Data-Driven Embedded Optimization for Control

Aninaiy ORFE

Bartolomeo Stellato — RTRC Seminar Series on Intelligent Cyber-Physical Systems, Jan 2021



Tremendous progress Iin optimization
Top500 peak CPU power

Hardware + Software

107-g 400 billion times
mé speedups!

5 107
104-;

| 400,000 years 30 seconds
103‘2
102-;

1995 2000 2005 2010 2015 2020
Year

[Our World in Data, https://github.com/owid/owid-datasets] 2



Is it enough?

Robotics High-Frequency Trading

< 10 milliseconds < 1 millisecond



Same problem with varying data

data

|

minimize  f(z,0)
subjectto g(x,0) <0

|

decisions

Can we solve it in milliseconds or microseconds?



Challenges in real-time optimization

Hardware
Real-Time Limited resources
Software
s Easy
Reliablility tuning
o W—
v, o=
-0




Today’s talk

Data-Driven Embedded Optimization for Control

Real-Time Limited resources Reliability
OSQP
Solver -
Easy
Learning tuning

Convex Optimization
Control Policies

T4



OSQP Solver



Still quadratic programming?

AN ALGORITHM FOR QUADRATIC PROGRAMMING

Marguerite Frank and Philip Wolfel

Princeton University

A finite iteration method for calculating the solution of quadratic
programming problems is described. Extensions to more general non=-

linear problems are suggested,

1, INTRODUCTION
The problem of maximizing a concave quadratic function whose variables are subject to

linear inequality constraints has been the subject of several recent studies, from both the com-
putational side and the theoretical (see Bibliography). Our aim here has been to develop a
method for solving this non-linear programming problem which should be particularly well
adapted to high-speed machine computation,

March 1956!



-
l:l\ l " ‘M

‘v vﬂ'.;‘ /

|
\

Al

j

f ‘[‘H“l‘ \ ‘(.
| L ?7 i L‘al I ] I ‘l@\

| IRV 4

[ \
|




First-order methods

Wide popularity

Pros

Warm-starting

Large-scale
problems

Embeddable

Cons

Low quality
solutions

Can’t detect

infeasibility

Problem data
dependent

OSQP

High-quality
solutions

Detects
infeasibility

Robust

10



The problem

minimize  (1/2)z2' Pz + ¢’ x
subjectto Ax €C

Quadratic program: C = [I, u] Ar e

11



ADMM

Alternating Direction Method of Multipliers
Splitting
minimize  f(z) + g(x)

Iterations

z" « argmin (f(i) +p/2||7 — (2" - yk/p)HQ)

I

2"t < argmin (g(:c) + p/2 Hx — (" 4 yk/p)|‘2>

12



How do we split the QP?

minimize

subject to

minimize  (1/2)z' Pz + q¢' x

subjectto Az =z

z €C

Splitting formulation

(1/2)z1 Pz

(z,2) = (x, 2)

IAZEZZ (537 é:)

13



ADMM Iiterations

Inner QP

(2FH1 25« argmin (1/2)2T Px + ¢z + 0/2 ||z — 2F|| + p/2 ]|z — 25 + ¥ /||
(x,z):Ax==2

AL T (281 4 4% /p)  Projection onto C

yk—|—1 . yk i D (gk—|—1 B Zk_l_l)

14



Solving the inner QP

Equality-constrained

minimize

subjectto Az =z

Always
solvable!

(1/2)xt Px +q¢' 2+ 0/2 Hx — kaQ + p/2 Hz — k4 yk/,OH2

Reduced KKT system

_P—I—O'I AT_

ox® —q

k 1,k

R A

15



Solving the linear system

Direct method (small to medium scale)

Quasi-definite P+ol A" | |z 0" — g
matrix A _% Il |y Sk _ % "

QDLDL
Free quasi-definite
—> |inear system solver

[https://github.com/oxfordcontrol/qdIdl]

Well-defined
LDL*

Factorization

caching

factorization

16



Solving the linear system

Indirect method (large scale)

Positive-definite T ok T, .k .k
atrix (P+ol+pA" A)x=oz" —q+ A" (pz" — y")

Conjugate Solve very APy
Jd'g large implementation
gra |ent Sy St ems [https://github.com/oxfordcontrol/cuosqgp]

17




Computing the projection

Quadratic program: C = |[I, u]

Box projection
[I(v) = max(min(v, u), ) [I(v) 4

18



Complete algorithm

Problem
minimize  (1/2)z? Pz + q''z

subjectto [ < Ax < u

Algorithm
Linear system Piol AT | |kt ok —aq
solvye (xkﬂ’ykﬂ) ¢ solve 1 k1| — |k 1 qk
_ A ——I_ s 20 =yt
5k—|—1 . Zk 4+ (Vk—l—l o yk)/p
Easy k+1 ~k+1 k
operations ° (2" + 47/ p)

yk+1 — yk Iy (5k+1 _ Zk+1)



OSQP

Operator Splitting solver for Quadratic Programs

OSQP

Y - 2
Get started

Embeddable
(can be division free!)

