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Texas Power Grid collapsed after winter storm

Satellite images of Houston

e

Before

Statewide power outages
Food/water shortages
Property damage: $195 bin

Deaths: 246 - 702 (estimate)

"Extreme Winter Weather Causes U.S. Blackouts". o
earthobservatory.nasa.gov. February 16, 2021.



Future energy grids must be resilient
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Uncertainty

Can optimization make our grid more resilient?



Resilient grids via Real-Time Optimization

decisions

!

minimize  f(x,y)

subjectto g¢g(z,y) <0

|

_ _ - data
information Grid decisions
objective f: energy consumption, costs

constraints g: dynamics, physical limits

Optimization

Re-planning in real-time is
the key to
adaptive resilient systems



Stellato research group @ Princeton University

Develop data-driven decision-making
tools for real-time optimization, machine
learning, and optimal control.
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Research Group

Princeton PhD students: Send me an email if you are interested in working with
me. Potential projects are:

Machine
learning

» High-speed online optimization for real-time control systems
» Learning for optimization under uncertainty
» Data-driven algorithm design and certification

« First-order methods for sparse, low-rank and combinatorial optimization

sustainable energy applications
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Optimizing energy consumption with Medium Voltage Drives

Drives are crucial to

optimize electric motor W
energy consumption

grid rectifier
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... every 25us!
(40, 000 x per sec)
Currents

distortion
THD .
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Optimal Control via Approximate Dynamic Programming

minimize
subject to

discounted objective

o0 t
Zt:() Y f(gpt) THD i 5fsw
L+l — Ail?t -+ But

L0 = Linit

v € X, wp€{—1,0,1}3- mixed-integer optimization

(challenging to solve in real-time!)

Approximate Dynamic Programming |
approximate

minimize S0 0 () + ANV (zy) - value function
(computed offline)

38



Real-time combinatorial optimization

Massively parallel

) . Solution time under 25us ® ADP
FPGA implementation - @ State of the art
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Significant improvements
_\{'}/_ energy lifespan of the
27~ efficiency electric motor

High-Speed Finite Control Set Model Predictive Control First Place Paper Prize in

for Power Electronics |IEEE Transactions in Power Electronics
B. Stellato, T. Geyer, P. Goulart 9

IEEE Transactions on Power Electronics, 2017
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Quadratic optimization

Quadratic Optimization

minimize  (1/2)z? Pz + q''z
subjectto [ < Ax <u

Numerous applications

Core component in
real-time optimization

11



OSQP Solver Problem

Linear system
solve

Easy
operations

minimize  (1/2)x2' Pz + ¢’ x
subjectto [ < Ax <wu

Algorithm in a nutshell

"t « Solve (P+ ol + pA' Az = oa2" — g+ AT (p2" — ¢¥)

Zk—l—l . H(Axk—l—l _I_p—lyk) \

k+1 k k+1 k+1
y <yt p(AatT =2 always solvable!

Efficient Robust Modular

@ EE
) NVIDIA. el
. CUDA
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OSQP
o | .
Academia Industry
m B Stanford
15 _— WR o voren
L NF Google 28 million <
Be;rﬁkeley.m ' SIEMENS downloads! i
-—-- CITADEL [https://pepy.tech/project/osqp]
F\\ Adobe

OSQP: An Operator Splitting Solver for Quadratic Programs
B. Stellato, G. Banjac, P. Goulart, A. Bemporad, S. Boyd
Mathematical Programming Computation, 2020

(600 citations in 2 years)

Mathematical Programming Computation
Best Paper Award 13



https://pepy.tech/project/osqp

OSQP solver for sustainable energy

Optimal Trajectory _ _
Generation for lgﬂ BaI@ BE
Autonomous Vehicles Level5 QEOIIO

Energy Exchange Istanbul

Electricity markets
operations EXIST

o Gridmatic Large-scale Robust

Smart grid g)fp;'rrig'zsaéflg security-constrained
g - DECARBONIZING THE GRID

OperatIOHS batterieS (50 MW) by optimizing clean energy Optlmal POWGF FIOW

Argonne &

NATIONAL LABORATORY
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Uncertain energy distribution problems are hard

cost of cost of Cﬁ)
opening charging stations energy distribution \ /
o T S B B
minimize ¢’z + tr(CTX) '_/ .ﬂ
subjectto 1'X; =1, j=1,...,m =) [+ \,},
. capacity - (ﬁ)/ ~ o_',},
constraints A

vector of uncertain
energy demands

Hard to guarantee
constraint satisfaction!

16



Mean Robust Optimization

Tradeoff between tractability and conservatism

worst-case approach data-driven approach probabillistic approach
i 2 dl i
SRR
® i,

Robust Optimization Mean Robust Distrib. Robust Optimization
v Tractable Optimization v Less conservative
X Conservative X Intractable

* Clustering to reduce dimensionality

 Same constraint satisfaction guarantees

Mean Robust Optimization . .
l. Wang, C. Becker, B. Van Parys, B. Stellato Is‘héﬁgg]llﬂgaczrrnxyvg?g Society
arXiv:2207.10820, 2022 P
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Mean Robust Optimization to solve energy distribution problems

cost of cost of £ C{QD
opening charging stations energy distribution ‘7\ \ /
\\\\\\* ‘,/”//// HI — tEEEi
T T T T — 7
minimize c¢' x4+ tr(C" X) T \
subjectto 17X; =1, j=1,...,m B° .3
- capacity - GQD/ ™~ A
vector of uncertain constraints A
energy demands
Time (s)
1012
| Drastic Same guarantees
reduction in of constraint
| dimensionality satisfaction
1071 5

. - - - - - 18
0 10 20 30 40 50
K (number of clusters)



New project to design sustainable urban networks

A PRINCETON . e “Metropolis focuses on technological
@& uvnversity - Metropolis Initiative innovations that make cities more sustainable,
resilient, and equitable.”

Towards Resilient Urban
Networks with Differentiable
Agent Decision Models

Gabriele 19
Fernandez Fisac Dragotto



A sustainable energy future...

Data and Optimization
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can help us transition to a cleaner energy future 2

and make our grid more

adaptive safe
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