations

Energy Exchange Istanbul

Carbon-negative green houses

Smart grid operations

Optimization of grid-scale batteries (50 MW)

Large-scale Robust 3. security-constrained | GPU **Optimal Power Flow**

My recipe to tackle modern grid challenges

Fast optimization algorithms

Data-driven robust decision-making

Uncertain energy distribution problems are hard

Hard to guarantee constraint satisfaction!

Mean Robust Optimization

Tradeoff between tractability and conservatism

worst-case approach

data-driven approach

probabilistic approach

Robust Optimization

- ✓ Tractable
- **X** Conservative

Mean Robust Optimization

Distrib. Robust Optimization

- √ Less conservative
- X Intractable

- Clustering to reduce dimensionality
- Same constraint satisfaction guarantees

Mean Robust Optimization

I. Wang, C. Becker, B. Van Parys, B. Stellato arXiv:2207.10820, 2022

Mean Robust Optimization to solve energy distribution problems

Drastic reduction in dimensionality

Same guarantees of constraint satisfaction

New project to design sustainable urban networks

Metropolis Initiative

"Metropolis focuses on technological innovations that make cities more sustainable, resilient, and equitable."

Towards Resilient Urban Networks with Differentiable Agent Decision Models

Jaime Fernandez Fisac

Gabriele Dragotto

A sustainable energy future...

Optimization Data and

can help us transition to a cleaner energy future and make our grid more

[Credits NYTimes]

adaptive