Supports
warm-starting

Detects
Infeasibility

Solves large-scale
problems




Users

More than 2 million downloads!

I I | | . Los Alamos
NYU

NATIONAL LABORATORY
EST.1943

)TOYOTA  Google

s . UNIVERSITY OF CALIFORNIA
m; N ETH-zurich

ITALIANO DI .

rECNOLOGIA A L UND BLACKROCK"®

=5/ UNIVERSITY

........... 6 Stanford |EGNed

University

ooooo
0000000
00000000
ooooo

[pepy.tech/project/osqp] 21



Performance benchmarks

OSQP Benchmarks

(control, portfolio, lasso, SVM, etc.) Maroz-Meszaros

14 BN |ow accuracy 14 W low accuracy
B high accuracy B high accuracy

OSQP GUROBI MOSEK OSQP GUROBI MOSEK

[github.com/oxfordcontrol/osqgp_benchmarks]

—_
DO
—_
DO

C -
T 10 T 10
- -
2 ©
2 3 2 3
o] §) o] §)
2 0 o O
3= 3=
c c
) @)




Code generation
Optimized C code

for (iter = 1; iter <= work->settings->max_iter; iter ++) {

swap

Swap=or (iter = 1; iter <= work->settings->max_iter; iter ++) {

swap/ Maln ADMM a
swapor (iter = 1; iter <= work->settings->max_iter; iter ++) { Em bedded

# Create OSFP object R R e e Hard
m = osgp.OSQP() ' ] draware

upda

upda update_xz_tilde(work);

# Initialize solver updz |
m. Setup(P’ q’ A’ | : U’ upda update_*(work);

settings) s i e -

upda update_z(work);
¥ifd

# Generate C code L updste_y(work);
y y #ifd B
m.codegen( folder_name ")

if (

#ifdef CTRLC

} if (isInterrupted()) {
#end update_status(work->info, 0SQP_SIGINT);
} c_print("Solver interrupted\n");
#end endInterruptListener();
return 1;
}
#endif

It can be compiled into division-free 53



Compiled code size ~80kb (low footprint)

OSQP

300x
Reduction!

GUROBI

CPLEX

24



OSQP summary

Robust Embeddable Supports
(can be division free!) warm-starting

Detects Solves large-scale
Infeasibility problems

Future work

Algorithms
 |[mprovements: acceleration, restarts

o Semidefinite optimization (SDP)
o Sequential quadratic programming (SQP)
 Mixed-integer optimization

Architecture

 New linear algebra

 New linear system solvers
 New languages supported

25



Today’s talk

Data-Driven Embedded Optimization for Control

Real-Time Limited resources Reliability

v

{s;

Interpretable
Learning tuning
Convex Optimization
Control Policies

OSQP
Solver

T

20



Learning Convex Optimization
Control Policies



Control loop

controller dynamics

L Ut
ut = Q) [—————>| Te11 = f(@t, ut, wi)

xr; state
U inpUt
w; (random) disturbance

¢(x;) control policy

Ltt+1

28



Explicit vs implicit control policies

Explicit

Complete control specification

Example: Pl Contrcgller

Ut — —ert—K[ E €+
7=0

Implicit (optimization-based)

Designer specifies Optimizer

goal and

— computes

requirements the action

Example: LQR Controller

dynamics: x;

1:A:Ut+But+wt

stage cost: 2! Qz + u! Ru

l

u; = argminu’ Ru + (Ax; + Bu)' P(Az; + Bu)

(J
:KCEt

29



Convex optimization control policies (COCPs)

uy = argmin f(xe,u,0)

u

subjectto g(zs,u,0) <0
A(xh 9)“ — b(afta ‘9)

xr; state
¢ parameters to tune
f, g convex functions

30



Many control policies are COCPs

Examples

 Linear Quadratic Regulator (LQR)
* Model predictive control (MPC)

* Actuator allocation

 Resource allocation

* Portfolio trading

Advantages

Interpretable Satlsf_y
constraints

Efficient and reliable

Handle varying

dynamics

(even division-free: OSQP)

31



Judging COCPs

Given a policy, state and input trajectories form a stochastic process

Trajectories Policy cost
X =(zo,...,T7_1,27)
U= (ug,...,ur_1) — J(O)=Eyv(X,U W)
W = (wg,...,wpr_1)

Approximate J(0) from data (monte carlo simulation)

A

J (6 Zw (X, U WY

32



COCP Example: dynamic programming

Time- separable cost

XUW Zg CCt,Ut,wt

Optimal policy as 7' — oc

¢($t) — argmin E (g(ajta u, wt) _I_ V(f(xtv u, wt)))
) 1
Value function

COCP if
» f affine in z and u
» g convex in z and u
» V' Is convex

33



COCP Example: approximate dynamic programming

B(r) = argminE (g e, u, wy) + V(F (w0, u,w0,)) )
Approximate
value function

COCRP if

» f affine iIn z and u

* g convex in z and u
» VV isconvex —— (even when V' is not)

34



Controller tuning problem

Goal
o Nonconvex
minimize J(60) and difficult
to solve

Traditional approaches

- Hand-tuning (few parameters, simple dependencies)
- Derivative-free method (very slow)

35



Auto-tuning

Generalization

Split simulation data in

training, validation and testing

Learning scheme

Stochastic gradient descent

PR+l = ok — ¢tk o.J(0F)
/
step size T
stochastic gradient
from simulation

Non differentiable .J(6)?

Still get a descent direction
(common in NN community)

36



Implementation

Automatic differentiation T,

» Build computation graph (simulate) _Ii' oo |
« Backpropagate using PyTorch o(xy) | —

CVXPYLayers

Backpropagate through COCPs
(differentiate KKT optimality conditions)

https://github.com/cvxgrp/cvxpylayers/]

Differentiable convex optimization layers. Agrawal, Amos, Barratt, Boyd, Diamond, and Kolter. NeurlPS 2019]

Differentiable optimization-based modeling for machine learning. Amos. PhD thesis 2019]

37



Box-constrained LQR

Problem setup
» dynamics: z;.1 = Axy + Buy + wy

» actuator limit: ||us|le <1

- stage cost: ! Qx; + ul Ruy

COCP Policy (QP)
u; = argmin u’ Ru+ ||6(Azs + Bu)||5

subjectto  ||ulls <1 \

parameters

38



Box-constrained LQR

Performance
18
17 - —— COCP Standard
16 - ~—— upper bound upper/lower bounds
i —— lower bound from SDPs
S 13
12 -
3 Hard to generalize
1 (other dynamics,
S S disturbances, etc)

1teration

39



Supply chain distribution

supplier price sell
quantity held\‘ l c?nsumer demand buy l ship
State: x; = (he, pi, dy) Input: u, = (by, S¢, 2¢)

Network example

Dynamics
ht_|_1 — ht -+ (Ain — AOUt)ut @
suppliers \ consumers
pi+1 and d; 1 are log-normal

40



Supply chain distribution

Cost and constraints |
constraints

sale revenues \ Stage cost /

pfbt — TTSt + TTZt + CVTht T 6Th% T I(mt’ ut)

e | AN

suppliers payment shipment cost  storage cost

Constraints
O S ht S hmaxa O S Uy S Umax

A"y, < hy, s < dy

41



Supply chain distribution COCP
COCP

l

us = (by, S¢,2¢) = argmin pib—r's+1lz4+||ShT|Z+q¢" ht
subjectto At = hy + (A™ — A°Y) (b, s, 2)
0 < AT <hmax, 0<(b,s,2) < Unax
A" (b, s, z2) < hy, s <d;

42



Supply chain distribution

Results
—0.28 -
- - —0.30 -
Validation 7
|OSS © —0.32
—0.34
Normalized
shipments

25 50 75 100 125 150 175
1teration
Untrained Trained
3 —0) B
© —>()—>

200

I 1.0

- 0.8
- 0.6

- 0.4

- (0.2

I— 0.0

43



Learning COCPs summary

Interpretable Satlsf_y Handle varying
constraints dynamics

Efficient and reliable

Easy to tune
from data

(even division-free: OSQP)

Future work
» Support hybrid (mixed-integer) control policies
* Integrate tuning and deployment with code generation (e.g., OSQP)
e Stochastic policies

44



Conclusions




Alberto Bemporad

ks

g
9z
nD.
D
-
0 o
T O
L
nwu%
-
"<
O
>

Shane Barratt

Akshay Agrawal

Stephen Boyd

46



References

OSQP (osgp.orqg)

[OSQP: An Operator Splitting Solver for Quadratic Programs. Stellato, Banjac, Goulart, Bemporad, and Boyd. Mathematical Programming Computation 2020]

[Infeasibility detection in the alternating direction method of multipliers for convex optimization. Banjac, Goulart, Stellato, and Boyd. Journal of Optimization Theory and
Applications 2019]

[Embedded code generation using the OSQP solver. Stellato, Banjac, Stellato, Moehle, Goulart, Bemporad, and Boyd. IEEE Conf. on Decision and Control 2017]

[Embedded mixed-integer quadratic optimization using the OSQP solver. Stellato, Naik, Bemporad, Goulart, and Boyd. European Control Conference, 2018]

Learning COCPs (https://github.com/cvxgrp/cocp)

[Learning Convex Optimization Control Policies. Agrawal, Amos, Barratt, Boyd, and Stellato. L4DC 2020]
[Differentiable convex optimization layers. Agrawal, Amos, Barratt, Boyd, Diamond, and Kolter. NeurlPS 2019]

[Differentiable optimization-based modeling for machine learning. Amos. PhD thesis 2019]

47


http://osqp.org
https://github.com/cvxgrp/cocp

Conclusions

Real-time

and embedded optimization

{8}

will soon become a technology

Efficient and
reliable optimizers

AAN

s Sstellato.1io

YW @b_stellato

Thanks to

Easy-to-tune _O_O
control policies O

W% bstellato@princeton.edu

(/) github.com/bstellato

48






OSQP Parameter selection

50



